首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies of murine IgM hybridoma protein 18-2-3, derived from an (NZB/NZW)F1 secondary response to fluorescein (FL) presented on T-dependent carrier, demonstrated a high binding affinity for FL (KA = 2.9 X 10(10) M-1) and cryoprecipitation, which could be abrogated upon FL binding. Based on these unusual properties and their possible association with defective immune regulation in lupus-prone mice, further studies were carried out to evaluate the basis of 18-2-3 cryoprecipitation, expression of characteristics related to the 18-2-3 clonotype, and structure/function aspects of additional homogeneous IgM and IgG antibodies of similar origin and specificity. Solubility experiments in which the effect of ionic strength on macroscopic aggregation was measured indicated that 18-2-3 intrinsically possessed both cryoglobulin and euglobulin properties in the absence of auxiliary gamma-globulin components. Rates of hapten fluorescence quenching by 18-2-3 were limited by factors other than diffusion and were dependent on solution temperature and ionic strength. Thirty-seven additional IgM and IgG monoclonal antibodies were shown to possess normal low-temperature solubility and hapten fluorescence-quenching properties, suggesting that 18-2-3 was derived from a relatively rare B cell progenitor. Collective results from FL binding and spectrotype analyses indicated that the majority of proteins were diverse with respect to variable region structure and binding mechanisms but unusually restricted in binding affinities (KA less than 5 X 10(6) M-1). Relative subclass frequencies for 30 monoclonal IgG proteins (IgG1 greater than IgG2b greater than IgG2a greater than IgG3) were consistent with polyclonal IgG subclass expression in normal mice in response to T-dependent immunogen.  相似文献   

2.
The amino acid sequences of five monoclonal antibodies (designated mAbs A-E) which bind to the dopaminergic D-2 antagonist, haloperidol, with a variety of affinities (Kd = 4-810 nM), have been used to build theoretical, three-dimensional, computer models of the variable region combining sites. Physiocochemical interactions which have been previously determined from in vitro binding data have been used to orient the drug molecule within the combining site model. The results indicate that hydrophobic, aromatic, and ionic amino acids are involved in specific interactions with the antagonist molecule. For example, fluorescence quenching data suggests that a tryptophan residue is intimately involved in the binding of haloperidol by mAb A. Examination of the modeled structure reveals five tryptophans within the variable fragment, only one of which (H-50) is within the classical beta-barrel binding pocket and is readily accessible to the antigen. Haloperidol's relatively electron poor fluorophenyl ring system stacks with the electron-rich tryptophan ring system at a distance of 3.3 A and in so doing, places haloperidol's positively charged piperidinyl nitrogen atom within hydrogen bond distance of the negatively charged Glu-95 and Asp-100A residues of the H3 loop (Glu-H-95 and Asp-H-100A). This type of analysis for each antibody provides an interesting profile of changes in amino acid composition and hypervariable loop length which markedly effect binding affinity and specificity for a series of proteins which have similar combining site.  相似文献   

3.
The Complementarity Determining Regions (CDRs) of antibodies are assumed to account for the antigen recognition and binding and thus to contain also the antigen binding site. CDRs are typically discerned by searching for regions that are most different, in sequence or in structure, between different antibodies. Here, we show that ~20% of the antibody residues that actually bind the antigen fall outside the CDRs. However, virtually all antigen binding residues lie in regions of structural consensus across antibodies. Furthermore, we show that these regions of structural consensus which cover the antigen binding site are identifiable from the sequence of the antibody. Analyzing the predicted contribution of antigen binding residues to the stability of the antibody-antigen complex, we show that residues that fall outside of the traditionally defined CDRs are at least as important to antigen binding as residues within the CDRs, and in some cases, they are even more important energetically. Furthermore, antigen binding residues that fall outside of the structural consensus regions but within traditionally defined CDRs show a marginal energetic contribution to antigen binding. These findings allow for systematic and comprehensive identification of antigen binding sites, which can improve the understanding of antigenic interactions and may be useful in antibody engineering and B-cell epitope identification.  相似文献   

4.
A number of specific Fab and Fv fragments and their complexes with antigens (avian lysozymes), haptens, and anti-idiotopic Fabs have been studied by immunochemical and crystallographic techniques. Antigen and antibody interact through closely complementary contacting surfaces, without major conformational changes. An idiotopic determinant of a monoclonal antibody is shown to include parts of most of its complementarity determining regions. The specificity of antigen recognition resides in the close complementarity of the antigenic determinant with the antibody combining site.  相似文献   

5.
The effects of temperature on the binding of fluorescein by three monoclonal anti-fluorescyl antibodies (4-4-20, 20-19-1, and 20-20-3) were assessed by measurements of affinity constants (Ka) over a temperature range of 2-70 degrees C. Values for Ka were determined from the degree of ligand association by using fluorescence methodology. Curvilinear van't Hoff plots (ln Ka vs. T-1) were observed for all three antibodies, indicating that their standard enthalpy changes (delta Ho) were temperature dependent. This phenomenon was further investigated by plotting the changes in unitary free energy (delta Gu), standard enthalpy (delta Ho), and unitary entropy (delta Su) vs. temperature. Strong temperature dependencies were observed for enthalpy and entropy values, while free energy plots were only weakly dependent on temperature. At low temperatures (4 degrees C), entropy played a major role in the binding of fluorescein by all three antibodies, while enthalpy dominated at higher temperatures. This was a consequence of the negative heat capacity changes (delta Cpo approximately equal to -320 cal K-1 mol-1) observed for these antibodies, which produced a negative trend in both enthalpy and entropy values with increasing temperature. The negative heat capacity values also indicated that the hydrophobic effect was instrumental in the binding of fluorescein. Entropy changes were lower than expected for hydrophobic binding alone, suggesting that other forces were acting to mitigate the hydrophobic effect. One possibility was that the binding of fluorescein acted to restrain vibrational fluctuations in the active-site region, producing negative changes in both heat capacity and entropy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Two new monoclonal antibodies, one a mouse IgM and the other a human IgM that reacted with guanosine, were compared to human serum antibodies from patients with systemic lupus erythematosus (SLE). The human monoclonal antibody was polyspecific in its binding to the nucleoside bases, whereas the mouse monoclonal antibody was relatively specific for guanosine when compared by using an enzyme-linked immunosorbent assay (ELISA). Neither antibody bound polyguanylic acid or denatured single-stranded (ss) DNA, however. Serum IgG antibodies from seven patients with SLE cross-reacted with the mouse monoclonal antibody and showed considerable specificity for guanosine. In contrast, the human serum IgG antiguanosine antibodies also bound ssDNA but not dsDNA or polyguanylic acid. Serum IgG antibodies to guanosine measured by ELISA from the seven SLE patients had a decreased response when compared to the total serum IgG response to ssDNA, and most of the antibodies that bound guanosine also bound ssDNA. These studies provide new evidence that there are specific IgG antibodies to guanosine in SLE sera that are a small fraction of the antibodies to ssDNA. Further efforts to define the role of these guanosine antibodies in SLE may provide a better understanding of the basic mechanisms responsible for the development of SLE in man.  相似文献   

8.
The influence of (a) antigen structure, (b) type of monoclonal antibody, and (c) antibody bivalency on the immunochemical detection and quantification of keratan sulfate (KS) from aggrecan has been studied. Apparent KS epitope levels were determined by immunoglobulin G (IgG)-enzyme-linked immunosorbent assay (ELISA) in preparations of human aggrecan and in a defined series of lower molecular weight proteoglycan preparations generated by proteolytic and alkali treatment of aggrecan. Gel filtration chromatography showed KS epitope to be preferentially detected in the higher molecular weight fragments of the preparations. In single KS chains the epitope was detected in the chains of higher M(r). The ability of the proteoglycan to inhibit in the IgG-ELISA decreased with a reduction in proteoglycan fragment size, ranging between 6- and 260-fold, depending on the antibody used. This was considered to be a cooperative binding effect. With most antibodies, the sensitivity of the IgG-ELISA (represented by the steepness of the inhibition slope) was also reduced with smaller inhibitor sizes. The lowest limit of detectability (the amount of KS required to generate 20% inhibition) varied by up to 60-fold depending on the antibody used. The use of monovalent Fab fragments instead of the whole IgG anti-KS antibody in the ELISA showed that the bivalency of the antibody also affected the quantitation of the assay. In the Fab-ELISA the assay was found to have an increased detectability (by 9.5-fold with aggrecan as the inhibitor), and the proteoglycan fragments and aggrecan all generated parallel inhibition curves. Although the Fab-ELISA was somewhat influenced by the structural presentation of the KS, this was not apparent for small fragments and single chains. Thus the effects of cooperative binding and antibody valency could be overcome and quantitative data could be obtained for all samples, using papain-digested samples and the Fab-ELISA. Application of this assay to analysis of body fluids showed the KS-containing fragments in synovial fluid, serum, and urine were of different sizes and could be quantified.  相似文献   

9.
To analyze components of the idiotypic network in experimental autoimmune disease, we produced 17 isogeneic anti-idiotopic monoclonal antibodies (anti-Id) against two experimental autoimmune myasthenia gravis-producing anti-acetylcholine receptor (anti-AChR) monoclonal antibodies. We studied the binding of five of the anti-Id to the anti-AChR monoclonal antibodies bearing the complementary idiotopes (Id-mAb). They bound with Kd values ranging from 0.06 to 0.86 nM, values comparable to those of Id-mAb:AChR complexes (0.26 and 0.34 nM). All of the anti-Id tested moderately inhibited the binding of AChR to Id-mAb, whereas for each anti-Id, AChR either strongly inhibited anti-Id binding or had no effect on anti-Id binding. Hence, the inhibition of Id-mAb:AChR binding by anti-Id was not reciprocal with the inhibition of anti-Id:Id-mAb binding by AChR. For each anti-Id, the relative affinities of anti-Id and AChR for Id-mAb together with the lack of symmetry of inhibition by anti-Id compared to inhibition by AChR indicate that these two "ligands" are not competitive inhibitors. Consequently, anti-Id and AChR do not bind to overlapping sites on the Id-mAb, suggesting that the observed inhibition is mediated allosterically. This may be a common mechanism of anti-Id:Id binding, which would have important implications for the mechanism of anti-Id-induced suppression.  相似文献   

10.
Mutant mAb with increased Ag binding were generated from a hybridoma cell line, 36-65, that secretes an IgG1,kappa anti-p-azophenylarsonate-(Ars) specific antibody. The mutant antibodies were identified using an Ars-specific ELISA and sib selection so that approximately 10(6) cells could be analyzed. The ELISA used as Ag a low ratio of Ars coupled to BSA and was set up so that only those antibodies that had higher binding than the parent would be detected. Seven mutant producing cell lines were isolated from five independent clones of 36-65. The mutant antibodies bind Ag 20 to more than 200-fold better than the parent and have wild type V region sequences. All have C region mutations that result in an increased avidity. At least five different genetic events are responsible for the C region mutations.  相似文献   

11.
Anti-group A streptococcal monoclonal antibodies were obtained from BALB c/BYJ mice immunized with purified membranes from M type 5 Streptococcus pyogenes. Two of the anti-streptococcal monoclonal antibodies were previously shown to cross-react with muscle myosin. In this study the monoclonal antibodies were reacted with tissue sections of normal human heart and skeletal muscle. Antibody binding was estimated by indirect immunofluorescence and immunoperoxidase techniques. Both of the monoclonal antibodies (36.2.2 and 54.2.8) investigated in this report reacted with heart and/or skeletal muscle sections. When evaluated by immunofluorescence, monoclonal antibody 54.2.8 demarcated the periphery of cardiac striated muscle cells and reacted to a lesser degree with subsarcolemmal components. Monoclonal antibody 36.2.2 failed to react with heart sections, but both of the monoclonal antibodies reacted strongly with skeletal muscle sections. Results similar to those observed with indirect immunofluorescence were obtained with the immunoperoxidase technique. By Western immunoblotting and competitive inhibition assays, monoclonal antibodies 36.2.2 and 54.2.8 both were found to react with the heavy chain of skeletal muscle myosin. However, only 54.2.8 reacted with the heavy chain of cardiac myosin. The specificity of the monoclonal antibodies for subfragments of skeletal muscle myosin indicated that monoclonal antibody 36.2.2 was specific for light meromyosin fragments, whereas 54.2.8 reacted with both heavy and light meromyosin. The data demonstrated that two monoclonal antibodies against streptococci were specific for skeletal muscle and/or cardiac myosin and for subfragments of the myosin molecule. The reactions of the monoclonal antibodies with human tissue sections were consistent with the immunochemical reactions of the monoclonal antibodies with both denatured and native myosin.  相似文献   

12.
Five monoclonal antibodies against sperm whale myoglobin have been used to investigate the physical state of the antigen adsorbed onto a polydimethylsiloxane surface. The binding of each antibody is sensitive to the antigen's conformation in solution while the locations of the antigenic sites on the myoglobin molecule for three of the antibodies have been determined (Berzofsky, J.A., G.K. Buckenmeyer, G. Hicks, F.R.N. Gurd, R.J. Feldmann, and J. Minna. 1982. J. Biol. Chem. 257:3189-3198). The binding of the fluorescein isothiocyanate-labeled IgG and Fab antibodies to previously adsorbed myoglobin has been observed using total internal reflection fluorescence. Three of the antibodies bind specifically to surface-adsorbed myoglobin with affinities at least 50% relative to myoglobin in solution whereas two of the antibodies show affinities for the surface-adsorbed myoglobin diminished by at least two orders of magnitude relative to myoglobin in solution. The specific loss of certain antigenic determinants on the adsorbed myoglobin, coupled with the retention of others, indicates a nonrandom adsorption of the myoglobin molecules.  相似文献   

13.
The structural features of mAb directed against the opiate morphine were analyzed by using competitive ligand analog-binding studies, examination of the V region amino acid sequence, and computer-aided molecular modeling of the fragment V region. The antibody response in BALB/c mice to morphine is relatively restricted, in that all of the mAb examined in this study contained the same lambda L chain and very similar H chain V regions. A three-dimensional model of the antimorphine-binding site was constructed by using computational and graphic display techniques. Each of the six complementary-determining regions was constructed by using fragment replacement methods employing canonical loop conformations of known "parent" structures. Experimental competitive ligand-binding data and theoretical modeling suggest that a charged glutamate residue at position H:50 and aromatic side chains of residues H:33W, H:47W, H:58F, H:95W, H:101iY, and L:91W are key features in ionic and hydrophobic interactions with the ligand. This study represents the first use of theoretical and experimental modeling techniques to describe the Ag-binding site of a mouse fragment V region containing a lambda L chain.  相似文献   

14.
T Saito  K Tachibana  K Mogi  H Mizuo  Y Ito  M Imai 《Uirusu》1989,39(1):55-60
Mice were immunized against duck hepatitis B virus core (DHBc) particles isolated from the liver of asymptomatic carrier ducks of duck hepatitis B virus (DHBV) by ultracentrifugation. Their spleen cells were fused with mouse myeloma (NS-1) cells, and 12 clones of hybridoma cells secreting antibodies against DHBc (anti-DHBc) were isolated. According to the reactivity to core particles and core peptide obtained from DHBc particles treated with SDS-2ME, the 12 antibodies were classified into two groups. Two monoclonal antibodies reacted against both core particles and core peptide (B-type), the other ten monoclonal antibodies reacted against core particles but did not react against core peptide obtained from DHBc particles treated with SDS-2 ME. (A-type). Solid phase enzyme immuno assay (EIA) using these two types of antibodies could detect core antigenisity not only in the liver homogenate but also in the DHBV infected serum. Sucrose gradient analysis and gel filtration analysis revealed this DHBc antigenisity in the serum is not carried by core particles but carried by core peptide, equivalent to HBe antigen in the serum of Hepatitis B virus (HBV) carrier. This EIA may provide sensitive test monitoring both serum DHBe antigen levels and DHBc antigen levels in the liver during DHBV infection.  相似文献   

15.
The biological activity of three monoclonal antibodies (mAbs) against the rabbit mammary prolactin (PRL) receptor (M110, A82, and A917) were investigated using explants of rabbit mammary gland. The three mAbs which were all able to inhibit the binding of 125I-ovine prolactin to its receptor had different biological activities. Two mAbs (M110 and A82) were able to prevent the stimulating effect of PRL on casein synthesis when the molar ratio between the mAb and PRL was 100. At a lower concentration, M110 moved the PRL dose-response curve to the right by a factor of 2.4. This mAb was also effective in vivo, reducing milk production in a lactating rabbit, in a similar fashion to the prolactin lowering drug, CB-154. One mAb (A917) was able to mimic the action of PRL on both casein and DNA ([3H]thymidine incorporation) synthesis, whereas the other two mAbs were without any stimulatory effect. For this stimulatory effect to be observed, bivalency of the antibody was essential, since monovalent fragments, which were able to inhibit PRL binding, had no agonistic activity. The ability of the mAbs to induce a down-regulation of receptors was also studied. M110, which was equipotent to PRL in occupation of receptors, induced no down-regulation, while A917, which had full biological activity, induced only a small degree of down-regulation. These studies suggest that the binding domain of the receptor might be relatively complex, since only a part of this domain recognized by the antibody with PRL-like activity was able to induce hormonal action. Alternatively, only those antibodies able to microaggregate the receptors may possess PRL-like activity.  相似文献   

16.
Modulating the binding affinities to IgE or changing the FcγR binding properties of anti-IgE antibodies offers an opportunity to enhance the therapeutic potential of anti-IgE antibodies, but the influence of increased affinity to IgE or reduced Fc effector function on the pharmacological properties of anti-IgE therapies remains unclear. Our studies were designed to characterize the pharmacokinetics, pharmacodynamics and immune-complex distribution of two high-affinity anti-IgE monoclonal antibodies, high-affinity anti-IgE antibody (HAE) 1 and 2, in mice and monkeys. HAE1, also known as PRO98498, is structurally similar to omalizumab (Xolair®), a humanized anti-IgE IgG1 marketed for the treatment of asthma, but differs by 9 amino acid changes in the complementarity-determining region resulting in a 23-fold improvement in affinity. HAE2 is similar to HAE1, but its Fc region was altered to reduce binding to Fcγ receptors. As expected given the decreased binding to Fcγ receptors, systemic exposure to pre-formed HAE2:IgE complexes in mice was greater (six-fold) and distribution to the liver lower (four-fold) compared with HAE1:IgE complexes. In monkeys, systemic exposure to HAE1 was similar to that previously observed for omalizumab in this species, but required comparatively lower serum drug concentrations to suppress free IgE levels. HAE2 treatment resulted in greater exposure and greater increase of total IgE, relative to HAE1, because of decreased clearance of HAE2:IgE complexes. Overall, these data suggest that increased binding affinity to IgE may provide a more effective therapeutic for asthma patients, and that retaining FcγR binding of the anti-IgE antibody is important for elimination of anti-IgE:IgE complexes.  相似文献   

17.
《MABS-AUSTIN》2013,5(6):724-731
Modulating the binding affinities to IgE or changing the FcγR binding properties of anti-IgE antibodies offers an opportunity to enhance the therapeutic potential of anti-IgE antibodies, but the influence of increased affinity to IgE or reduced Fc effector function on the pharmacological properties of anti-IgE therapies remains unclear. Our studies were designed to characterize the pharmacokinetics, pharmacodynamics and immune-complex distribution of two high-affinity anti-IgE monoclonal antibodies, high-affinity anti-IgE antibody (HAE) 1 and 2, in mice and monkeys. HAE1, also known as PRO98498, is structurally similar to omalizumab (Xolair®), a humanized anti-IgE IgG1 marketed for the treatment of asthma, but differs by 9 amino acid changes in the complementarity-determining region resulting in a 23-fold improvement in affinity. HAE2 is similar to HAE1, but its Fc region was altered to reduce binding to Fcγ receptors. As expected given the decreased binding to Fcγ receptors, systemic exposure to pre-formed HAE2:IgE complexes in mice was greater (six-fold) and distribution to the liver lower (four-fold) compared with HAE1:IgE complexes. In monkeys, systemic exposure to HAE1 was similar to that previously observed for omalizumab in this species, but required comparatively lower serum drug concentrations to suppress free IgE levels. HAE2 treatment resulted in greater exposure and greater increase of total IgE, relative to HAE1, because of decreased clearance of HAE2:IgE complexes. Overall, these data suggest that increased binding affinity to IgE may provide a more effective therapeutic for asthma patients, and that retaining FcγR binding of the anti-IgE antibody is important for elimination of anti-IgE:IgE complexes.  相似文献   

18.
Variola virus (smallpox virus), vaccinia virus (VV), cowpox virus (CPV) and ectromelia virus (EV) belong to the genus Orthopoxvirus of the family Poxviridae. To establish the possible diagnosis for smallpox infection, monoclonal antibodies (MAbs) against VV and CPV were produced. The cross-reactivity of seven MAbs with cells infected with various strains of the orthopoxviruses (CPV, VV and EV) was confirmed by an immunofluorescence (IF) test and other immunological analyses. Four and three MAbs reacted with the common antigen of all poxviruses (probably NP antigen) and the antigen involved in neutralization, respectively. We developed the IF test using these MAbs. The direct IF test required only 45 min to perform. Smallpox infection is now eradicated, but it is important to prepare for the diagnosis of smallpox in an emergency. The direct IF assay using MAbs cross-reactive with orthopoxviruses is rapid, simple, specific, applicable for multiple samples, and will make it possible to screen for and detect orthopoxviruses that include variola virus with tissue impression smears from skin lesions in most laboratories or institutes.  相似文献   

19.
We characterized human monoclonal antibodies (MAbs) cloned from influenza virus-infected patients and from influenza vaccine recipients by complement-dependent lysis (CDL) assay. Most MAbs active in CDL were neutralizing, but not all neutralizing MAbs can mediate CDL. Two of the three stalk-specific neutralizing MAbs tested were able to mediate CDL and were more cross-reactive to temporally distant H1N1 strains than the conventional hemagglutination-inhibiting and neutralizing MAbs. One of the stalk-specific MAbs was subtype cross-reactive to H1 and H2 hemagglutinins, suggesting a role for stalk-specific antibodies in protection against influenza illness, especially by a novel viral subtype which can cause pandemics.  相似文献   

20.
We isolated 16 new monoclonal antibodies that recognize large T antigen of simian virus 40 and mapped the epitopes to three distinct regions of the large T antigen. Also, 3 of the 16 recognized the large T antigen of the human papovavirus BKV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号