首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rainbow trout, Oncorhynchus mykiss, acclimated to 33% sea water (12 mg·ml-1 salinity) experienced significant (10 meq·1-1) increases in plasma [Na+] and [Cl-] within 5 h of exposure to 6.3 mol copper·1-1 indicating severe impairment of branchial ionoregulatory capacity. All plasma ion levels subsequently stabilised once the transbranchial [Na+] gradient was reduced to zero. The similar ionic strength of the external medium and their body fluids appeared to protect trout maintained in 33% sea water from further ionoregulatory stress and any secondary physiological disturbances during exposure to copper. Despite three- and fourfold greater transbranchial [Na+] and [Cl-] gradients, trout acclimated to full-strength sea water (35 mg·ml-1 salinity) suffered no major changes in plasma Na+, Cl-, K+, or Ca2+, blood gases or haematology during 24 h exposure to 6.3 mol copper·1-1. This reduction in toxicity in full strength sea water cannot be explained by differences in copper speciation. We suggest that during acute exposure to waterborne copper, active NaCl extrusion is unaffected due to the basolateral location of the gill Na+/K+-ATPase, but that ionoregulatory disturbances can occur due to gill permeability changes secondary to the displacement of surface-bound Ca2+. However, in full strength sea water the three-fold higher ambient [Ca2+] and [Mg2+] appear to be sufficient to prevent any detrimental permeability changes in the presence of 6.3 mol copper·1-1. Plasma [NH + 4 ] and [HCO - 3 ] were both significantly elevated during exposure to copper, indicating that some aspects of gill ion transport (specifically the apical Na+/NH + 4 and Cl-/HCO - 3 exchanges involved in acid/base regulation and nitrogenous waste excretion) are vulnerable to inhibition in the presence of waterborne copper.Abbreviations C aO2 arterial oxygen content - Hb haemoglobin - Hct haematocrit - MABP mean arterial blood pressure - MCHC mean cell haemoglobin content - MO2 rate of oxygen consumption - P a CO2 arterial carbon dioxide tension - P aO2 arterial oxygen partial pressure - S salinity - SW sea water - T Amm total ammonia (=NH3+NH + 4 ) - T CO 2 total carbon dioxide - TEP transepithelial potential - TOC total organic carbon - %Hb-O2 percentage of haemoglobin saturated with oxygen  相似文献   

2.
Osmoregulation, acid-base balance and respiratory parameters were investigated in whitefish following transfer from freshwater to salt water. Whitefish acclimated successfully to 25 ppt brackish water but died after direct transfer to 32 ppt sea water. Transfer to brackish water induced rapid (<6 h) and permanent increases in plasma [Na+], [Cl], total [Ca] and [Mg]. The extracellular hyperosmolality effected a transient (<3 days) muscle tissue dehydration and red blood cell shrinkage. Exposure to brackish water decreased both the arterial O2 tension and whole body O2 uptake. The extracellular acid-base status changed from an initial respiratory acidosis at 1 h towards a pronounced metabolic acidosis at 48 h of brackish water exposure. Red cell pHi decreased in parallel with extracellular pHe, but the in vivo pHi/pHe was only 0.26, suggesting some selective protection of red cell pHi. Plasma cortisol concentration and gill Na+, K+-ATPase activity increased after exposure to high ambient salinity, reflecting the induction of hypo-osmoregulatory mechanisms. The physiological changes in whitefish are discussed in relation to salinity-induced effects in other salmonid fishes.Abbreviations CO2 solubility in plasma - water O2 capacitance coefficient - BW brackish water - C T total CO2 content in plasma - FW fresh water - Hb hemoglobin - Hct hematocrit - M b body mass of fish - MCHC mean cellular hemoglobin concentration - PCO2 carbon dioxide tension - pH e extracellular pH - pH i intracellular pH - PO2 in oxygen tension in water flowing in - PO2 out oxygen tension in water flowing out - ppt parts per thousand - RBC red blood cell(s) - SW sea water - V m water flows through chamber - OV 2 ml O2 consumed per kg per hour  相似文献   

3.
Summary The effects of increased ambient salinity (35 mg · ml-1) were studied at 1, 6, and 24 h after direct transfer of rainbow trout from freshwater to seawater. Two series of experiments were carried out successively. The first series was designed to simultaneously study all the respiratory (except Hb affinity for O2), circulatory, and acid-base variables in each fish. In this series, fish were fitted with catheters chronically inserted into the cardiac bulbus, the dorsal aorta, and the opercular and buccal cavities. In the second series, designed to study haemoglobin O2 affinity, fish were fitted with only a dorsal aorta catheter. The ventilatory flow ( ) was markedly increased just after transfer (by 55% at 1 h), then more moderately (by 20% at 6 h and 32% at 24 h). The initial hyperventilation peak was associated with frequent couphing motions. These ventilatory changes resulted essentially from increase in ventilatory amplitude. Initially, standard oxygen consumption (MM}O2) decreased slightly, the moderately increased (by 12% at 24 h), so that the oxygen convection requirement ( ) increased substantially. In spite of an increased ventilation, the partial pressure of oxygen in arterial blood (P aO2) decreased slightly at 1 h, prior to returning to control levels, while partial pressure of carbon dioxide in arterial blood (P aCO2) was not significantly decreased. Gill oxygen transfer factor decreased substantially at 1 h (by 35%) then more moderately (by 7% at 1 h and 12% at 24 h). These results suggest a decrease in gas diffusing capacity of the gills. As P aCO2 remained approximatively unchanged, the gradual decrease in arterial pH (pHa) from 7.94 to 7.67 at 24 h must therefore be regarded as a metabolic acidosis. The strong ion difference decreased markedly because the concentration of plasma chloride increased more than that of sodium. Arterial O2 content (C aO2) gradually decreased (by 38% at 24 h) simultaneously with the decrease in pHa, while the ratio P aO2/C aO2 increased. In parallel, seawater exposure induced a marked decrease in affinity of haemoglobin for O2, so that at 24 h, P50 was increased by 26% above the value obtained in freshwater-adapted trout. The increase in could be ascribed initially (at 1 h) to the decrease of P aO2 and later to a stimulation of respiratory neurons resulting from the lowered medullary interstitial pH. The decrease in C aO2 could be interpreted mainly as a consequence of a decreased affinity of haemoglobin for O2, likely to be due to the blood acidosis and a predictable increase in chloride concentration within erythrocytes. Cardiac output ( ) slightly decreased at 1 h, then progressively increased by 30% at 24 h. Branchial vascular resistance increased at 1 h by 28%, then decreased by 18% of the control value at 24 h. Systemic vascular resistance decreased markedly by 40% at 24 h. As heart rate (HR) remained significantly unchanged, the cardiac stroke volume initially decreased then increased in relation to the changes in . The increase of , allowing compensation for the effect of decreased C aO2 in tissue O2 supply, was interpreted as a passive consequence of the decrease in total vascular resistance occurring during seawater exposure.Abbreviations a.u. arbitrary units - C aO2 arterial oxygen content - pH50 arterial pH at P50 - C vO2 venous oxygen content - Hb haemoglobin - HR heart rate - Hct hematocrit - nHill Hill coefficient - O2 standard oxygen consumption - P aCO2 arterial partial pressure of carbon dioxide - P aO2 arterial partial pressure of oxygen - P vO2 oxygen partial pressure in mixed venous blood - P50 oxygen tension at half saturation of haemoglobin - P VA, P DA blood pressure in ventral and dorsal aorta - pHa arterial pH - PIO2, PEO2 oxygen partial pressure of inspired and expired water - PO2 oxygen partial pressure - cardiac output - SEM standard error of mean - S.I.D. strong ion difference - SV cardiac stroke volume - TO2 gill oxygen transfer factor - U oxygen extraction coefficient - VA ventilatory amplitude - VF ventilatory frequency - VRG, VRS branchial and systemic vascular resistances - ventilatory flow - ventilatory oxygen convection requirement  相似文献   

4.
Summary Responses to acute hypoxia were measured in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) (1–3 kg body weight). Fish were prevented from making swimming movements by a spinal injection of lidocaine and were placed in front of a seawater delivery pipe to provide ram ventilation of the gills. Fish could set their own ventilation volumes by adjusting mouth gape. Heart rate, dorsal and ventral aortic blood pressures, and cardiac output were continuously monitored during normoxia (inhalant water (PO 2>150 mmHg) and three levels of hypoxia (inhalant water PO 2130, 90, and 50 mmHg). Water and blood samples were taken for oxygen measurements in fluids afferent and efferent to the gills. From these data, various measures of the effectiveness of oxygen transfer, and branchial and systemic vascular resistance were calculated. Despite high ventilation volumes (4–71·min-1·kg-1), tunas extract approximately 50% of the oxygen from the inhalant water, in part because high cardiac outputs (115–132 ml·min-1·kg-1) result in ventilation/perfusion conductance ratios (0.75–1.1) close to the theoretically ideal value of 1.0. Therefore, tunas have oxygen transfer factors (ml O2·min-1·mmHg-1·kg-1) that are 10–50 times greater than those of other fishes. The efficiency of oxygen transfer from water in tunas (65%) matches that measured in teleosts with ventilation volumes and order of magnitude lower. The high oxygen transfer factors of tunas are made possible, in part, by a large gill surface area; however, this appears to carry a considerable osmoregulatory cost as the metabolic rate of gills may account for up 70% of the total metabolism in spinally blocked (i.e., non-swimming) fish. During hypoxia, skipjack and yellowfin tunas show a decrease in heart rate and increase in ventilation volume, as do other teleosts. However, in tunas hypoxic bradycardia is not accompanied by equivalent increases, in stroke volume, and cardiac output falls as HR decreases. In both tuna species, oxygen consumption eventually must be maintained by drawing on substantial venous oxygen reserves. This occurs at a higher inhalant water PO2 (between 130 and 90 mmHg) in skipjack tuna than in yellowfin tuna (between 90 and 50 mmHg). The need to draw on venous oxygen reserves would make it difficult to meet the oxygen demand of increasing swimming speed, which is a common response to hypoxia in both species. Because yellowfin tuna can maintain oxygen consumption at a seawater oxygen tension of 90 mmHg without drawing on venous oxygen reserves, they could probably survive for extended periods at this level of hypoxia.Abbreviations BPda, BPva dorsal, ventral aortic blood pressure - C aO2, C vO2 oxygen content of arterial, venous blood - DO2 diffusion capacity - Eb, Ew effectiveness of O2 uptake by blood, and from water, respectively - Hct hematocrit - HR heart rate - PCO2 carbon dioxide tension - P aCO2, P vCO2 carbon dioxide tension of arterial and venous blood, respectively - PO2 oxygen tension - P aO2, P vO2, P iO2, P cO2 oxygen tension of arterial blood, venous blood, and inspired and expired water, respectively - pHa, pHv pH of arterial and venous blood, respectively - Pw—b effective water to blood oxygen partial pressure difference - Pg partial pressure (tension) gradient - cardiac output - R vascular resistance - SV stroke volume - SEM standard error of mean - TO2 transfer factor - U utilization - g ventilation volume - O2 oxygen consumption  相似文献   

5.
To gain information on extended flight energetics, quasi-natural flight conditions imitating steady horizontal flight were set by combining the tetheredflight wind-tunnel method with the exhaustion-flight method. The bees were suspended from a two-component aerodynamic balance at different, near optimum body angle of attack and were allowed to choose their own speed: their body mass and body weight was determined before and after a flight; their speed, lift, wingbeat frequency and total flight time were measured throughout a flight. These values were used to determine thrust, resultant aerodynamic force (magnitude and tilting angle), Reynolds number, total flight distance and total flight impulse. Flights in which lift was body weight were mostly obtained. Bees, flown to complete exhausion, were refed with 5, 10, 15 or 20 l of a 1.28-mol·l-1 glucose solution (energy content w=18.5, 37.0, 55.5 or 74.0 J) and again flown to complete exhaustion at an ambient temperature of 25±1.5°C by a flight of known duration such that the calculation of absolute and relative metabolic power was possible. Mean body mass after exhaustion was 76.49±3.52 mg. During long term flights of 7.47–31.30 min similar changes in flight velocity, lift, thrust, aerodynamic force, wingbeat frequency and tilting angle took place, independent of the volume of feeding solution. After increasing rapidly within 15 s a more or less steady phase of 60–80% of total flight time, showing only a slight decrease, was followed by a steeper, more irregular decrease, finally reaching 0 within 20–30 s. In steady phases lift was nearly equal to resultant aerodynamic force; tilting angle was 79.8±4.0°, thrust to lift radio did not vary, thrust was 18.0±7.4% of lift, lift was somewhat higher/equal/lower than body mass in 61.3%, 16.1%, 22.6% of all totally analysable flights (n=31). The following parameters were varied as functions of volume of feeding solution (5–20 l in steps of 5 l) and energy content. (18.5–74.0 J in steps of 18.5 J): total flight time, velocity, total flight distance, mean lift, thrust, mean resultant aerodynamic force, tilting angle, total flight impulse, wingbeat frequency, metabolic power and metabolic power related to body mass, the latter related to empty, full and mean (=100 mg) body mass. The following positive correlations were found: L=1.069·10-9 f 2.538; R=1.629·10-9 f 2.464; P m=7.079·10-8 f 2.456; P m=0.008v+0.008; P m=18.996L+0.022; P m=19.782R+0.021; P m=82.143T+0.028; P m=1.245·bm f 1.424 ; P mrel e=6.471·bm f 1.040 ; =83.248+0.385. The following negative correlations were found: V=3.939–0.032; T=1.324·10-4–0.038·10-4. Statistically significant correlations were not found in T(f), L(), R(), f(), P m(bm e), P m rel e(bm e), P m rel f(bm e), P m rel f(bm f).Abbreviations A(m2) frontal area - bl(m) body length - bm(mg) body mass - c(mol·1-1) glucose concentration of feeding solution - c D (dimensionless) drag coefficient, related to A - D(N) drag - F w(N) body weight - F wp weight of paper fragment lost at flight start - f wingbeat frequency (s-1) - g(=9.81 m·s-2) gravitational acceleration - I(Ns)=R(t) dt total impulse of a flight - L(N) lift vertical sustaining force component - P m(J·s-1=W) metabolic power - Pm ret (W·g-1) metabolic power, related to body mass - R(N) resultant aerodynamic force - Re v·bl·v -1 (dimensionless) Reynolds number, related to body length - s(m) v(t) dt virtual flight distance of a flight - s(km) total virtual flight distance - T (N) thrust horizontal force component of horizontal flight - T a (°C) ambient temperature - t(s) time - t tot (s or min) total flight time - v(m·s-1) flight velocity - v(l) volume of feeding solution - W (J) energy and energy content of V - ( °) body angle of attack between body longitudinal axis and flow direction - ( °) tilting angle ( 90°) between R and the horizont in horizontal flight v(=1.53·10-5m2·s-1 for air at 25°) kinematic viscosity - (=1.2 kg·m-3 at 25°C) air density  相似文献   

6.
Summary Adult carp were subjected to 1 mM environmental nitrite for 48 h and nitrite uptake and changes in blood respiratory properties, extracellular electrolyte composition and acid-base status were examined.A constant influx of nitrite caused an accumulation of NO 2 in plasma to 5.4 mM in 48 h. The fraction of methaemoglobin rose with plasma [NO 2 ] to 83%, and the arterial oxygen content decreased to extremely low values. Arterial increased as a compensation to this O2-shortage, whereas the O2 saturation of the functional (unoxidized) haemoglobin decreased, revealing a reduction in its O2 affinity.Blood haematocrit decreased as a result of red cell shrinkage, which caused very high red cell haemoglobin (Hb) concentrations. The erythrocytic nucleoside triphosphate (NTP) concentration showed a parallel increase whereby NTP/Hb, as well as the relative contributions of ATP and GTP to NTP, remained unchanged.Plasma [Cl] declined by 15 mM in 48 h, off-setting the plasma [NO 2 ] increase, minor changes in plasma [HCO 3 ] and a considerable increase in plasma [lactate]. Arterial pH and [HCO 3 ] rose slightly during the first 24 h of nitrite exposure, but returned to control values at 48 h. The rise in plasma [lactate] was not reflected in an extracellular metabolic acidosis. Plasma [K+] increased by 94% in 48 h, revealing an uncompensated extracellular hyperkalemia, whereas plasma [Na+] decreased, and plasma [Ca++] was unchanged. Plasma osmolality remained essentially constant.The NO 2 accumulation could be reversed by transfer of the fish to NO 2 -free water, but nitrite off-loading was slower than the preceding NO 2 loading.Abbreviations Hb hemoglobin - NTP nucleoside triphosphate - Hct hematocrit - fractional saturation of Hb with oxygen  相似文献   

7.
Summary Oxygen consumption, gill ventilation, blood acid-base/ionic status and haemoglobin oxygen affinity were studied in seawater-adapted adult salmon (Salmo salar) during five weeks after transfer into fresh water. Freshwater exposure induced the following changes: Standard oxygen consumption ( ) and ventilatory flow ( ) decreased markedly during the first days after transfer, then decreased more gradually until a new steady-state was achieved at which and were about 80% and 56% of the control values, respectively. The marked increase in oxygen extraction coefficient (Ew O 2) and the marked decrease in the oxygen convection requirement ( ) were associated with a reduction in the partial pressure of carbon dioxide in arterial blood (Pa CO 2), in spite of a decrease of both ventilatory flow and water CO2 capacitance. These results suggested that transfer into fresh water induced an increase in branchial diffusive conductance. A biphasic pattern was observed in the time-course of the changes in both plasma ion concentration and acid-base status. During the first 10 days, plasma Na+, K+, and Cl concentrations fell abruptly, then more gradually. [Cl] decreased more than [Na+] resulting in a progressive increase in the [Na+]/[Cl] ratio. During the second phase of acclimation to fresh water plasma Na+, K+, and Cl concentrations progressively increased. [Cl] increased more than [Na+], so that [Na+]/[Cl] ratio decreased. Transfer into fresh water did not significantly change plasma lactate concentration. Upon exposure to fresh water, blood pH increased from 7.94±0.04 to 8.43±0.06 at day 10 and then decreased to 8.08±0.03 at day 34. The increase in blood pH induced by transfer to fresh water initially represented a mixed metabolic/respiratory alkalosis. However, after 15 days Pa CO 2 had returned to pretransfer values and the alkalosis was purely metabolic. The metabolic component of the alkalosis was associated with appropriate changes in the plasma strong ion difference (S.I.D.). Blood alkalosis moved the oxygen dissociation curve to the left, so that P50 was decreased by 30% below the value in seawater for the maximal increase in blood pH. This rise in haemoglobin affinity for O2, associated with a marked increase in blood buffer capacity, are regarded as adaptative processes allowing the salmon to cope with the markedly increased energy expenditure required for upstream migration.  相似文献   

8.
There was no direct effect of copper on the ontogeny or function of the heart of the brine shrimp Artemia franciscana in sea water (salinity= 36 mg·ml-1, 25°C). There was, however, an indirect effect as an increase in copper concentration resulted in a reduced growth rate. There was no difference between the critical O2 tensions of newly hatched (stage 0/1) nauplii of control and treated (<0.32 and 10.11 mol·l-1 copper, respectively) individuals. However by developmental stages 4–6, when both the heart and thoracic gills are in the process of differentiating, respiratory performance had improved (i.e. critical O2 tension decreased from 6.27±0.45 to 4.69±0.24 kPa) in control but not in copper-treated individuals. It is suggested that respiratory impairment of stages 4–6 individuals is unlikely to be related to differences in cardiac performance or cellular respiration. Instead it may be related to metal-related damage to newly differentiating gill tissue and/or by copper in some way compromising the normal ontogenic shift in haemoglobin O2 affinity. Copper-related respiratory impairment develops at a critical point in brine shrimp organogenesis when a good supply of O2 is essential for normal development and if compromised may reduce the ability of this species to survive copper exposure.Abbreviations BL body length - BW body weight - HR heart rate - HM heavy metals - SW sea water - P c critical oxygen tension  相似文献   

9.
Summary The isolated retina of the terrestrial crab Ocypode ryderi exhibits a pronounced lactate production in spite of being supplied with sufficient O2 (140 torr). To determine whether this lactate production is caused by hypoxic areas in the tissue or represents aerobic glycolysis, oxygen partial pressure and pH measurements with two-channel glass microelectrodes and additional biochemical analyses were carried out on this organ. Distinct profiles were obtained for O2 partial pressure and pH inside the tissue. At a depth of 200 m different O2 partial pressure levels could be observed depending on the O2 partial pressure in the medium (85 torr at 280 torr and 36 torr at 130 torr, respectively). The extracellular pH displays a similar pattern; it reaches a stable value of 7.15 at 100 m inside the tissue. Lowering bath O2 partial pressure from 280 torr to about 15 torr (hypoxia) induces a decrease of the O2 partial pressure in the tissue with different time-courses for different tissue depths. However, hypoxia did not change the extracellular pH. Addition of antimycin A (100 mol · 1-1) to the medium abolishes the O2 partial pressure gradient and the delayed recovery of the tissue O2 partial pressure after hypoxia. These results and the biochemical data suggest that in the crab retina a high glycolytic activity occurs simultaneously with oxydative carbohydrate degradation (aerobic glycolysis).Abbreviations AEC Atkinson energy charge - DC bioelectric potential - dw dry weight - HEPES N-[2-Hydroxyethyl]piperazine-N-[2-ethanesulphonic acid] - PCO2 carbon dioxide partial pressure - PO2 oxygen partial pressure - P tO2 oxygen partial pressure inside the tissue - P mO2 oxygen partial pressure in the medium - pHt pH inside the tissue - pHm pH in the superfusion medium  相似文献   

10.
Blood chemistry and haematological parameters have been determined in two Antarctic teleosts,Notothenia coriiceps Richardson andChaenocephalus aceratus Lönnberg, held at around 1°C.Notothenia coriiceps has a low haemoglobin content compared to tem-perate-zone species, whereasC. aceratus apparently lacks respiratory pigments. Blood samples were obtained by cardiac puncture following landing or using chronically implanted post-branchial arterial cannulae. Although both species showed a similar acidosis on capture (arterial pH as low as 7.5 versus the final recovery value of around 7.9),C. aceratus took 48 h to reestablish baseline values whileN. coriiceps recovered within 12 h, despite initially showing a greater degree of hypercapnic hypoxia. Surgery led to a more severe disturbance of acid-base regulation inN. coriiceps thanC. aceratus (arterial pH of 7.5 versus 7.8) but needed only half as long for recovery. A progressive decrease in arterial oxygen tension and increase in arterial carbon dioxide tension (both more pronounced inN. coriiceps) with level of acidosis was observed down to arteria pH 7.2 InC. aceratus this was accompanied by a rise in blood lactate (up to 10 mmol·1-1 in some individuals), whileN. coriiceps showed only a modest and transient lactacidosis. Stress inN. coriiceps therefore induces primarily a respiratory, rather than a metabolic acidosis, whereas inC. aceratus both components are present. A differential response to stress is also indicated by an elevated, though low noradrenaline titre inN. coriiceps following surgery and capture, whileC. aceratus was little affected by surgery. However, both species show an unusually weak catecholamine response to induced stress.Abbreviations pH/T °C thermal sensitivity of pH - Ad adrenaline - bw body weight - C.CO2 total carbon dioxide content - C.O2 total oxygen content - ED 50 Median effective dose - EDTA ethylenediaminetertra-acetic acid - Hb haemoglobin - Hct haematocrit - HPLC high-performance liquid chromatography - lac lactate - MCH mean corpuscular haemoglobin content - MCHC mean corpuscular haemoglobin concentration - MCV mean cell volume - MS222 tricaine methane sulphonate - NAd noradrenaline - P aCO2 arterial carbon dioxide tension - P aO2 arterial oxygen tension - pHa arterial blood pH - RBCC red blood cell count - SW sea water - T a ambient air temperature - VO2 oxygen consumption  相似文献   

11.
5-O--d-galactopyranosyl-7-methoxy-3,4-dihydroxy-4-phenylcoumarin isolated from Exostema caribaeum (Rubiaceae) has been found to act as an energy-transfer inhibitor in spinach chloroplasts. ATP synthesis and phosphorylating (coupled) electron flow were inhibited by 89 and 72%, respectively, at a concentration of 400 M. H+-uptake, basal and uncoupled electron transport were not affected by the coumarin. The light-activated Mg+2-ATPase activity from bound membrane thylakoid chloroplasts was slightly inhibited by the coumarin. Also, the heat-activated Ca+2-ATPase activity of the isolated coupling factor protein was insensitive to this compound. In chloroplasts partially stripped of coupling factor 1 by an EDTA treatment, the coumarin showed a restoration of the proton uptake process. These results suggest that the 4-phenylcoumarin under investigation inhibited phosphorylation in chloroplasts by specifically blocking the transport of protons through a membrane-bound component or a carrier channel (CFO) located in a hydrophobic region at or near the functional binding site for the coupling factor 1.Abbreviations CF1 chloroplast coupling factor 1 - CFO coupling factor zero - DCCD dicyclohexylcarbodiimide - DTT dithiothreitol - EDTA ethylene-diaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - MES 2-(N-morpholino) ethanesulphonic acid - TCA trichloroacetic acid Taken in part from PhD thesis of M.R. Calera.  相似文献   

12.
The rate of CO2- and p-benzoquione-dependent photosynthetic O2 evolution by Anabaena variabilis cells remained unaltered and the rate of O2 uptake observed after switching off the light (endogenous respiration) was enhanced by a factor of 6–8 when the O2 concentration was increased from 200 to 400 M. Photosystem-I-linked O2 uptake and respiration of the cells incubated with ascorbate and N,N,NN-tetramethyl-p-phenylenediamine was not appreciable influenced by the O2 concentration. 2-Iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether, blocking electron transfer at the plastoquinone level, suppressed O2 evolution and had no influence on endogenous respiration. 2-n-Heptyl-4-hydroxyquinoline-N-oxide, an inhibitor of electron transfer between photosystems II and I, as well as the cytochrome-oxidase inhibitors N 3 - , CN- and NH2OH, caused a 35–50% retardation of endogenous respiration and blocked photosynthetic O2 evolution. The molar ratio of cytochromes b6, f, c-553, aa3 and photosystem-I reaction centers in the isolated membranes equalled approx. 2:1:2:0.7:2. It is inferred that endogenous respiration of A. variabilis cells is inhibited by the light-induced electron flow through both photosystems at the level of the plastoquinone-plastocyanin-oxidoreductase complex.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNP-INT 2-iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether - Hepes 4-(2-hydroxyethyl)-1-piperazine ethansulfonic acid - TMPD N,N,NN-tetramethyl-p-phenylenediamine  相似文献   

13.
Pea stem mitochondria, resuspended in a KCl medium (de-energized mitochondria), underwent a swelling, as a consequence of K+ entry, that was inhibited by ATP. This inhibition was partially restored by GTP and diazoxide (K+ ATP channel openers). In addition, glyburide and 5-hydroxydecanate (K+ ATP channel blockers) induced an inhibition of the GTP-stimulated swelling. Mitochondrial swelling was inhibited by H2O2, but stimulated by NO. The same type of responses was also obtained in succinate-energized mitochondria. When the succinate-dependent transmembrane electrical potential () had reached a steady state, the addition of KCl induced a dissipation that was inhibited by H2O2 and stimulated by NO. The latter stimulation was prevented by carboxy-PTIO, a NO scavenger. Phenylarsine oxide (a thiol oxidant) and NEM (a thiol blocker) stimulated the KCl-induced dissipation of , while DTE prevented this effect in both cases. In addition, DTE transiently inhibited the NO-induced dissipation of , but then it caused a more rapid collapse. These results, therefore, show that the plant mitochondrial K+ ATP channel resembles that present in mammalian mitochondria and that it appears to be modulated by dithiol–disulfide interconversion, NO and H2O2. The aperture of this channel was linked to the partial rupture of the outer membrane. The latter effect led to a release of cytochrome c, thus suggesting that this release may be involved in the manifestation of programmed cell death.  相似文献   

14.
Summary Protoplasts prepared from a neutral petite haploid BO60AF-1 (a ade2 arg4 leu2 trp C O E O O O O O) were mixed with mitochondria isolated from an oligomycin resistant respiring haploid ANROR 12D (a his4 leu2 thr4 C S E S O II R + +) and treated with 30% polythylene glycol and CaCl2. When the treated protoplasts were spread and incubated on selective agar plates, oligomycin resistant respiration-sufficient colonies appeared with low frequency. All of these colonies carried the mitochondrial genotype of C S E S O II R + + and showed the same mating type and nutritional requirements as did BO60AF-1, thus evidencing the mitochondrial transfer into protoplasts. Recombination and transmission of the mitochondrial drug resistance markers were studied in crosses involving the strains issued from mitochondria accepted protoplasts.  相似文献   

15.
Mass spectrometric determinations of O2 affinities by the rumen fungus Neocallimastix patriciarum indicated a stable respiration under liquid phase O2 concentrations up to 10 M, the apparent K m for O2 under these conditions was 4.0 M. Exposure to O2 concentrations in excess of 10 M resulted in rapid inactivation of the observed respiration. Calculated H2 evolution rates for the organism are 8.1 nmol min-1 per mg of protein. Exposure to liquid-phase O2 concentrations in excess of 1.4 M caused 50% inhibition of H2 production. That superoxide and peroxide are amongst the products of respiration was shown by the use of ESR spectroscopy with the spin trapping agent 5,5-dimethyl-l-pyrroline-N-oxide. An active superoxide dismutase was present, but catalase could not be detected.Abbreviations ESR electron spin resonance - DMPO 5,5-dimethyl-l-pyrroline-N-oxide - DETAPAC diethylene-triamine pentaacetic acid  相似文献   

16.
Dong A  Ye M  Guo H  Zheng J  Guo D 《Biotechnology letters》2003,25(4):339-344
Of 49 microbial strains screened for their capabilities to transform ginsenoside Rb1, Rhizopus stolonifer and Curvularia lunata produced four key metabolites: 3-O-[-d-glucopyranosyl-(1,2)--d-glucopyranosyl]- 20-O-[-d-glucopyranosyl]-3,12, 20(S)-trihydroxydammar-24-ene (1), 3-O-[-d-glucopyranosyl-(1,2)--d- glucopyranosyl]-20-O-[-d-glucopyranosyl]-3,12, 20(S)-trihydroxydammar-24-ol (2), 3-O-[-d-gluco- pyranosyl-(1,2)--d-glucopyranosyl]-3, 12, 20(S)-trihydroxydammar-24-ene (3), and 3-O--d-glucopyranosyl-3, 12, 20(S)-trihydroxydammar-24-ene (4), identified by TOF-MS, 1H- and 13C-NMR spectral data. Metabolites 1, 3 and 4 were from the incubation with R. stolonifer, and 1 and 2 from the incubation with C. lunata. Compound 2 was identified as a new compound.  相似文献   

17.
The cellular basis of internode elongation was studied in intact deep-water rice plants (Oryza sativa L. cv. Habiganj Aman II) and in isolated stem sections. In intact plants, growth was stimulated by submergence in water and by ethylene treatment. In isolated sections, growth was enhanced by submergence, by ethylene, and by exposure of the tissue to an atmosphere of 3% O2, 91% N2 and 6% CO2 or 3% O2, 91% N2, 6% CO2 and 1 l l-1 C2H4 (by vol.). Under all these conditions, growth was localized in the intercalary meristem at the bases of the internodes. Autoradiography of [3H]thymidine-labeled tissue showed activation of cell division and longitudinal expansion of the intercalary meristem. Increased production of new cells and their subsequent elongation thus form the basis for the growth response to submergence and ethylene treatment in deep-water rice plants.  相似文献   

18.
Addition of Na+ to the K+-loadedVibrio alginolyticus cells, creating a 250-fold Na+ gradient, is shown to induce a transient increase in the intracellular ATP concentration, which is abolished by the Na+/H+ antiporter, monensin. The pNa-supported ATP synthesis requires an additional driving force supplied by endogenous respiration or, alternatively, by a K+ gradient (high [K+] inside). In the former case, ATP formation is resistant to the protonophorous uncoupler. Dicyclohexylcarbodiimide and diethylstilbestrol, but not vanadate, completely inhibit Na+ pulse-induced ATP formation. The data agree with the assumption that Na+-ATP-synthase is involved in oxidative phosphorylation inV. alginolyticus. Interrelation of H+ and Na+ cycles in bacteria is discussed.Abbreviations and electrochemical gradients of H+ and Na+, respectively - transmembrane electric potential difference - pH, pNa, and pK concentration gradients of H+, Na+, and K+, respectively - CCCP carbonyl cyanidem-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DES diesthylstilbestrol - HQNO 2-heptyl-4-hydroxyquinolineN-oxide - Tricine N[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

19.
Summary An extracorporeal circulation of rainbow trout (Oncorhynchus mykiss) was utilized to continuously monitor the rapid and progressive effects of endogenous or exogenous catecholamines on blood respiratory/acid-base status, and to provide in vivo evidence for adrenergic retention of carbon dioxide (CO2) in fish blood (cf. Wood and Perry 1985). Exposure of fish to severe aquatic hypoxia (final P wO2=40–60 torr; reached within 10–20 min) elicited an initial respiratory alkalosis resulting from hypoxia-induced hyperventilation. However, at a critical arterial oxygen tension (P aO2) between 15 and 25 torr, fish became agitated for approximately 5 s and a marked (0.2–0.4 pH unit) but transient arterial blood acidosis ensued. This response is characteristic of abrupt catecholamine mobilization into the circulation and subsequent adrenergic activation of red blood cell (RBC) Na+/H+ exchange (Fievet et al. 1987). Within approximately 1–2 min after the activation of RBC Na+/H+ exchange by endogenous catecholamines, there was a significant rise in arterial PCO2 (P aCO2) whereas arterial PO2 was unaltered; the elevation of P aCO2 could not be explained by changes in gill ventilation. Pre-treatment of fish with the -adrenoceptor antagonist phentolamine did not prevent the apparent catecholamine-mediated increase of P aCO2. Conversely, pre-treatment with the -adrenoceptor antagonist sotalol abolished both the activation of the RBC Na+/H+ antiporter and the associated rise in P aCO2, suggesting a causal relationship between the stimulation of RBC Na+/H+ exchange and the elevation of P aCO2. To more clearly establish that elevation of plasma catecholamine levels during severe hypoxia was indeed responsible for causing the elevation of P aCO2, fish were exposed to moderate hypoxia (final P wO2=60–80 torr) and then injected intraarterially with a bolus of adrenaline to elicit an estimated circulating level of 400 nmol·l-1 immediately after the injection. This protocol activated RBC Na+/H+ exchange as indicated by abrupt changes in arterial pH (pHa). In all fish examined, P aCO2 increased after injection of exogenous adrenaline. The effects on P aO2 were inconsistent, although a reduction in this variable was the most frequent response. Gill ventilation frequency and amplitude were unaffected by exogenous adrenaline. Therefore, it is unlikely that ventilatory changes contributed to the consistently observed rise in P aCO2. Pretreatment of fish with sotalol did not alter the ventilatory response to adrenaline injection but did prevent the stimulation of RBC Na+/H+ exchange and the accompanying increases and decreases in P aCO2 and P aO2, respectively. These results suggest that adrenergic elevation of P aCO2, in addition to the frequently observed reduction of P aO2 are linked to activation of RBC Na+/H+ exchange. The physiological significance and the potential mechanisms underlying the changes in blood respiratory status after addition of endogenous or exogenous catecholamines to the circulation of hypoxic rainbow trout are discussed.Abbreviations P aCO2 arterial carbon dioxide tension - P aO2 arterial oxygen tension - P da dorsal aortic pressure - pHa arterial pH - P wO2 water oxygen tension - RBC red blood cell - V f breathing frequency  相似文献   

20.
A mass spectrometric 16O2/18O2-isotope technique was used to analyse the rates of gross O2 evolution, net O2 evolution and gross O2 uptake in relation to photon fluence rate by Dunaliella tertiolecta adapted to 0.5, 1.0, 1.5, 2.0 and 2.5 M NaCl at 25°C and pH 7.0.At concentrations of dissolved inorganic carbon saturating for photosynthesis (200 M) gross O2 evolution and net O2 evolution increased with increasing salinity as well as with photon fluence rate. Light compensation was also enhanced with increased salinities. Light saturation of net O2 evolution was reached at about 1000 mol m-2s-1 for all salt concentrations tested. Gross O2 uptake in the light was increased in relation to the NaCl concentration but it was decreased with increasing photon fluence rate for almost all salinities, although an enhanced flow of light generated electrons was simultaneously observed. In addition, a comparison between gross O2 uptake at 1000 mol photons m-2s-1, dark respiration before illumination and immediately after darkening of each experiment showed that gross O2 uptake in the light paralleled but was lower than mitochondrial O2 consumption in the dark.From these results it is suggested that O2 uptake by Dunaliella tertiolecta in the light is mainly influenced by mitochondrial O2 uptake. Therefore, it appears that the light dependent inhibition of gross O2 uptake is caused by a reduction in mitochondrial O2 consumption by light.Abbreviations DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DHAP dihydroxy-acetonephosphate - DIC dissolved inorganic carbon - DRa rate of dark respiration immediately after illumination - DRb rate of dark respiration before illumination - E0 rate of gross oxygen evolution in the light - NET rate of net oxygen evolution in the light - PFR photon fluence rate - RubP rubulose-1,5-bisphosphate - SHAM salicyl hydroxamic acid - U0 rate of gross oxygen uptake in the light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号