首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants deficient in both glucose-6-phosphate dehydrogenase and phosphoglucose isomerase lysed 4 to 5 h after growth in nutrient medium containing glucose, or after prolonged incubation if the medium contained galactose. The lysis could be prevented by the addition of any other rapidly metabolizable carbon source such as fructose, glucosamine, or glycerol. The glucose-induced lysis was also abolished by introduction of a third mutation lacking phospho-glucose mutase activity but not by a third mutation lacking uridine diphosphate-glucose pyrophosphorylase or teichoic acid glucosyl transferase activity. Galactose-induced lysis was prevented only if the additional mutation abolished the uridine diphosphate-glucose pyrophosphorylase activity. The results showed that lysis was caused by the intracellular accumulation of glucose-1-phosphate, which in turn inhibited at least one of the two enzymes that convert glucosamine-6-phosphate to N-acetyl glucosamine-6-phosphate.  相似文献   

2.
In rat hepatocytes, the basal glycogen synthase activation state is decreased in the fed and diabetic states, whereas glycogen phosphorylase a activity decreases only in diabetes. Diabetes practically abolishes the time- and dose-dependent activation of glycogen synthase to glucose especially in the fed state. Fructose, however, is still able to activate this enzyme. Glycogen phosphorylase response to both sugars is operative in all cases. Cell incubation with the combination of 20 mM glucose plus 3 mM fructose produces a great activation of glycogen synthase and a potentiated glycogen deposition in both normal and diabetic conditions. Using radiolabeled sugars, we demonstrate that this enhanced glycogen synthesis is achieved from both glucose and fructose even in the diabetic state. Therefore, the presence of fructose plays a permissive role in glycogen synthesis from glucose in diabetic animals. Glucose and fructose increase the intracellular concentration of glucose 6-phosphate and fructose reduces the concentration of ATP. There is a close correlation between the ratio of the intracellular concentrations of glucose 6-phosphate and ATP (G6-P/ATP) and the activation state of glycogen synthase in hepatocytes from both normal and diabetic animals. However, for any given value of the G6-P/ATP ratio, the activation state of glycogen synthase in diabetic animals is always lower than that of normal animals. This suggests that the system that activates glycogen synthase (synthase phosphatase activity) is impaired in the diabetic state. The permissive effect of fructose is probably exerted through its capacity to increase the G6-P/ATP ratio which may partially increase synthase phosphatase activity, rendering glycogen synthase active.  相似文献   

3.
1. Flow of carbon atoms from glucose and glycogen glucose to glyceride glycerol, glyceride fatty acids and glycerol was calculated in the perfused rat heart and incubated epididymal adipose tissue from the incorporation of (14)C from [U-(14)C]-glucose (into glyceride glycerol, glyceride fatty acids and glycerol in the medium), and from measurements of the specific activity of l-glycerol 3-phosphate, and the effects of insulin, adrenaline and alloxan-diabetes were studied. Measurements were also made of the uptake of glucose and the outputs of lactate, pyruvate and glycerol. 2. New methods are described for the measurement of radioactivity in small amounts of metabolites (glycerol, glucose 6-phosphate and fructose 6-phosphate and l-glycerol 3-phosphate) in which use has been made of alterations in charge induced by enzymic conversions to effect resolution by ion-exchange chromatography. 3. In hearts the specific activity of l-glycerol 3-phosphate was less than that of glucose in the medium but similar to that of lactate released during perfusion. Because repeated measurements of the specific activity of l-glycerol 3-phosphate was impracticable, the specific activity of lactate has been used as an indirect measurement of glycerol phosphate specific activity. 4. In fat pads, specific activity of lactate was the same as that of glucose in the medium and thus the specific activity of l-glycerol 3-phosphate was taken to be the same as that of medium glucose. 5. In hearts from alloxan-diabetic rats, despite decreased glucose uptake and l-glycerol 3-phosphate concentration, flow of carbon atoms through l-glycerol 3-phosphate to glyceride glycerol was increased about threefold. 6. In fat pads, flow of carbon atoms through l-glycerol 3-phosphate to glyceride glycerol was increased by insulin (twofold), by adrenaline in the presence of insulin (fivefold) and by diabetes in pads incubated with insulin (1.5-fold). These increases could not be correlated either with increases in glucose uptake, which was unchanged by adrenaline and decreased in diabetes, or with the concentration of l-glycerol 3-phosphate, which was decreased by adrenaline and unchanged in diabetes. 7. These results are discussed in relation to the control of glyceride synthesis in heart and adipose tissue and to the regulation of glyceride fatty acid oxidation in the perfused rat heart.  相似文献   

4.
Incubation of fat cells with insulin increased glycogen synthase I activity without changing total synthase activity. This effect of insulin was dependent upon the particular lot of albumin present in the medium and was abolished by incubating cells with trypsin. Half-maximal activation of glycogen synthase was obtained with 8 microunits/ml of insulin, a concentration very similar to that which half-maximally stimulated 3-O-methylglucose uptake. The basal percentage of phosphorylase a activity was not detectably altered by insulin, although it was decreased by incubating cells with 5 mM glucose. Insulin (50 microunits/ml) markedly opposed actions of epinephrine (0.05 to 10 muM) to increase phosphorylase a activity and decrease glycogen synthase I activity, effects which were observed without glucose. Partial activation of glycogen synthase by insulin was seen after 1 min and complete activation after 4 min. Glucose alone produced a transient increase in synthase I activity. When cells were incubated with insulin plus glucose for 4 min, the increase in the percent synthase I activity was much greater than the additive effects of insulin and glucose alone. This potentiation of the effect of insulin on glucogen synthase I activity depended on the time of incubation with glucose and on the concentration of the hexose. If cells were incubated with cytochalasin B before insulin plus glucose, the effect of glucose was abolished. These results suggest that there are at least two mechanisms by which insulin can increase fat cell glycogen synthase I activity. One requires glucose and activation occurs secondary to an increase in glucose transport; where another mechanism(s) is operative even in the absence of glucose.  相似文献   

5.
Compartmentation of glucose 6-phosphate in hepatocytes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Rat hepatocytes were incubated with 14C-labelled hexoses, and the specific radioactivities of glucose 6-phosphate, glucose 1-phosphate and fructose 6-phosphate were determined. (1) When suspensions of freshly isolated hepatocytes were incubated with [14C]glucose, the specific radioactivities of glucose 1-phosphate and fructose 6-phosphate were severalfold higher than that of glucose 6-phosphate. The ratios of the specific radioactivities decreased with time of incubation. These relationships were also found when incubations were carried out with primary cultures of rat hepatocytes or with crude homogenates of hepatocytes, but not with isolated nuclei. (2) When cells were incubated with [14C]fructose, the ratios of the specific radioactivities were higher than with [14C]glucose, and also decreased with time. (3) Paired incubations were carried out with a mixture of galactose and fructose, with one or other sugar being labelled with 14C. The specific radioactivity of glucose released into the medium was greater than that of glucose 6-phosphate when fructose was labelled, but not when galactose was labelled. Furthermore, glucose 6-phosphate and glucose in the medium differed with regard to the distribution of 14C between C-1 and C-6. These results are interpreted as evidence that glucose 6-phosphate in hepatocytes does not exist as a homogeneous pool, but that subcompartments exist which are associated with glucose phosphorylation, gluconeogenesis and glycogenolysis.  相似文献   

6.
Summary The incubation of intact mouse diaphragms with insulin caused a dose and time dependent increase in the independent activity of glycogen synthase in tissue extracts. 2-deoxyglucose (2–10 mm) alone markedly stimulated the conversion of glycogen synthase to the independent activity under conditions in which tissue ATP concentrations were not affected. The incubation of diaphragms with both insulin and 2-deoxyglucose resulted in a greater than additive effect. Insulin stimulated the uptake of 2-deoxyglucose into mouse diaphragms, accumulating as 2-deoxyglucose-6-phosphate. The accumulation of 2-deoxyglucose-6-phosphate correlated well with the increase in the independent activity of glycogen synthase and with the activation of glycogen synthase phosphatase in tissue extracts. The uptake of 3-0-methyl glucose was also markedly stimulated by insulin, without affecting the activity of glycogen synthase. Both glucose-6-phosphate and 2-deoxyglucose-6-phosphate stimulated the activation of endogenous glycogen synthase phosphatase activity in muscle homogenates. We conclude that insulin, in addition to its effects in the absence of exogenous sugars, increases the independent activity of glycogen synthase through increased sugar transport resulting in increased concentrations of sugar-phosphates which promote the activity of glycogen synthase phosphatase.Abbreviations GS Glycogen synthase - GS-I Glycogen synthase activity independent of G6P - GS-D Glycogen synthase activity dependent on G6P - G6P Glucose-6-phosphate - ATP Adenosine triphosphate - EDTA Ethylene diamine tetracetic acid - Mops Morpholinopropane sulfonic acid - 2DG 2-Deoxy glucose - 3-0-MG 3-0-Methyl glucose - tricine N-tris(Hydroxymethyl)methyl glycine Enzymes: Glycogen Synthase — UDPGlucose — Glycogen Glucosyl — Transferase (EC 2.4.1.11) J. Larner is an established investigator of the American Diabetes Association.  相似文献   

7.
2-Deoxy[14C]glucose-6-phosphate (2-[14C]DG-6-P) dephosphorylation and glucose-6-phosphatase (G-6-Pase) activity were examined in cultured rat astrocytes under conditions similar to those generally used in assays of glucose utilization. Astrocytes were loaded with 2-[14C]DG-6-P by preincubation for 15 min in medium containing 2 mM glucose and 50 microM 2-deoxy[14C]glucose (2-[14C]DG). The medium was then replaced with identical medium including 2 mM glucose but lacking 2-[14C]DG, and incubation was resumed for 5 min to diminish residual free 2-[14C]DG levels in the cells by either efflux or phosphorylation. The medium was again replaced with fresh 2-[14C]DG-free medium, and the incubation was continued for 5, 15, or 30 min. Intracellular and extracellular 14C contents were measured at each time point, and the distribution of 14C between 2-[14C]DG and 2-[14C]DG-6-P was characterized by paper chromatography. The results showed little if any hydrolysis of 2-[14C]DG-6-P or export of free 2-[14C]DG from cells to medium; there were slightly increasing losses of 2-[14C]DG and 2-[14C]DG-6-P into the medium with increasing incubation time, but they were in the same proportions found in the cells, suggesting they were derived from nonadherent or broken cells. Experiments carried out with medium lacking glucose during the assay for 2-deoxyglucose-6-phosphatase activity yielded similar results. Evidence for G-6-Pase activity was also sought by following the selective detritiation of glucose from the 2-C position when astrocytes were incubated with [2-3H]glucose and [U-14C]glucose in the medium. No change in the 3H/14C ratio was found in incubations for as long as 15 min. These results indicate negligible G-6-Pase activity in cultured astrocytes.  相似文献   

8.
1. Glucose 6-phosphate, fructose 6-phosphate and altroheptulose 7-phosphate are the major products formed non-oxidatively from ribose 5-phosphate by rat epididymal fat pad enzymes. 2. Arabinose 5-phosphate was detected among the reaction products and significant activity of the new enzyme of the L-type pentose pathway, D-glycero D-ido octulose 1,8-bisphosphate: D-altroheptulose 7-phosphotransferase was found. 3. The glucose moieties of glucose 1-phosphate, glucose 6-phosphate and glucose 1,6-bisphosphate were degraded and showed that epididymal fat pad enzymes relocate 14C from [2-14C]glucose into C-1, C-2, and C-3 of each hexose-phosphate. 4. The 14C-distribution patterns in the hexose-phosphates revealed that these intermediates were not in isotopic equilibrium and the rate of the transaldolase exchange reaction was relatively small. 5. The 14C-distribution data suggest that glucose 1-phosphate, rather than glucose 6-phosphate, is the first intermediate in the path of glycogen synthesis from glucose in this tissue. 6. The data provide the first proof of the mechanism of the pentose pathway in adipose tissue.  相似文献   

9.
1. The metabolism of glucose 6-phosphate in rat cerebral-cortex slices in vitro was compared with that of glucose. It was found that a glucose 6-phosphate concentration of 25mm was required to achieve maximal oxygen uptake rates and ATP concentrations, whereas only 2mm-glucose was required. 2. When 25mm-[U-(14)C]glucose 6-phosphate was used as substrate, the pattern of labelling of metabolites was found to be quantitatively and qualitatively similar to the pattern found with 10mm-[U-(14)C]glucose, except that incorporation into [(14)C]lactate was decreased, and significant amounts of [(14)C]glucose and [(14)C]mannose phosphate and [(14)C]fructose phosphate were formed. 3. Unlabelled glucose (10mm) caused a tenfold decrease in the incorporation of 25mm-[U-(14)C]glucose 6-phosphate into all metabolites except [(14)C]glucose and [(14)C]mannose phosphate and [(14)C]fructose phosphate. In contrast, unlabelled glucose 6-phosphate (25mm) had no effect on the metabolism of 10mm-[U-(14)C]glucose other than to increase markedly the incorporation into, and amount of, [(14)C]lactate, the specific radioactivity of this compound remaining approximately the same. 4. The effect of glucose 6-phosphate in increasing lactate formation from glucose was found to occur also with a number of other phosphate esters and with inorganic phosphate. Further investigation indicated that the effect was probably due to binding of medium calcium by the phosphate moiety, thereby de-inhibiting glucose uptake. 5. Incubations carried out in a high-phosphate high-potassium medium gave a pattern of metabolism similar to that found when slices were subjected to depolarizing conditions. Tris-buffered medium gave similar results to bicarbonate-buffered saline, except that it allowed much less lactate formation from glucose. 6. Part of the glucose formed from glucose 6-phosphate was extracellular and was produced at a rate of 12mumol/h per g of tissue in Krebs tris medium when glycolysis was blocked. The amount formed was much less when 25mm-P(i) or 26mm-HCO(3) (-) was present, the latter being in the absence of tris. 7. Glucose 6-phosphate also gave rise to an intracellular glucose pool, whereas no intracellular glucose was detectable when glucose was the substrate.  相似文献   

10.
The specific activity of the gamma-32P position of ATP was measured in various tissue preparations by two methods. One employed HPLC and the enzymatic conversion of ATP to glucose 6-phosphate and ADP. The other was based on the phosphorylation of histone by catalytic subunit of cAMP-dependent protein kinase (Hawkins, P.T., Michell, R.H. and Kirk, C.J. (1983) Biochem. J. 210, 717-720). The HPLC method also allowed the incorporation of 32P into the (alpha + beta)-positions of ATP to be determined. In rat epididymal fat-pad pieces and fat-cell preparations the specific activity of [gamma-32P]ATP attained a steady-state value after 1-2 h incubation in medium containing 0.2 mM [32P]phosphate. Addition of insulin or the beta-agonist isoprenaline increased this value by 5-10% within 15 min. Under these conditions the steady-state specific activity of [gamma-32P]ATP was 30-40% of the initial specific activity of the medium [32P]phosphate. However, if allowance was made for the change in medium phosphate specific activity during incubations the equilibration of the gamma-phosphate position of ATP with medium phosphate was greater than 80% in both preparations. The change in medium phosphate specific activity was a combination of the expected equilibration of [32P]phosphate with exchangeable intracellular phosphate pools plus the net release of substantial amounts of tissue phosphate. At external phosphate concentrations of less than 0.6 mM the loss of tissue phosphate to the medium was the major factor in the change in medium phosphate specific activity. It is concluded that little advantage is gained in employing external phosphate concentrations of less than 0.6 mM in experiments concerned with the incorporation of phosphate into proteins and other intracellular constituents. Indeed, a low external phosphate concentration may cause depletion of important intracellular phosphorus-containing components.  相似文献   

11.
Rat adipocytes were biotinylated with cell-impermeable reagents, sulfo-N-hydroxysuccinimide-biotin and sulfo-N-hydroxysuccinimide-S-S-biotin in the absence and presence of insulin. Biotinylated and nonbiotinylated populations of the insulin-like growth factor-II/mannose 6-phosphate receptor, the transferrin receptor, and insulin-responsive aminopeptidase were separated by adsorption to streptavidin-agarose to determine the percentage of the biotinylated protein molecules versus their total amount in different subcellular compartments. Results indicate that adipose cells possess at least two distinct cell surface recycling pathways for insulin-like growth factor-II/mannose 6-phosphate receptor (MPR) and transferrin receptor (TfR): one which is mediated by glucose transporter isoform 4(Glut4)-vesicles and another that bypasses this compartment. Under basal conditions, the first pathway is not active, and cell surface recycling of TfR and, to a lesser extent, MPR proceeds via the second pathway. Insulin dramatically stimulates recycling through the first pathway and has little effect on the second. Within the Glut4-containing compartment, insulin has profoundly different effects on intracellular trafficking of insulin-responsive aminopeptidase on one hand and MPR and TfR on the other. After insulin administration, insulin-responsive aminopeptidase is redistributed from Glut4-containing vesicles to the plasma membrane and stays there for at least 30 min with minimal detectable internalization and recycling, whereas MPR and TfR rapidly shuttle between Glut4 vesicles and the plasma membrane in such a way that after 30 min of insulin treatment, virtually every receptor molecule in this compartment completes at least one trafficking cycle to the cell surface. Thus, different recycling proteins, which compose Glut4-containing vesicles, are internalized into this compartment at their own distinctive rates.  相似文献   

12.
1. Ribose 5-phosphate was non-oxidatively synthesized from glucose 6-phosphate and triose phosphate by an enzyme extract prepared from rat liver (RLEP). Analysis of the intermediates by GLC, ion-exchange chromatography and specific enzymatic analysis, revealed the presence of the following intermediates of the L-type pentose pathway: altro-heptulose 1,7-bisphosphate, arabinose 5-phosphate and D-glycero D-ido octulose 8-phosphate. 2. With either [1-14C] or [2-14C]glucose 6-phosphate as diagnostic substrates, the distribution of 14C in ribose 5-phosphate was determined. At early time intervals (0.5-8 hr), [1-14C]glucose 6-phosphate introduced 14C into C-1, C-3 and C-5 of ribose 5-phosphate, at 17 hr 14C was confined to C-1. With [2-14C]glucose 6-phosphate as substrate, 14C was confined to C-2, C-3 and C-5 of ribose 5-phosphate during early times (0.5-8 hr), while at 17 hr 14C was located in C-2. 3. The transketolase exchange reaction, [14C]ribose 5-phosphate + altro-heptulose 7-phosphate in equilibrium ribose 5-phosphate + [14C]altro-heptulose 7-phosphate, was demonstrated for the first time using purified transketolase, its activity was measured and it is proposed to play a major role in the relocation of 14C into C-3 and C-5 or ribose 5-phosphate during the prediction labelling experiments. 4. The coupled transketolase-transaldolase reactions, 2 fructose 6-phosphate in equilibrium altro-heptulose 7-phosphate + xylulose 5-phosphate and 2 altro-heptulose 7-phosphate in equilibrium fructose 6-phosphate + D-glycero D-altro octulose 8-phosphate were demonstrated with purified enzymes, but are concluded to play a minor role in the non-oxidative synthesis of pentose 5-phosphate and octulose phosphate by (RLEP). 5. The formation of gem diol and dimers of erythrose 4-phosphate is proposed to account in part for the failure to detect monomeric erythrose 4-phosphate in the carbon balance studies. 6. The equilibrium value for the pentose pathway acting by the reverse mode in vitro was measured and contrasted with the value for the pathway acting in the forward direction. The initial specific rates of the pentose pathway reactions in vitro for the reverse and forward directions are measured. 7. The study which includes carbon balance, time course changes and 14C prediction labelling experiments reports a comprehensive investigation of the mechanism of the pentose pathway acting reversibly.  相似文献   

13.
Glycogen synthase activation by sugars in isolated hepatocytes   总被引:2,自引:0,他引:2  
We have investigated the activation by sugars of glycogen synthase in relation to (i) phosphorylase a activity and (ii) changes in the intracellular concentration of glucose 6-phosphate and adenine nucleotides. All the sugars tested in this work present the common denominator of activating glycogen synthase. On the other hand, phosphorylase a activity is decreased by mannose and glucose, unchanged by galactose and xylitol, and increased by tagatose, glyceraldehyde, and fructose. Dihydroxyacetone exerts a biphasic effect on phosphorylase. These findings provide additional evidence proving that glycogen synthase can be activated regardless of the levels of phosphorylase a, clearly establishing that a nonsequential mechanism for the activation of glycogen synthase occurs in liver cells. The glycogen synthase activation state is related to the concentrations of glucose 6-phosphate and adenine nucleotides. In this respect, tagatose, glyceraldehyde, and fructose deplete ATP and increase AMP contents, whereas glucose, mannose, galactose, xylitol, and dihydroxyacetone do not alter the concentration of these nucleotides. In addition, all these sugars, except glyceraldehyde, increase the intracellular content of glucose 6-phosphate. The activation of glycogen synthase by sugars is reflected in decreases on both kinetic constants of the enzyme, M0.5 (for glucose 6-phosphate) and S0.5 (for UDP-glucose). We propose that hepatocyte glycogen synthase is activated by monosaccharides by a mechanism triggered by changes in glucose 6-phosphate and adenine nucleotide concentrations which have been described to modify glycogen synthase phosphatase activity. This mechanism represents a metabolite control of the sugar-induced activation of hepatocyte glycogen synthase.  相似文献   

14.
The addition of 2-deoxy-D-glucose to cultures of Streptococcus lactis 133 that were growing exponentially on sucrose or lactose reduced the growth rate by ca. 95%. Inhibition did not occur with glucose or mannose as the growth sugar. The reduction in growth rate was concomitant with rapid accumulation of the analog in phosphorylated form (2-deoxy-D-glucose 6-phosphate) via the phosphoenolpyruvate-dependent mannose:phosphotransferase system. Within 5 min the intracellular 2-deoxy-D-glucose 6-phosphate concentration reached a steady-state level of greater than 100 mM. After maximum accumulation of the sugar phosphate, the rate of sucrose metabolism (glycolysis) decreased by only 30%, but the cells were depleted of fructose-1,6-diphosphate. The addition of glucose to 2-deoxy-D-glucose 6-phosphate preloaded cells caused expulsion of 2-deoxy-D-glucose and a resumption of normal growth. S. lactis 133 contained an intracellular Mg2+-dependent, fluoride-sensitive phosphatase which hydrolyzed 2-deoxy-D-glucose 6-phosphate (and glucose 6-phosphate) to free sugar and inorganic phosphate. Because of continued dephosphorylation and efflux of the non-metabolizable analog, the maintenance of the intracellular 2-deoxy-D-glucose 6-phosphate pool during growth stasis was dependent upon continued glycolysis. This steady-state condition represented a dynamic equilibrium of: (i) phosphoenolpyruvate-dependent accumulation of 2-deoxy-D-glucose 6-phosphate, (ii) intracellular dephosphorylation, and (iii) efflux of free 2-deoxy-D-glucose. This sequence of events constitutes a futile cycle which promotes the dissipation of phosphoenolpyruvate. We conclude that 2-deoxy-D-glucose functions as an uncoupler by dissociating energy production from growth in S. lactis 133.  相似文献   

15.
1. The specific radioactivities of glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, UDP-glucose and glycogen, derived from [14C]gluocose, were determined in the normal and insulin-deficient (streptozotocin-diabetic and anti-insulin-serum-treated) perfused non-working and working rat heart. 2. The specific radioactivities of all glucose metabolities reached a plateau after about 10 min, except that for glycogen, which increased slightly but steadily over the whole observation period of 30min. 3. The specific radio-activities of fructose 6-phosphate, UDP-glucose and glycogen were slignificantly lower in the streptozotocin-diabetic heart than in the normal heart. 4. Mechanical work in the normal rat heart increased the specific radioactivities of glucose 1-phosphate, UDP-glucose and glycogen, but had little or no effect on those of gluose 6-phosphate and fructose 6-phosphate. 5. In the normal heart insulin strongly increased the specific radioactivities of all gluocse metabolites under all conditions tested. The maximum values achieved in the normal working heart in the presence of insulin were only about 15-20% above those in the normal non-working heart in the presence of insulin for the phosphorylated intermediates and about 40% above for glycogen. 6. In the streptozotocin-diabetic heart, work restored the specific radioactivities of all glucose metabolities to about normal values. 7. In the streptozotocin-diabetic heart insulin strongly increased the specific radioactivities of the direct glycogen precursors glucose 1-phosphate and UDP-glucose; the effect of insulin on glucose 6-phosphate and fructose 6-phosphate was less marked. These results confirm previous findings that the primary metabolic lesion in diabetic heart muscle is a defect of glycogen synthesis. The specific radioactivity of glycogen itself was increased sixfold. 8. Under all conditions tested the specific radioactivity of glucose 1-phosphate was always found to be higher than that of glucose 6-phosphate. This indicated either compartmentation of a small but metabolically very active pool of glucose 6-phosphate, or the existence of a hitherto unknown pathway of metabolism in which glucose 1-phosphate is the primary reaction product. For a number of reasons the authors prefer the first explanation, which could also account for the observation that in the perfused normal working and non-working heart the specific radioactivity of fructose 6-phosphate was always found to be higher than that of glucose 6-phosphate. This difference disappeared or was reversed in the rat hearts rendered insulin-insufficent by either streptozotocin or anti-insulin treatment.  相似文献   

16.
Compartmentation between glycolysis and gluconeogenesis in rat liver   总被引:8,自引:6,他引:2  
1. The specific radioactivity-time relationships of glucose, glucose 6-phosphate, glycerol 1-phosphate and UDP-glucose were determined in rat liver after the intravenous injection of [U-(14)C]fructose, and a kinetic analysis was carried out. The glucose 6-phosphate pool was found to be compartmented into gluconeogenic and glycolytic components, and evidence was obtained that the triose phosphates were similarly compartmented. The glycolytic pathway was fed by glycogenolysis and glucose phosphorylation. There was no direct evidence that glycogenolysis fed only the glycolytic pathway, but this interpretation would make the liver resemble other organs in this respect. 2. UDP-glucose was not formed solely from gluconeogenic glucose 6-phosphate, as there was some dilution of label in the intervening glucose 1-phosphate pool, probably from glycogenolysis, though other pathways cannot be excluded. 3. The data cannot be explained by isotopic exchange.  相似文献   

17.
Incubation of boar sperm from fresh ejaculates in a minimal medium with 10 mM glucose induced a fast and intense activation of glycolysis, as indicated by the observed increases in the intracellular levels of glucose 6-phosphate (G 6-P) and ATP and the rate of formation of extracellular L-lactate. The effect of glucose was much more intense than that induced by fructose, sorbitol, and mannose. The greater utilization of glucose was related to a much greater sensitivity to hexokinase when compared with the other monosaccharides. Thus, the presence of 0.5 mM glucose induced total hexokinase activity in supernatants from sperm extracts of 1.7 +/- 0.1 mIU/mg protein, while the same concentration of both fructose, mannose, and sorbitol induced total hexokinase activity from 0.3 +/- 0.1 mIU/mg protein to 0.60 +/- 1 mIU/mg protein. Kinetic analysis of the total pyruvate kinase activity indicated that this activity was greatly dependent on the presence of ADP and also showed a great affinity for PEP, with an estimated Km in supernatants of 0.15-0.20 mM. Immunological location of proteins closely related to glycolysis, like GLUT-3 hexose transporter and hexokinase-I, indicated that these proteins showed the trend to be distributed around or in the cellular membranes of both head and midpiece in a grouped manner. We conclude that glycolysis is regulated by both the specific availability of a concrete sugar and the internal equilibrium between ATP and ADP levels. Furthermore, localization of proteins involved in the control of monosaccharide uptake and phosphorylation suggests that glycolysis starts at concrete points in the boar-sperm surface.  相似文献   

18.
The specific activity and total activity of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) under conditions of complete cell breakage fall 10-20-fold during a 3h period of spore germination and outgrowth. The spores must germinate (lose refractility), but do not have to undergo outgrowth, for the loss of activity to occur. Glucose 6-phosphate dehydrogenase activity from cells as any stage of development is completely stable in extracts at 4 degrees C or 30 degrees C. All of the enzyme activity is found in a soluble (50000g supernatant) fraction and remains completely soluble throughout development. Soluble protein and total cellular protein remain constant for about 2h. Proteinases could not be detected or protein turnover demonstrated during the morphogenetic process. Phenylmethanesuophony fluoride and o-phenanthroline, inhibitors of proteolytic enzymes, do not prevent glucose 6-phosphate dehydrogenase inactivation when added to whole cells. Mixing experiments show no inhibitor of glucose 6-phosphate dehydrogenase to be present in late-stage cells. The enzyme is not excreted into the culture medium. Chloramphenicol and rifampicine immediately stop protein synthesis and development but not the inactivation of glucose 6-phosphate dehydrogenase. NaN3, 2,4-dinitrophenol or anaerobiosis immediately stop development and prevent the loss of enzyme activity. A requirement for metabolic energy is therefore probable. Extracts of spores pre-labelled with L[14C]leucine were made at various stages of morphogenesis and subjected to polyacrylamide-gel electrophoresis. Glucose 6-phosphate dehydrogenase, which was identified by a specific stain, did not lose 14C label, and therefore may not be degraded during the inactivation process.  相似文献   

19.
Levels of fructose 6-phosphate and glucose 6-phosphate were measured in chloroplasts which had been isolated non-aqueously from leaves of various plants. a large decrease in the ratio of glucose 6-phosphate to fructose 6-phosphate in the light indicated considerable displacement of the hexosephosphate isomerase reaction from equilibrium in leaves of spinach and red beet which were photosynthesizing at high rates. The decrease in the ratio of glucose 6-phosphate to fructose 6-phosphate was correlated with an increase in the chloroplastic level of 3-phosphoglyceric acid, which proved to be a competitive inhibitor of chloroplast hexosephosphate isomerase. Other metabolites, especially the product of the reaction, glucose 6-phosphate, and ions in concentrations as present in the stroma under natural conditions, cause a further reduction in the rate of the forward reaction of the hexosemonophosphate isomerase. When the concentration of O2 in air was decreased from 21 to 2%, both the rate of leaf photosynthesis and the ratio of glucose 6-phosphate to fructose 6-phosphate increased, whereas the concentration of 3-phosphoglyceric acid and starch synthesis decreased. The results are explained in terms of activation of ADPglucose pyrophosphorylase and of inhibition of hexosephosphate isomerase by 3-phosphoglyceric acid. Hexosephosphate isomerase appears to assume a rate-limiting function in starch synthesis in the light when ADPglucose pyrophosphorylase is activated.  相似文献   

20.
Cells of Cryptococcus laurentii, when grown in liquid culture on 2% glucose close to neutral pH, showed glycogen granules throughout the cytoplasm. Glycogen levels of C. laurentii cells reached maximal levels just before onset of stationary phase. Concomitantly, a sharp rise in total and specific activity of glycogen synthetase was observed. Conversely, glycogen phosphorylase reached its highest specific activity approximately 3 hr after the glycogen peaked and remained high until most of the endogenous glycogen was utilized. Uridine diphosphoglucose pyrophosphorylase activity was always an order of magnitude higher than glycogen synthetase during log phase, but fell off rapidly after the cells reached stationary growth. Kinetic properties of the glycogen synthetase showed that the enzyme is always activated by glucose-6-phosphate, although the degree of activation by glucose-6-phosphate was found to be somewhat variable. The accelerated uptake of glucose commencing with the onset of stationary phase is explained by the rapid formation of extracellular acidic polysaccharide, which continues as long as there is glucose in the medium. In cells grown at pH 3.4, where no detectable extracellular acidic polysaccharide was formed, glucose uptake drastically declined when the cells reached stationary phase. These cells also contained glycogen-like granules in the cytoplasm. The evidence presented indicates that these granules are in fact glycogen, and that its structure does not resemble that of the starch excreted by cells grown at acidic pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号