首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Here, we show that endothelin-1 (ET-1) dose-dependently inhibits the hypoosmotic swelling of Müller cells in freshly isolated retinal slices of control and diabetic rats, with a maximal inhibition at 100 nM. Osmotic Müller cell swelling was also inhibited by ET-2. The effect of ET-1 was mediated by activation of ETA and ETB receptors resulting in transactivation of metabotropic glutamate receptors, purinergic P2Y1, and adenosine A1 receptors. ET-1 (but not ET-2) also inhibited the osmotic swelling of bipolar cells in retinal slices, but failed to inhibit the swelling of freshly isolated bipolar cells. The inhibitory effect of ET-1 on the bipolar cell swelling in retinal slices was abrogated by inhibitors of the FGF receptor kinase (PD173074) and of TGF-β1 superfamily activin receptor-like kinase receptors (SB431542), respectively. Both Müller and bipolar cells displayed immunoreactivities of ETA and ETB receptor proteins. The data may suggest that neuroprotective effects of ETs in the retina are in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. ET-1 acts directly on Müller cells, while the inhibitory effect of ET-1 on bipolar cell swelling is indirectly mediated, via stimulation of the release of growth factors like bFGF and TGF-β1 from Müller cells.  相似文献   

2.
Osmotic swelling of neurons and glial cells contributes to the development of retinal edema and neurodegeneration. We show that nerve growth factor (NGF) inhibits the swelling of glial (Müller) and bipolar cells in rat retinal slices induced by barium‐containing hypoosmotic solution. NGF also reduced Müller and bipolar cell swelling in the post‐ischemic retina. On the other hand, NGF prevented the swelling of freshly isolated Müller cells, but not of isolated bipolar cells, suggesting that NGF induces a release of factors from Müller cells that inhibit bipolar cell swelling in retinal slices. The inhibitory effect of NGF on Müller cell swelling was mediated by activation of TrkA (the receptor tyrosine kinase A), but not p75NTR, and was prevented by blockers of metabotropic glutamate, P2Y1, adenosine A1, and fibroblast growth factor receptors. Basic fibroblast growth factor fully inhibited the swelling of freshly isolated Müller cells, but only partially the swelling of isolated bipolar cells. In addition, glial cell line‐derived neurotrophic factor and transforming growth factor‐β1, but not epidermal growth factor and platelet‐derived growth factor, reduced the swelling of bipolar cells. Both Müller and bipolar cells displayed TrkA immunoreactivity, while Müller cells were also immunostained for p75NTR and NGF. The data suggest that the neuroprotective effect of NGF in the retina is in part mediated by prevention of the cytotoxic glial and bipolar cell swelling.

  相似文献   


3.

Retinal glial (Müller) cells possess an endogenous purinergic signal transduction cascade which normally prevents cellular swelling in osmotic stress. The cascade can be activated by osmotic or glutamate receptor-dependent ATP release. We determined whether activation of this cascade is altered in Müller cells of transgenic rats that suffer from a slow photoreceptor degeneration due to the expression of a truncated human cilia gene polycystin-2 (CMV-PKD21/703 HA). Age-matched Sprague–Dawley rats served as control. Retinal slices were superfused with a hypoosmotic solution (60 % osmolarity). Müller cells in retinas of PKD21/703 rats swelled immediately in hypoosmotic stress; this was not observed in control retinas. Pharmacological blockade of P2Y1 or adenosine A1 receptors induced osmotic swelling of Müller cells from control rats. The swelling induced by the P2Y1 receptor antagonist was mediated by induction of oxidative–nitrosative stress, mitochondrial dysfunction, production of inflammatory lipid mediators, and a sodium influx from the extracellular space. Exogenous VEGF or glutamate prevented the hypoosmotic swelling of Müller cells from PKD21/703 rats; this effect was mediated by activation of the purinergic signaling cascade. In neuroretinas of PKD21/703 rats, the gene expression levels of P2Y1 and A1 receptors, pannexin-1, connexin 45, NTPDases 1 and 2, and various subtypes of nucleoside transporters are elevated compared to control. The data may suggest that the osmotic swelling of Müller cells from PKD21/703 rats is caused by an abrogation of the osmotic ATP release while the glutamate-induced ATP release is functional. In the normal retina, ATP release and autocrine P2Y1 receptor activation serve to inhibit the induction of oxidative–nitrosative stress, mitochondrial dysfunction, and production of inflammatory lipid mediators, which otherwise will induce a sodium influx and cytotoxic Müller cell swelling under anisoosmotic conditions. Purinergic receptors may represent a target for the protection of retinal glial cells from mitochondrial oxidative stress.

  相似文献   

4.
Astroglial cells are a source for gliotransmitters such as glutamate and ATP. We demonstrate here that gliotransmitters have autocrine functions in the regulation of cellular volume. Hypoosmotic stress in the presence of inflammatory mediators or oxidative stress, and during blockade or down-regulation of potassium channels, induces swelling of retinal glial cells. Vascular endothelial growth factor inhibits the osmotic swelling of glial cells in retinal slices or isolated cells. This effect was mediated by a kinase domain region/flk-1 receptor-evoked calcium dependent release of glutamate from glial cells, and subsequent stimulation of glial group I/II metabotropic glutamate receptors. Activation of kinase domain region/flk-1 or glutamate receptors evoked an autocrine swelling-inhibitory purinergic signaling cascade that was calcium-independent. This cascade involved the release of ATP and adenosine, and the activation of purinergic P2Y1 and adenosine A1 receptors, resulting in the opening of potassium and chloride channels and inhibition of cellular swelling. The glutamatergic-purinergic regulation of the glial cell volume may be functionally important in the homeostasis of the extracellular space volume during intense neuronal activation which is associated with a swelling of neuronal cell structures in the retina. However, glial cell-derived glutamate may also contribute to the swelling of activated neurons since metabolic poisoning of glial cells by iodoacetate inhibits the neuronal cell swelling mediated by activation of ionotropic glutamate receptors.  相似文献   

5.
We determined whether the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in the sensory rat retina alters during ischemia-reperfusion, and whether HB-EGF affects the osmotic swelling which is a characteristic feature of Müller glial cells after ischemia. Transient retinal ischemia was induced by elevation of the intraocular pressure for 1 h. Western blots revealed an upregulation of HB-EGF in the retina at 1, 3, and 7 days after reperfusion. HB-EGF inhibited the swelling of glial cells in retinal slices, via stimulation of the synaptic release of glutamate and subsequent activation of glial metabotropic glutamate receptors which resulted in an autocrine release of purinergic receptor agonists. Finally, activation of A1 receptors resulted in opening of glial K(+) and Cl(-) channels. It is suggested that the increased expression of HB-EGF and the inhibition of glial cell swelling may be parts of a protective role of HB-EGF in the ischemic retina.  相似文献   

6.
Extracellular nucleotides mediate glia-to-neuron signalling in the retina and are implicated in the volume regulation of retinal glial (Müller) cells under osmotic stress conditions. We investigated the expression and functional role of ectonucleotidases in Müller cells of the rodent retina by cell-swelling experiments, calcium imaging, and immuno- and enzyme histochemistry. The swelling of Müller cells under hypoosmotic stress was inhibited by activation of an autocrine purinergic signalling cascade. This cascade is initiated by exogenous glutamate and involves the consecutive activation of P2Y1 and adenosine A1 receptors, the action of ectoadenosine 5′-triphosphate (ATP)ases, and a nucleoside-transporter-mediated release of adenosine. Inhibition of ectoapyrases increased the ATP-evoked calcium responses in Müller cell endfeet. Müller cells were immunoreactive for nucleoside triphosphate diphosphohydrolases (NTPDase)2 (but not NTPDase1), ecto-5′-nucleotidase, P2Y1, and A1 receptors. Enzyme histochemistry revealed that ATP but not adenosine 5′-diphosphate (ADP) is extracellularly metabolised in retinal slices of NTPDase1 knockout mice. NTPDase1 activity and protein is restricted to blood vessels, whereas activity of alkaline phosphatase is essentially absent at physiological pH. The data suggest that NTPDase2 is the major ATP-degrading ectonucleotidase of the retinal parenchyma. NTPDase2 expressed by Müller cells can be implicated in the regulation of purinergic calcium responses and cellular volume.  相似文献   

7.

Background

Retinal degeneration in transgenic rats that express a mutant cilia gene polycystin-2 (CMV-PKD2(1/703)HA) is characterized by initial photoreceptor degeneration and glial activation, followed by vasoregression and neuronal degeneration (Feng et al., 2009, PLoS One 4: e7328). It is unknown whether glial activation contributes to neurovascular degeneration after photoreceptor degeneration. We characterized the reactivity of Müller glial cells in retinas of rats that express defective polycystin-2.

Methods

Age-matched Sprague-Dawley rats served as control. Retinal slices were immunostained for intermediate filaments, the potassium channel Kir4.1, and aquaporins 1 and 4. The potassium conductance of isolated Müller cells was recorded by whole-cell patch clamping. The osmotic swelling characteristics of Müller cells were determined by superfusion of retinal slices with a hypoosmotic solution.

Findings

Müller cells in retinas of transgenic rats displayed upregulation of GFAP and nestin which was not observed in control cells. Whereas aquaporin-1 labeling of photoreceptor cells disappeared along with the degeneration of the cells, aquaporin-1 emerged in glial cells in the inner retina of transgenic rats. Aquaporin-4 was upregulated around degenerating photoreceptor cells. There was an age-dependent redistribution of Kir4.1 in retinas of transgenic rats, with a more even distribution along glial membranes and a downregulation of perivascular Kir4.1. Müller cells of transgenic rats displayed a slight decrease in their Kir conductance as compared to control. Müller cells in retinal tissues from transgenic rats swelled immediately under hypoosmotic stress; this was not observed in control cells. Osmotic swelling was induced by oxidative-nitrosative stress, mitochondrial dysfunction, and inflammatory lipid mediators.

Interpretation

Cellular swelling suggests that the rapid water transport through Müller cells in response to osmotic stress is altered as compared to control. The dislocation of Kir4.1 will disturb the retinal potassium and water homeostasis, and osmotic generation of free radicals and inflammatory lipids may contribute to neurovascular injury.  相似文献   

8.
Glial cells are proposed to play a major role in the ionic and osmotic homeostasis in the CNS. Swelling of glial cells contributes to the development of edema in neural tissue under pathological conditions such as trauma and ischemia. In this study, we compared the osmotic swelling characteristics of murine hippocampal astrocytes, cerebellar Bergmann glial cells, and retinal Müller glial cells in acutely isolated tissue slices in response to hypoosmotic stress and pharmacological blockade of Kir channels. Hypoosmotic challenge induced an immediate swelling of somata in the majority of Bergmann glial cells and hippocampal astrocytes investigated, whereas Müller cell bodies displayed a substantial delay in the onset of swelling and hippocampal astroglial processes remained unaffected. Blockade of Kir channels under isoosmotic conditions had no swelling-inducing effect in Müller cell somata but caused a swelling in brain astrocytic somata and processes. Blockade of Kir channels under hypoosmotic conditions induced an immediate and strong swelling in Müller cell somata, but had no cumulative effect to brain astroglial somata. No regulatory volume decrease could be observed in all cell types. The data suggest that Kir channels are differently implicated in cell volume homeostasis of retinal Müller cells and brain astrocytes and that Müller cells and brain astrocytes differ in their osmotic swelling properties.  相似文献   

9.
Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca2+-activated K+ (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells.  相似文献   

10.
It is proposed that ATP is released from both neurons and glia during electroconvulsive therapy (ECT) and that this leads to reduction of depressive behaviour via complex stimulation of neurons and glia directly via P2X and P2Y receptors and also via P1 receptors after extracellular breakdown of ATP to adenosine. In particular, A1 adenosine receptors inhibit release of excitatory transmitters, and A2A and P2Y receptors may modulate the release of dopamine. Sequential ECT may lead to changes in purinoceptor expression in mesolimbic and mesocortical regions of the brain implicated in depression and other mood disorders. In particular, increased expression of P2X7 receptors on glial cells would lead to increased release of cytokines, chemokines and neurotrophins. In summary, we suggest that ATP release following ECT involves neurons, glial cells and neuron–glial interactions acting via both P2 and after breakdown to adenosine via P1 receptors. We suggest that ecto-nucleotidase inhibitors (increasing available amounts of ATP) and purinoceptor agonists may enhance the anti-depressive effect of ECT.  相似文献   

11.
Regulation of cellular volume is of great importance to avoid changes in neuronal excitability resulting from a decrease in the extracellular space volume. We compared the volume regulation of retinal glial (Müller) and neuronal (bipolar) cells under hypoosmotic and glutamate‐stimulated conditions. Freshly isolated slices of the rat retina were superfused with a hypoosmotic solution (60% osmolarity; 4 min) or with a glutamate (1 mM)‐containing isoosmotic solution (15 min), and the size changes of Müller and bipolar cell somata were recorded. Bipolar cell somata, but not Müller cell somata, swelled under hypoosmotic conditions and in the presence of glutamate. The hypoosmotic swelling of bipolar cell somata might be mediated by sodium flux into the cells, because it was not observed under extracellular sodium‐free conditions, and was induced by activation of metabotropic glutamate receptors and sodium‐dependent glutamate transporters. The glutamate‐induced swelling of bipolar cell somata was mediated by sodium chloride flux into the cells induced by activation of NMDA‐ and non‐NMDA glutamate receptors, glutamate transporters, and voltage‐gated sodium channels. The glutamate‐induced swelling of bipolar cell somata was abrogated by adenosine and γ‐aminobutyric acid, but not by vascular endothelial growth factor and ATP. The data may suggest that Müller cells, in contrast to bipolar cells, possess endogenous mechanisms which tightly regulate the cellular volume in response to hypoosmolarity and prolonged glutamate exposure. Inhibitory retinal transmission may regulate the volume of bipolar cells, likely by inhibition of the excitatory action of glutamate.  相似文献   

12.
Studies on swelling and fluid compartmentation have been carried out in vitro on incubated slices of cerebral cortex from kittens 1.5-120 days post-natal age and on incubated sections of corpus callosum and slices of liver and kidney cortex from adult cats. The findings have been compared with analogous data for incubated slices of adult cat cerebral cortex, studied under identical conditions (Bourke and Tower , 1966a, b), in order to identify the probable morphological correlates of fluid and electrolyte distribution. Incubated cortical slices from neonatal (1.5-4-day-old) kittens exhibit none of the relevant characteristics of slices from adult cerebral cortex. By 1 month post-natal age, K+-dependent swelling of slices becomes demonstrable, and the K+ and Na+ contents of slices approximate adult levels. Both these developments coincide with the morphological and physiological maturation of cortical neurons. At 3 months post-natal age, slice swelling accessible to C1? but not to sucrose becomes observable and the dependence of sucrose space size on time, during incubation, of solute addition becomes demonstrable. Both these developments follow completion of axonal myelination in the cortex but coincide with the period of cortical glial cell proliferation. Incubated sections of corpus callosum from adult cats exhibit none of the relevant characteristics observed for cortical slices under identical conditions. Tissue swelling is minimal and uninfluenced by K+ concentrations of incubation media. Tissue fluid spaces accessible to sucrose are approximately twice the size of spaces accessible to inulin. In general, qualitatively similar results have been obtained for incubated slices of cat liver or kidney cortex or for incubated sections of rat diaphragm under the same conditions. A behaviour for glial cells (? astrocytes) in cerebral cortex under such in vitro conditions distinctly different from behaviour of subcortical glial cells is suggested.  相似文献   

13.
Bidirectional signaling between neurons and glial cells has been demonstrated in brain slices and is believed to mediate glial modulation of synaptic transmission in the CNS. Our laboratory has characterized similar neuron-glia signaling in the mammalian retina. We find that light-evoked neuronal activity elicits Ca(2+) increases in Müller cells, which are specialized retinal glial cells. Neuron to glia signaling is likely mediated by the release of ATP from neurons and is potentiated by adenosine. Glia to neuron signaling has also been observed and is mediated by several mechanisms. Stimulation of glial cells can result in either facilitation or depression of synaptic transmission. Release of D-serine from Müller cells might also potentiate NMDA receptor transmission. Müller cells directly inhibit ganglion cells by releasing ATP, which, following hydrolysis to adenosine, activates neuronal A(1) receptors. The existence of bidirectional signaling mechanisms indicates that glial cells participate in information processing in the retina.  相似文献   

14.
The effect of sex steroids, 17β-estradiol and testosterone, on the production of 6-keto-prostaglandin F, prostaglandin F and prostaglandin E2 was studied in cultures of piglet aorta endothelial cells. In cells isolated from female animals both steroids stimulated the secretion of prostaglandins. In contrast, sex steroids did not affect prostaglandin synthesis by endothelial cells taken from male animals. In addition, female endothelial cells convert testosterone into Estriol, estrone and estradiol. estradiol-induced stimulation of prostacyclin production may explain in part the beneficial role generally attributed to naturally occuring estrogens in cardiovascular diseases.  相似文献   

15.
The growth of the SC-115 mammary carcinoma in mice is androgen dependent. Estrogens antagonize the androgen effect. The high affinity binding of androgens and estrogens has been studied in soluble extracts of the tumor, of primary culture cells and clone MI1 cells.Results indicate that two distinct specific steroid hormone-binding sites (termed ‘receptors’) are found in all cytosol fractions. The androgen-receptor (A) binds testosterone, androstanolone, cyproterone (an anti-androgen), progesterone and estradiol, but only very weakly non-steroidal diethylstilbestrol. The estrogen-receptor (E) binds estrogenic substances such as estradiol and diethylstilbestrol, but no androgen. The apparent KD, eq for A and E receptors of [3H]androstanolone and [3H]estradiol respectively, is identical (-0.5-1 nM at 4 °C). The affinity of estradiol for the A-receptor, when measured against [3H]androstanolone binding, indicates a Ki = 17.5 nM. The concentration of binding sites is of the order of 0.1 pmole/mg protein (somewhat higher for A than for E receptor) in MI1 cell cytosol. Studies by ultracentrifugation through glycerol-Tris gradients (low salt medium) reveal the macromolecular nature of the cytosol A and E receptors (7–7.5 S). Evidence is presented of the transfer of the A and the E receptors to nuclei after incubation of tumor slices as well as of clone MI1 cells with the corresponding hormones.Experiments suggest that the two different binding sites are present on two separated macromolecular moieties. After incubation at 37 °C of tumor slices with 10–20 nM [3H]testosterone, or with 10 nM [3H]estradiol, the corresponding radioactive hormone-receptor complexes are, as expected, found in the nuclear KCl extracts. In parallel experiments, where slices are incubated with non-radioactive hormones at the same concentration and the nuclear KCl extracts subsequently treated by radioactive steroids, no available androgen-binding sites are found in the nuclei after exposure to estradiol, nor estrogen-binding sites after exposure to testosterone.Therefore, in the same cell, two receptors are present which bind androgens and estrogens with high affinity, and one given hormone (estradiol) can be specifically bound (with different affinities) by two different receptors which, however, discriminate a synthetic analog (diethylstilbestrol). The data may give some molecular background for interpreting responses to the same hormone which may differ at various concentrations, for studying effects of analogs, and for analysing the control of tumor growth by antagonistic steroids.  相似文献   

16.
Antibodies against the chondroitin sulfate proteoglycan NG2 label a subpopulation of glial cells within the CNS, which have a small cell body and thin radiating processes. Physiological recordings from these small cells in acute brain slices have revealed that they possess unique properties, suggesting that they may comprise a class of glial cells distinct from astrocytes, oligodendrocytes, or microglia. NG2-expressing glial cells (abbreviated as “NG2 cells” here) have a moderate input resistance and are not dye- or tracer-coupled to adjacent cells. They express voltage-gated Na+, K+and Ca2+conductances, though they do not exhibit regenerative Na+or Ca2+action potentials due to the much larger K+conductances present. In addition to voltage-gated conductances, they express receptors for various neurotransmitters. In the hippocampus, AMPA and GABAAreceptors on these cells are activated by release of transmitter from neurons at defined synaptic junctions that are formed with CA3 pyramidal neurons and GABAergic interneurons. These rapid forms of neuron-glial communication may regulate the proliferation rate of NG2 cells or their development into mature oligodendrocytes. These depolarizing inputs may also trigger the release of neuroactive substances from NG2 cells, providing feedback regulation of signaling at neuronal synapses. Although the presence of Ca2+permeable AMPA receptors provides a pathway to link neuronal activity to Ca2+dependent processes within the NG2 cells, these receptors also put these cells at risk for glutamate-associated excitotoxicity. This vulnerability to the sustained elevation of glutamate may underlie ischemic induced damage to white matter tracts and contribute to cerebral palsy in premature infants.  相似文献   

17.
18.
19.
Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1?/? mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl2) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.  相似文献   

20.

mGlu1 and mGlu5 metabotropic glutamate receptors are expressed in the vertebrate retina, and are co-localized in some retinal neurons. It is believed that both receptors are coupled to polyphosphoinositide (PI) hydrolysis in the retina and their function may diverge in some cells because of a differential engagement of downstream signaling molecules. Here, we show that it is only the mGlu1 receptor that is coupled to PI hydrolysis in the retina. We used either bovine retinal slices or intact mouse retinas challenged with the mixed mGlu1/5 receptor agonist, DHPG. In both models, DHPG-stimulated PI hydrolysis was abrogated by the selective mGlu1 receptor antagonist, JNJ16259685, but was insensitive to the mGlu5 receptor antagonist, MPEP. In addition, the PI response to DHPG was unchanged in the retina of mGlu5?/? mice but was abolished in the retina of crv4 mice lacking mGlu1 receptors. Stimulation of the mitogen-activated protein kinase pathway by DHPG in intact mouse retinas were also entirely mediated by mGlu1 receptors. Our data provide the first example of a tissue in which a biochemically detectable PI response is mediated by mGlu1, but not mGlu5, receptors. Hence, bovine retinal slices might be used as a model for the functional screening of mGlu1 receptor ligands. In addition, the mGlu1 receptor caters the potential as a drug target in the experimental treatment of degenerative disorders of the retina.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号