首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
International Journal of Peptide Research and Therapeutics - Alzheimer’s disease (AD) is characterized by neuronal necroptosis and neuroinflammation, retardation of these pathological...  相似文献   

2.
Ras homolog enriched in the brain (Rheb) is a homolog of Ras GTPase that regulates cell growth, proliferation, and cell cycle via mammalian target of rapamycin (mTOR). Recently, it has been confirmed that Rheb activation not only promotes cellular proliferation and differentiation but also enhances cellular apoptosis in response to diverse toxic stimuli. However, the function of Rheb in the central nervous system (CNS) is still with limited understanding. To elaborate whether Rheb was involved in CNS injury, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats. Upregulation of Rheb was observed in the brain cortex by performing western blotting and immunohistochemistry. Double immunofluorescent staining demonstrated that Rheb was mainly in active astrocytes and neurons. PCNA and active caspase-3 were upregulated, and co-labeling with Rheb, which indicated that Rheb might be relevant to astrocytic proliferation and neuronal apoptosis following the inflammatory response by LPS-induced. Furthermore, we also found that the expression profiles of cyclinD1 and CDK4 were parallel with that of Rheb in a time–space dependent manner. Finally, knocking down Rheb by siRNA and treatment with rapamycin or lovastatin showed that not only astrocytic proliferation decreased but also neuronal protection. Based on our data, we suggested that Rheb might play an important role in physiological and pathological functions following neuroinflammation caused by LPS, which might provide a potential target to the treatment of neuroinflammation.  相似文献   

3.
4.
While a number of studies have documented the importance of microglia in central nervous system (CNS) response to injury, infection and in disease state, little is known regarding how the neuronal death initiates the cascades of secondary neuroinflammation. We have exploited an experimental model of Japanese encephalitis to better understand how neuronal death following viral infection initiates microglial activation following Japanese encephalitis virus infection. We have earlier shown that the altered expression of tumor necrosis factor receptor-1 (TNFR-1) and TNFR associated death domain (TRADD) following Japanese encephalitis virus infection regulates the downstream apoptotic cascades. Here we have reported that silencing TRADD expression with small-interfering RNA reduced neuronal apoptosis and subsequent microglial and astroglial activation and release of various pro-inflammatory mediators. Our findings suggest that the engagement of TNFR-1 and TRADD following Japanese encephalitis virus infection plays a crucial role in glial activation also and influences the outcome of viral pathogenesis.  相似文献   

5.
Multiple sclerosis (MS) is no longer considered to be simply an autoimmune disease. In addition to inflammation and demyelination, axonal injury and neuronal loss underlie the accumulation of disability and the disease progression. Specific treatment strategies should thus aim to act within the central nervous system (CNS) by interfering with both neuroinflammation and neurodegeneration. Specific treatment strategies to autoimmune neurological disorders should aim to act within the CNS by interfering with both neuroinflammation and neurodegeneration. The cumulative effect of Glatiramer acetate (GA; Copaxone(R), Copolymer 1), an approved drug for the treatment of MS, reviewed herewith, draws a direct linkage between anti-inflammatory immunomodulation, neuroprotection, neurogenesis, and therapeutic activity in the CNS. GA treatment augmented the three processes characteristic of neurogenesis, namely, neuronal progenitor cell proliferation, migration, and differentiation. The newborn neurons manifested massive migration through exciting and dormant migratory pathways, into injury sites in brain regions, which do not normally undergo neurogenesis, and differentiated to mature neuronal phenotype, thus, counteracting the neurodegenerative course of disease. The plausible mechanism underlying this multifactorial effect is the induction of GA-reactive T cells in the periphery and their infiltration into the CNS, where they release immunomodulatory cytokines and neurotrophic factors in the injury site.  相似文献   

6.
SGTB (Small glutamine-rich tetratricopeptide repeat (TPR)-containing, β) plays a critical role in protein–protein interactions. The interaction between SGTB and heat shock cognate protein (Hsc70)/heat shock protein (Hsp70) has aroused much attention in recent years. The present study was designed to elucidate dynamic changes in SGTB expression and distribution in the cerebral cortex in a lipopolysaccharide (LPS)-induced neuroinflammation rat model. It was found that SGTB expression was increased significantly in apoptotic neurons after LPS injection. The result of our in vitro study suggested that SGTB up-regulation might be associated with neuronal apoptosis after H2O2 challenge. In addition, silencing of SGTB in cultured PC12 (Pheochromocytoma) by siRNA indicated that SGTB was required for neuronal apoptosis induced by oxidative stress. Our finding about the cellular signal pathway may provide a new strategy against neuronal apoptosis in neuroinflammation in CNS.  相似文献   

7.
Guanosine is a purine nucleoside thought to have neuroprotective properties. It is released in the brain under physiological conditions and even more during pathological events, reducing neuroinflammation, oxidative stress, and excitotoxicity, as well as exerting trophic effects in neuronal and glial cells. In agreement, guanosine was shown to be protective in several in vitro and/or in vivo experimental models of central nervous system (CNS) diseases including ischemic stroke, Alzheimer’s disease, Parkinson’s disease, spinal cord injury, nociception, and depression. The mechanisms underlying the neurobiological properties of guanosine seem to involve the activation of several intracellular signaling pathways and a close interaction with the adenosinergic system, with a consequent stimulation of neuroprotective and regenerative processes in the CNS. Within this context, the present review will provide an overview of the current literature on the effects of guanosine in the CNS. The elucidation of the complex signaling events underlying the biochemical and cellular effects of this nucleoside may further establish guanosine as a potential therapeutic target for the treatment of several neuropathologies.  相似文献   

8.
9.
The blockade of adenosine A(2A) receptors (A2AR) affords a robust neuroprotection in different noxious brain conditions. However, the mechanisms underlying this general neuroprotection are unknown. One possible mechanism could be the control of neuroinflammation that is associated with brain damage, especially because A2AR efficiently control peripheral inflammation. Thus, we tested if the intracerebroventricular injection of a selective A2AR antagonist (SCH58261) would attenuate the changes in the hippocampus triggered by intraperitoneal administration of lipopolysaccharide (LPS) that induces neuroinflammation through microglia activation. LPS administration triggers an increase in inflammatory mediators like interleukin-1β that causes biochemical changes (p38 and c-jun N-terminal kinase phosphorylation and caspase 3 activation) contributing to neuronal dysfunction typified by decreased long-term potentiation, a form of synaptic plasticity. Long-term potentiation, measured 30 min after the tetanus, was significantly lower in LPS-treated rats compared with control-treated rats, while SCH58261 attenuated the LPS-induced change. The LPS-induced increases in phosphorylation of c-jun N-terminal kinase and p38 and activation of caspase 3 were also prevented by SCH58261. Significantly, SCH58261 also prevented the LPS-induced recruitment of activated microglial cells and the increase in interleukin-1β concentration in the hippocampus, indicating that A2AR activation is a pivotal step in mediating the neuroinflammation triggered by LPS. These results indicate that A2AR antagonists prevent neuroinflammation and support the hypothesis that this mechanism might contribute for the ability of A2AR antagonists to control different neurodegenerative diseases known to involve neuroinflammation.  相似文献   

10.
CBLL1 (Casitas B-lineage lymphoma-transforming sequence-like protein 1) also known as Hakai, was originally identified as an E3 ubiquitin-ligase for the E-cadherin complex. Recent data have provided evidences for novel biological functional role of CBLL1 during tumor progression and other diseases. However, its distribution and function in the central nervous system (CNS) remains unclear. In this study, we found CBLL1 was significant up-regulation in cerebral cortex after LPS administration and immunofluorescent labeling indicated that CBLL1 was localized striking in the neurons. We also investigated co-staining of CBLL1 and active-caspase-3 and cyclin D1 in the cerebral cortex following LPS administration. Based on our data, we speculated that CBLL1 might play an important role in neuronal apoptosis following LPS administration and might provide a basis for the further study on its role in cell cycle re-entry in neuroinflammation in CNS.  相似文献   

11.
Ha SK  Moon E  Lee P  Ryu JH  Oh MS  Kim SY 《Neurochemical research》2012,37(7):1560-1567
Under normal conditions in the brain, microglia play roles in homeostasis regulation and defense against injury. However, over-activated microglia secrete proinflammatory and cytotoxic factors that can induce progressive brain disorders, including Alzheimer's disease, Parkinson's disease and ischemia. Therefore, regulation of microglial activation contributes to the suppression of neuronal diseases via neuroinflammatory regulation. In this study, we investigated the effects of acacetin (5,7-dihydroxy-4'-methoxyflavone), which is derived from Robinia pseudoacacia, on neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells and in animal models of neuroinflammation and ischemia. Acacetin significantly inhibited the release of nitric oxide (NO) and prostaglandin E(2) and the expression of inducible NO synthase and cyclooxygenase-2 in LPS-stimulated BV-2 cells. The compound also reduced proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β, and inhibited the activation of nuclear factor-κB and p38 mitogen-activated protein kinase. In an LPS-induced neuroinflammation mouse model, acacetin significantly suppressed microglial activation. Moreover, acacetin reduced neuronal cell death in an animal model of ischemia. These results suggest that acacetin may act as a potential therapeutic agent for brain diseases involving neuroinflammation.  相似文献   

12.
Caspase-dependent apoptosis is considered one of the most important cell death pathways. When the apoptotic process is blocked, a form of programmed necrosis called necroptosis occurs. Apoptosis and necroptosis may share some regulatory mechanisms. Recent studies indicated that receptor interacting protein 1 (RIP1), an Hsp90-associated kinase, is an important regulatory switch between apoptosis and necroptosis. In this study, we showed that oxygen-glucose deprivation (OGD) combined with a caspase inhibitor zVAD (OGD/zVAD)-induced RIP1 protein expression in a time-dependent manner. We found that geldanamycin (GA), a benzoquinone ansamycin, protected against neuronal injury induced by OGD/zVAD treatment in cultured primary neurons. More importantly, GA decreased RIP1 protein level in a time- and concentration-dependent manner. In this study, we found that GA also decreased the Hsp90 protein level, which caused instability of RIP1 protein, resulting in decreased RIP1 protein level but not RIP1 mRNA level after GA treatment. We concluded that the GA-mediated protection against OGD/zVAD-induced neuronal injury was associated with enhanced RIP1 protein instability by decreasing Hsp90 protein level. GA and its derivatives may be promising for the prevention of neuronal injury during ischemic injury.  相似文献   

13.
Growing evidence indicates that neuroinflammation can alter adult neurogenesis by mechanisms as yet unclear. We have previously demonstrated that the neuroinflammatory response and neuronal damage after lipopolysaccharide (LPS) injection is reduced in cyclooxygenase-1 deficient (COX-1-/-) mice. In this study, we investigated the role of COX-1 on hippocampal neurogenesis during LPS-induced neuroinflammation, using COX-1-/- and wild type (WT) mice. We found that LPS-induced neuroinflammation resulted in the decrease of proliferation, survival and differentiation of hippocampal progenitor cells in WT but not in COX-1-/- mice. Thus, we demonstrate for the first time that COX-1 is involved in the inhibition of BrdU progenitor cells in proliferation and hippocampal neurogenesis after LPS. These results suggest that COX-1 may represent a viable therapeutic target to reduce neuroinflammation and promote neurogenesis in neurodegenerative diseases with a strong inflammatory component.  相似文献   

14.
15.
Oxidative stress has been identified as an important contributor to neurodegeneration associated with acute CNS injuries and diseases such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic stroke. In this review, we briefly detail the damaging effects of oxidative stress (lipid peroxidation, protein oxidation, etc.) with a particular emphasis on DNA damage. Evidence for DNA damage in acute CNS injuries is presented along with its downstream effects on neuronal viability. In particular, unchecked oxidative DNA damage initiates a series of signaling events (e.g. activation of p53 and PARP-1, cell cycle re-activation) which have been shown to promote neuronal loss following CNS injury. These findings suggest that preventing DNA damage might be an effective way to promote neuronal survival and enhance neurological recovery in these conditions. Finally, we identify the telomere and telomere-associated proteins (e.g. telomerase) as novel therapeutic targets in the treatment of neurodegeneration due to their ability to modulate the neuronal response to both oxidative stress and DNA damage.  相似文献   

16.
Neuroinflammation is an important pathogenesis of Parkinson’s disease (PD). The peripheral immune system could produce profound effects on central immunities. The peripheral blood monocyte (PBM) immune tolerance is the refractoriness of immune system to avoid overactive peripheral inflammation. The PBM are also actively involved in central immune activities. There is evidence implying the probable failure of immune tolerance and impairment of CD200/CD200R signaling in PD patients. Here we aimed to explore the effects of PBM tolerance in peripheral LPS-induced neuroinflammation as well as the specific roles of CD200/CD200R pathway in PBM tolerance. We found that repeated intraperitoneal administration of 0.3 mg/kg LPS was able to induce the PBM tolerance. PBM tolerance reduced peripheral LPS-induced elevation of serum TNF-α, IL-1β expression and TLR4 expression in PBM. PBM tolerance and PBM depletion alleviated peripheral LPS-induced neuroinflammation demonstrated by reduced proinflammatory cytokines in brain and blocked microglia activation. The CD200R expression in PBM was upregulated in PBM tolerance group after intraperitoneal administration of high-dose LPS in vivo and the blockade of CD200/CD200R interaction induced the failure of PBM tolerance in vitro. These results suggested the PBM tolerance could attenuate the peripheral LPS-induced neuroinflammation via upregulating the CD200R expression and the CD200/CD200R signaling played a key role in PBM tolerance. Effective regulation of the PBM in periphery may be a potential way to limit neuroinflammation while the CD200R on PBM could be used as a potential therapeutic target to alleviate neuroinflammation.  相似文献   

17.
Gap junctions serve as intercellular conduits that allow for the direct transfer of small molecular weight molecules (up to 1 kDa) including ions involved in cellular excitability, metabolic precursors, and second messengers. The observation of extensive intercellular coupling and large numbers of gap junctions in the central nervous system (CNS) suggests a syncytium-like organization of glial compartments. Inflammation is a hallmark of various CNS diseases such as bacterial and viral infections, multiple sclerosis, Alzheimer's disease, and cerebral ischemia. A general consequence of brain inflammation is reactive gliosis typified by astrocyte hypertrophy and proliferation of astrocytes and microglia. Changes in gap junction intercellular communication as reflected by alterations in dye coupling and connexin expression have been associated with numerous CNS inflammatory diseases, which may have dramatic implications on the survival of neuronal and glial populations in the context of neuroinflammation. A review of the effects of inflammatory products on glia-glia gap junctional communication and glial glutamate release is presented. In addition, the hypothesis of a "syncytial switch" based upon differential regulation of gap junction expression in astrocytes and microglia during normal CNS homeostasis and neuroinflammation is proposed.  相似文献   

18.
Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis. Similarly, CGRP alleviated AEC necroptosis under the LPS challenge in vitro. Previously, we identified that long optic atrophy 1 (L-OPA1) deficiency mediates mitochondrial fragmentation, leading to AEC necroptosis. In this study, we discovered that CGRP positively regulated mitochondrial fusion through stabilizing L-OPA1. Mechanistically, we elucidate that CGRP activates AMP-activated protein kinase (AMPK). Furthermore, the blockade of AMPK compromised the protective effect of CGRP against AEC necroptosis following the LPS challenge. Our study suggests that CRGP-mediated activation of the AMPK/L-OPA1 axis may have potent therapeutic benefits for patients with ALI or other diseases with necroptosis.  相似文献   

19.
Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD) through amyloidogenesis. In a previous study, we found that systemic inflammation by intraperitoneal (ip) injection of lipopolysaccharide (LPS) induces neuroinflammation and triggers memory impairment. In this present study, we investigated the inhibitory effects of epigallocatechin-3-gallate (EGCG) on the systemic inflammation-induced neuroinflammation and amyloidogenesis as well as memory impairment. ICR mice were orally administered with EGCG (1.5 and 3 mg/kg) for 3 weeks, and then the mice were treated by ip injection of LPS (250 μg/kg) for 7 days. We found that treatment of LPS induced memory-deficiency-like behavior and that EGCG treatment prevented LPS-induced memory impairment and apoptotic neuronal cell death. EGCG also suppressed LPS-induced increase of the amyloid beta-peptide level and the expression of the amyloid precursor protein (APP), β-site APP cleaving enzyme 1 and its product C99. In addition, we found that EGCG prevented LPS-induced activation of astrocytes and elevation of cytokines including tumor necrosis factor-α, interleukin (IL)-1β, macrophage colony-stimulating factor, soluble intercellular adhesion molecule-1 and IL-16, and the increase of inflammatory proteins, such as inducible nitric oxide synthase and cyclooxygenase-2, which are known factors responsible for not only activation of astrocytes but also amyloidogenesis. In the cultured astrocytes, EGCG also inhibited LPS-induced cytokine release and amyloidogenesis. Thus, this study shows that EGCG prevents memory impairment as well as amyloidogenesis via inhibition of neuroinflammatory-related cytokines released from astrocytes and suggests that EGCG might be a useful intervention for neuroinflammation-associated AD.  相似文献   

20.
Neuroinflammation and accumulation of β-amyloid are critical pathogenic mechanisms of Alzheimer’s disease (AD). In the previous study, we have shown that systemic lipopolysaccharide (LPS) caused neuroinflammation with concomitant increase in β-amyloid and memory impairments in mice. In an attempt to investigate anti-neuroinflammatory properties of obovatol isolated from Magnolia obovata, we administered obovatol (0.2, 0.5 and 1.0 mg/kg/day, p.o.) to animals for 21 days before injection of LPS (0.25 mg/kg, i.p.). We found that obovatol dose-dependently attenuates LPS-induced memory deficit in the Morris water maze and passive avoidance tasks. Consistent with the results of memory tasks, the compound prevented LPS-induced increases in Aβ1-42 formation, β- and γ-secretases activities and levels of amyloid precursor protein, neuronal β-secretase 1 (BACE1), and C99 (a product of BACE1) in the cortex and hippocampus. The LPS-mediated neuroinflammation as determined by Western blots and immunostainings was significantly ameliorated by the compound. Furthermore, LPS-induced nuclear factor (NF)-κB DNA binding activity was drastically abolished by obovatol as shown by the electrophoretic mobility shift assay. The anti-neuroinflammation and anti-amyloidogenesis by obovatol were replicated in in vitro studies. These results show that obovatol mitigates LPS-induced amyloidogenesis and memory impairment via inhibiting NF-κB signal pathway, suggesting that the compound might be plausible therapeutic intervention for neuroinflammation-related diseases such as AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号