首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High stress response is an important factor impeding the breeding of wild animals in captivity. Experimental fawn manipulation is considered a suitable approach to reduce the negative effects of behavioral and physiological stress. The forest musk deer (Moschus berezovskii) is classified as “endangered” by the IUCN Red List due to over-exploitation for musk production. Musk is highly valued for its cosmetic and alleged pharmaceutical properties and has stimulated the enthusiasm of captive musk deer breeding in recent years. This study attempts to reduce behavioral and physiological stress responses in juvenile musk deer using experimental fawn manipulation. Habituation started 5 days after birth and lasted until weaning age (90 days). We determined the behavioral stress response at the age of 30, 60, 90, 150, and 360 days by measuring acceptance or rejection of three treatment intensities (i.e., stroking, embracement) and quantified behavioral responses (urination, approaching the investigator). At the same time, physiological stress parameters were established, measuring the fecal glucocorticosteroid metabolite (FGM) concentration. Our results indicate that fawn manipulation initially reduced the behavioral stress, but after termination of treatments, stress symptoms reoccurred. We detected no difference in the FGM concentrations between treatment and control groups, suggesting that the experimental fawn manipulation did not decrease the physiological stress response. This implies that behavioral stress reduction cannot be sustained if the physiological stress remains unaltered. We argue that the socio-positive reactions of musk deer fawns to humans could be phenotypic and that the physiological stress response rather reflects their intrinsic characteristics than a successful manipulation.  相似文献   

2.
《Chronobiology international》2012,29(12):1691-1713
ABSTRACT

Altering meal timing could improve cognition, alertness, and thus safety during the nightshift. This study investigated the differential impact of consuming a meal, snack, or not eating during the nightshift on cognitive performance (ANZCTR12615001107516). 39 healthy participants (59% male, age mean±SD: 24.5 ± 5.0y) completed a 7-day laboratory study and underwent four simulated nightshifts. Participants were randomly allocated to: Meal at Night (MN; n= 12), Snack at Night (SN; n = 13) or No Eating at Night (NE; n = 14). At 00:30 h, MN consumed a meal and SN consumed a snack (30% and 10% of 24 h energy intake respectively). NE did not eat during the nightshift. Macronutrient intake was constant across conditions. At 20:00 h, 22:30 h, 01:30 h, and 04:00 h, participants completed the 3-min Psychomotor Vigilance Task (PVT-B), 40-min driving simulator, post-drive PVT-B, subjective sleepiness scale, 2-choice Reaction Time task, and Running Memory task. Objective sleep was recorded for each of the day sleeps using Actigraphy and for the third day sleep, Polysomnography was used. Performance was compared between conditions using mixed model analyses. Significant two-way interactions were found. At 04:00 h, SN displayed increased time spent in the safe zone (p < .001; percentage of time spent within 10 km/h of the speed limit and 0.8 m of lane center), and decreases in speed variability (p < .001), lane variability (p < .001), post-drive PVT-B lapses (defined as RT > 355 ms; p < .001), and reaction time on the 2-choice reaction time task (p < .001) and running memory task (p < .001) compared to MN and NE. MN reported greater subjective sleepiness at 04:00 h (p < .001) compared to SN and NE. There was no difference in objective sleep between eating conditions. Eating a large meal during the nightshift impairs cognitive performance and sleepiness above the effects of time of night alone. For improved performance, shiftworkers should opt for a snack at night.  相似文献   

3.
The aim of the study was to evaluate the effect of a temporary quantitative feed restriction on growth performance, nutrient digestibility and carcass criteria of rabbits. A total of 80 weaned male Californian rabbits (30 d of age) were randomly assigned to four treatments of 20 rabbits each. The Control group was fed ad libitum during the whole experimental period (days 30–72 of age). For the three restricted fed groups the feed intake was reduced by 15%, 30% and 45% compared to the Control group, respectively. The feed restriction was applied after weaning and lasted for 21 d. Thereafter, at 51 d of age, in all treatments the feed supply returned to ad libitum intake till 72 d of age (AL period). The feed restriction decreased the body weight gain of rabbits (during the restriction period and the whole experimental period, p < 0.001) and improved feed conversion ratio during all tested periods (p < 0.001). In the AL period, the daily body weight gain of all groups was similar. After the AL period, the digestibility of all measured nutrients was significantly higher for animals fed restrictively. Furthermore, feed restrictions significantly decreased the proportion of perirenal and scapular fat and increased relative weight and length of the gastrointestinal tract. Therefore, it can be concluded that the applied feed restriction improved feed conversion, nutrient digestibility and reduced fat at the slaughter age of Californian rabbits, but the reduced body weight gain could not be compensated by a subsequent ad libitum feeding for 3 weeks.  相似文献   

4.
TATARANNI P ANTONIO JAMES B YOUNG, CLIFTON BOGARDUS, ERIC RAVUSSIN. A low sympathoadrenal activity is associated with body weight gain and development of central adiposity in Pima Indian men. To investigate the possible role of impaired sympathetic nervous system and/or adrenal medullary function in the etiology of human obesity, we studied 64 Pima Indian men (28 ± 6 years, 101 ± 25 kg, 34 ± 9% body fat, mean ± SD) in whom sympathoadrenal function was estimated at baseline by measurements of 24-hour urinary norepinephrine (NE) and epinephrine (Epi) excretion rates under weight-maintenance conditions. Body weight, body composition (hydrodensitometry), and body fat distribution (waist-to-thigh circumference ratio, W/T) were measured at baseline and follow-up. Follow-up data were available on 44 subjects who gained on average 8.4 ± 9.5 kg over 3.3 ± 2.1 years. In these subjects, baseline NE excretion rate, adjusted for its determinants (i.e., fat free mass, fat mass, and W/T), correlated negatively with bodyweight gain (r=?0.38; p=0.009). Baseline Epi excretion rate correlated negatively with changes in W/T (r=?0.44; p=0.003). In conclusion, our data show for the first time that a low sympathetic nervous system activity is associated with body weight gain in humans. Also, a low activity of the adrenal medulla is associated with the development of central adiposity.  相似文献   

5.
In this study, blood hormone profiles, physiological variables, and behavioral criteria in Corriedale ewes fed total mixed ration (TMR) at different moisture levels during thermal–humidity exposure were evaluated. Nine non-pregnant Corriedale ewes (ave. BW = 41 ± 3.5 kg) were individually fed diets based on maintenance requirements in metabolic crates. Ewes were assigned to three treatment groups according to a 3 × 3 Latin Square design for 3 periods of 21 days duration each (9 ewes per treatment). Treatments were TMR (CP (crude protein) = 16.1, TDN (total digestible nutrients) = 69.1%) moisture levels at 40, 50, and 60%. No differences were found in blood hormone profiles including cortisol (μg/dL), immunoglobulin G (mg/dL), triiodothyronine (ng/mL), thyroxin (μg/dL), growth hormone (ng/mL), prolactin (ng/mL), insulin (μU/mL), insulin-like growth factor 1 (ng/mL), aldostrone (ng/dL), antidiuretic hormone (pg/mL), and creatinine (mg/dL) among all treatment groups (p > 0.05). Measurements of physiological variables indicated that heart rate (number of beats/min) in the afternoon was higher in 50 and 60% TMR group than in the 40% group (p < 0.05). No differences were observed in respiratory rate (number/min), panting score, and fecal score among the groups (p > 0.05). The behavior criteria including urine excretion frequency (number/d), fecal excretion frequency (number/d), standing frequency (number/d), resting frequency (number/d), standing duration (min/d), and resting duration (min/d) showed no differences among the treatment groups (p > 0.05). Conclusions drawn indicate the minor impacts of TMR moisture levels up to 60% on behavioral criterions of Corriedale ewes during thermal–humidity exposure, but help smooth down the intensified heat stress conditions over physiological variables and endocrine system.  相似文献   

6.
The objective of the current study was to observe the impact of two seasons viz. summer (February–May) and monsoon (June–August) on the blood biochemical and hormonal responses in different indigenous goats of tropical island agro-ecological environment maintained under extensive management system. Sixty animals of three different indigenous goat breeds were included in the study: Andaman local goat (AL, n = 20), Andaman local?×?Malabari (AL?×?M, n = 20), and Teressa goat (n = 20). Sixty serum samples (n = 10/season/breed) from the three groups of animals were analyzed. Study revealed that there was a significant increase (p ≤ 0.05) in serum total protein in Teressa goats during summer than monsoon. Serum albumin showed significant variation (p ≤ 0.05) between AL and AL?×?M during summer whereas significant variation of albumin (p ≤ 0.05) was observed between AL and Teressa, AL?×?M and Teressa during monsoon season. Significant differences in serum albumin (p ≤ 0.05) were also observed in AL and AL?×?M during summer and monsoon seasons, respectively. The serum cortisol levels were significantly higher (p ≤ 0.05) in AL goats during summer than in monsoon season. Thus, the study could able to establish the seasonal variation in biochemical and hormonal values of indigenous goat breeds in hot and humid tropical island environment.  相似文献   

7.
Police officers, as a group, experience many occupational demands with physiological and psychological effects that could be harmful to their health. A primary objective of this study was to analyze specific behavioral and physiological risk factors that could lead to hypertension and accelerated coronary artery disease. Three hundred thirty-one male Akron City police officers participated in the study. A group of volunteer males (n = 48) who worked in city clerical jobs were used as controls. Questionnaires were administered in order to measure such behavioral variables as recent life change, life assets, and temperament pattern. Blood chemistry and physiological variables were also measured. The police officers had higher diastolic blood pressure (DBP), norepinephrine (NE) levels, and recent life change unit (LCU) scores than the control group. Increased hostility and depression scores were associated with higher DBP and recent LCU scores and lower life asset unit (LAU) scores. Individuals with higher "dominant" scores and moderate to high recent LCU scores had higher cardiovascular risk factors than those with moderate to high recent LCU scores who were ranked as "subordinate." Rotating shift workers had abnormally elevated NE levels, which, if not controlled, may lead to higher cardiovascular risk. Behavioral intervention programs have been introduced with the goals of reducing stress, increasing life assets, and teaching relaxation techniques.  相似文献   

8.
Emotional and behavioral problems have been considered an indicative of mental disorder in children. Mental health problems affect 10–20% of children and adolescents living in low-income and middle-income countries. Evidence suggests that disruptions in the biological rhythm may be a primary cause of emotional and behavioral changes, which affects several psychological functions and moods. Thus, this study aimed at verifying the association between biological rhythm and emotional and behavioral problems in schoolchildren living in Southern Brazil. This is a cross-sectional study with a school-based sample conducted between August 2015 and November 2016. The presence of emotional and behavioral problems in children was verified by the Strengths and Difficulties Questionnaire (SDQ), parents’ version. This is a 25-item assessment questionnaire used to screen mental health problems in children and adolescents (from 4 to 17 years of age) in the last 6 months. The Biological Rhythm Interview of Assessment in Neuropsychiatry-Kids (BRIAN-K) was used to measure the degree of biological rhythm disruption. The BRIAN-K consists of 20 items; from among these, 17 items are added to generate a quantitative measure, with greater scores indicating more biological rhythm disruption. The final score can also be divided into four subscales: sleep, social rhythm, eating pattern and overall activities. A total of 609 children responded to the assessment instruments. With regard to parents or primary caregiver, 596 completed the assessment and 13 (2%) were not located or refused to participate in the study. Thus, 596 dyads were included in the analysis. Children with emotional and behavioral problems presented higher scores in all domains of BRIAN-K: sleep, social, activity, eating pattern and total score (p < 0.001). The following variables remained associated with emotional and behavioral problems after adjusted analysis: BRIAN-K total score (p < 0.001) and all subscales sleep (p < 0.001), social (p < 0.001), activity (p < 0.001) and eating pattern (p < 0.001). Children with emotional and behavioral problems presented higher biological rhythm disruption when compared with children without emotional and behavioral problems. Our study emphasizes the importance of biological rhythm and its influence on emotional and behavioral problems in schoolchildren. Early detection of any biological rhythm disruption may enhance further assessment of any eventual emotional and behavioral problem and even a psychopathology.  相似文献   

9.
When fed ad libitum (AL), ectothermic animals usually grow faster and have higher metabolic rate at higher ambient temperature. However, if food supply is limited, there is an energy tradeoff between growth and metabolism. Here we hypothesize that for ectothermic animals under food restriction (FR), high temperature will lead to a high metabolic rate, but growth will slow down to compensate for the high metabolism. We measure the rates of growth and metabolism of 4 cohorts of 5th instar hornworms (Manduca sexta larvae) reared at 2 levels of food supply (AL and FR) and 2 temperatures (20 and 30 °C). Our results show that, compared to the cohorts reared at 20 °C, the ones reared at 30 °C have high metabolic rates under both AL and FR conditions, but a high growth rate under AL and a low growth rate under FR, supporting this hypothesis.  相似文献   

10.
Salsola ikonnikovii (Chenopodiaceae), a drought-tolerant plant species that is distributed in sand or light-saline soil in Xinjiang, China, produces seeds (fruits) with attached winged perianths. To study the role of the wing in seed germination under salt stress and to further investigate the growth and physiological responses of the plants to salt stress, the germination behaviour of S. ikonnikovii was determined after winged and non-winged seeds were treated with 0–1000 mmol · L?1 NaCl. Several parameters of two-month old plants that had been treated with NaCl for three weeks were measured. The results revealed that the winged perianths limited germination but protected the seeds from salt damage. The growth of the plants was stimulated by lower concentrations of salt (≤100 mmol · L?1 NaCl), while increasing salt concentrations inhibited growth. The level of reactive oxygen species and malondialdehyde increased significantly at high concentrations of salt. Correspondingly, concentrations of the osmolytes proline, betaine, and soluble sugars, and the activities of antioxidative enzymes (catalase, peroxidase and superoxide dismutase) increased, but the levels of non-enzymatic antioxidants (carotenoids, glutathione) were significantly reduced at high salt concentrations. These results imply that osmotic adjustment and the antioxidative system may work synergistically to ensure that a plant grows normally under high salt concentrations.  相似文献   

11.
Entrapments of whales in sea ice occur occasionally in the Arctic and often last several weeks or months, resulting in emaciation or death of whales. These events provide a unique opportunity for investigating the physiological response to a prolonged or chronic stress in an otherwise healthy population of marine mammals. By measuring cortisol in blubber, a peripheral tissue, we expect to see a reflection of long-term or chronic stress rather than short-term or acute stress. Adipose tissue should be less subject to rapid changes compared to blood cortisol, reflecting stressors experienced over a longer period of time, and should not be affected by potential stress associated with sampling. We measured blubber cortisol of 29 beluga whales (Delphinapterus leucas) entrapped in November 2006 in Husky Lakes basin and 26 whales from the same population (Eastern Beaufort Sea) during regular seasonal harvests in July of 2006 and 2007. Mean cortisol concentrations (±SEM) were seven times higher in blubber from entrapped whales (1.76 ± 0.32 ng/g wet weight) compared to whales from regular seasonal harvests (0.26 ± 0.042 ng/g wet weight) and appeared to increase with whale age. Our results provide a measure of blubber cortisol from a prolonged stress and demonstrate blubber cortisol as a useful indicator of longer-term exposure to stress in beluga whales.  相似文献   

12.
Feverfew (Tanacetum parthenium) (TP) is a valuable medicinal plant from Asteraceae family with various pharmaceutical and therapeutic properties. A pot experiment was conducted to evaluate the effect of salicylic acid (SA) on the physiological and morphological responses of TP under salinity stress. Salinity was induced by NaCl and CaCl2 (2:1) at 30, 60, 90, 120, 150 and 180 mM levels. SA was applied as foliar application at 0, 200 and 300 ppm concentrations. Plant height, leaf and shoot number, fresh and dry weight and essential oil, starch, sugar, protein, proline, catalase (CAT), peroxidase (POD), and ascorbic peroxidase (APX) contents were as measured morpho-physiological traits. The results showed that SA significantly (P  0.05) improved the measured traits and caused higher tolerance in TP plants under salinity stress. The essential oil content increased with increasing the salinity level up to 90 mM, which was more significant when combined with SA application. All of the measured traits except proline content, antioxidant enzymes, essential oil and sugar decreased at high salinity levels.  相似文献   

13.
E V Avakian  S M Horvath 《Life sciences》1980,26(20):1691-1696
The acute effect of α-methyl-p-tyrosine (αMPT), a tyrosine hydroxylase inhibitor, on plasma levels of norepinephrine (NE), epinephrine (E), dopamine (DA), and adrenal cholesterol content in male rats at room temperature (24°C) and during acute cold exposure (4°C) was evaluated. Compared to saline-treated controls, αMPT: 1) significantly reduced plasma NE and DA in both normal and cold stress conditions, 2) significantly increased plasma E in both environments, and 3) stimulated the adrenal cortex. These findings suggest that tyrosine hydroxylase inhibition and consequent catecholamine synthesis blockade disrupts the homeokinesis of adrenergic processes and may present a significant stress to the intact animal.  相似文献   

14.
Cape gannet Morus capensis chicks depend entirely on fish prey and metabolic water for water requirements during development. Water loss through evaporative cooling due to heat stress is substantial. We measured water flux and field metabolic rates (FMR) of Cape gannet chicks and adults to determine if gannets developed water saving strategies. The water economy index (WEI, g kJ?1) decreased with chick age according to the model WEI = 0.676 – 0.272 × log10(t), indicating that water efficiency increased with age. At fledging, the WEI of chicks was at the level expected of adult desert birds. Desert birds maintain a low WEI by also having a low FMR, whereas Cape gannet chicks have FMR comparable to other seabird species’ nestling requirements. We propose that maintaining low WEI is adaptive for Cape gannets because (1) chicks need to balance water loss through evaporative cooling, (2) fledglings need to overcome a period of up to a week when they cannot ingest any water and (3) adults spend extended periods in the breeding colony during which water can become a limiting factor. Understanding the physiological mechanism of maintaining low WEI will become increasingly important with future rising temperatures.  相似文献   

15.
Amphibian species capable of optimizing trait response to environmental stressors may develop complex strategies for defending against rapid environmental change. Trait responses may differ between populations, particularly if stressor strength varies across spatial or temporal gradients. Ultraviolet-B (UV-B) radiation is one such stressor that poses a significant threat to amphibian species. We examined the ability of long-toed salamanders (Ambystoma macrodactylum) at high- and low-elevation breeding sites to cooperatively employ behavioral and physiological trait responses to mediate UV-B damage. We performed a microhabitat survey to examine differences in oviposition behavior and UV-B conditions among breeding populations at high- (n = 3; >1,500 m) and low-elevation (n = 3; <100 m) sites. We found significant differences in oviposition behavior across populations, with females at high-elevation sites selecting oviposition substrates in UV-B protected microhabitats. We also collected eggs (n = 633) from each of the breeding sites for analysis of photolyase activity, a photoreactivating enzyme that repairs UV-B damage to the DNA, using a photoproduct immunoassay. Our results revealed no significant differences in photolyase activity between long-toed salamander populations at high and low elevations. For high-elevation salamander populations, relatively low physiological repair capabilities in embryos appear to be buffered by extensive behavioral modifications to reduce UV-B exposure and standardize developmental temperatures. This study provides valuable insight into environmental stress responses via the assessment of multiple traits in allowing sensitive species to persist in rapidly changing landscapes.  相似文献   

16.
Summary A single intraperitoneal (IP) melatonin injection (0.5 mg/100 g body wt.) caused an increase in norepinephrine (NE) fluorescence and elevation of NE content in newly-hatched pigeons (Columba livia), but a reduction of NE fluorescence and depletion of NE content in the adrenal medulla of newly-hatched crows (Corvus splendens) after 0.5 h of treatment. In contrast, in adults melatonin caused increase in NE fluorescence and elevation of NE content only in the parakeet (Psittacula krameri).Half an hour of IP melatonin treatment (0.5 mg/100 g body wt.) induced release of epinephrine (E) from the adrenal medulla of newly-hatched pigeon and parakeet. In contrast, in the adults melatonin caused more than a two-fold increase in E in the pigeon, and a significant increase in the crow.Single IP melatonin injection (0.5 mg/100 g body wt.) caused hypoglycemia in the newly-hatched parakeet and adult pigeon, and hyperglycemia in newly-hatched pigeon after 0.5 h of treatment. Melatonin failed to regulate glucose homoeostasis in newly-hatched and adult crow.Splanchnic denervation of the left adrenal gland was performed in the adult pigeon. The right adrenal served as the innervated gland. Melatonin-induced modulation of catecholamines following a single IP injection (0.5 mg/100 g body wt.) revealed significant increases in NE fluorescence and NE content at 4 and 12 h after treatment in the denervated gland only, which gradually approached normal levels 9 days after treatment. In contrast, E content showed more than a two-fold increase over the control value in both the innervated and denervated glands 0.5 and 24 h after treatment. At 9 days after treatment, E content showed significant depletion in the innervated gland.The results of this study indicate that melatonin modulates catechol hormone content in avian adrenal medulla, and also regulates glucose homoeostasis (except in the crow). The splanchnic nerve plays a vital role in the synthesis of NE but has no effect on E.  相似文献   

17.
ABSTRACT

To characterize the locomotor behaviors and their relation with physiological regulation in Chinese shrimp Fenneropenaeus chinensis, animals were held at approximately 6.0 (normoxia), 4.5, and 3.0 mg L-1 dissolved oxygen (DO) for 1 day (acute) and 15 days (chronic), after which the swimming and tail-flipping abilities, and the activities of key enzymes involved in anaerobic and aerobic metabolism in hepatopancreas and pleopod and abdominal muscles were determined. Results showed that hepatopancreas was preferentially powered compared with pleopod and abdominal muscles during hypoxia. Physiological differences in muscles resulted in locomotion differences. Fchinensis presented reduced reliance on anaerobic glycolysis to conserve energy during chronic hypoxia at 3.0 mg L-1 DO, but this physiological regulation reduce the survival of shrimp in the wild due to a reduction in tail-flipping. These findings suggested that when assessing the survival strategy of shrimp during hypoxia, both physiological regulation and behavioral changes should be considered.  相似文献   

18.
We investigated the effects of chronic stress combined with high sucrose intake on the morphology of the adrenal glands in young rats. Male Wistar rats were fed a standard chow diet and allocated into control (C; tap water), chronic restraint stress (St), 30% sucrose diet (S30) and 30% sucrose diet + chronic restraint stress (S30 + St) groups. St consisted of 1 h daily sessions, 5 days/week for 4 weeks. Chronic stress reduced the thickness of the zona glomerulosa (ZG) and zona fasciculata (ZF) in both right and left glands; the thickness of the zona reticularis (ZR) was increased in the right gland. Cell density was greater in the ZF and medulla of both right and left glands, whereas cell density increased in the ZR of only the left gland. The percentage of small cells was lower in the ZG, whereas more large cells were found in the left gland. A similar result was obtained for the ZF, ZR and medulla in both right and left glands. Chronic stress increased the area covered by blood vessels in the ZR of the right gland, but decreased the area in the ZR of the left gland. The area covered by blood vessels was reduced in the medulla of both right and left glands in rats subjected to chronic stress. Infiltration of immune cells was increased by chronic stress in all layers of the cortex of the left gland, but was reduced in the medulla of the right gland. A high sucrose diet reduced the thickness of the medulla in the left gland. Cell proliferation increased in the ZG of the right gland and the weight of the right adrenal gland increased. Reduced cell proliferation in the ZG of the left gland was associated with a reduction in the area covered by blood vessels. In addition, the area covered by blood vessels decreased in the medulla of both glands. Our findings demonstrate that exposure to chronic stress during early life causes morphometric changes in adrenal glands.  相似文献   

19.
In nature, several abiotic stresses occur simultaneously, leading to retarded growth and biochemical changes in microalgae, including the commercial cyanobacterium, Arthrospira platensis. To gain more understanding of stress response, we investigated the integrative effects of nitrogen depletion and high temperature stress on physiological changes of A. platensis C1. The results revealed that photosynthetic activities of the stressed cells were markedly reduced by more than a half in comparison to the non-stressed cells. Moreover, a reduction of biomass was observed within 24 h after prolonged exposure to combined stress of nitrogen depletion and high temperature. The total protein contents, including phycocyanin (PC), in the stressed cells, decreased rapidly within 8 h of incubation. This finding was concomitant with the increase in carbohydrate content. However, the accumulation of carbohydrates in the nitrogen depletion-treated cells was greater than that in the cells under the combined stress. Furthermore, the levels of polysaccharides increased only under long-term incubation under nitrogen depletion but not under the combined stress. In addition, the combination of nitrogen depletion and high temperature stress resulted in an increase in the proportion of linoleic acid but a decrease in γ-linolenic acid within 24 h. These results suggest that the response of A. platensis to the combined stress was different from the responses of cells to individual stress. The PC degradation, the increased carbohydrates, and the alteration in fatty acids profiles were required for physiological response to combined nitrogen depletion and high temperature stress of A. platensis C1.  相似文献   

20.
Salinity stress significantly affects plant growth and development because of osmotic stress, ion toxicity, and nutrient imbalance. Therefore, salinity stress becomes a serious threat to rapeseed production in agriculture. Plants evolved a series of complex mechanisms, including morphological changes, physiological adjustment, and gene expression regulation, at a molecular level to adapt to salt stress. Epigenetic regulations, including DNA methylation and histone modification, play a major role in tuning gene expression in plant response to environmental stimuli. Although many progresses have been reported in plant response to salt stress, the epigenetic changes in Brassica napus under salt stress are far from being understood. A series of physiological parameters, including water content, proline content, malondialdehyde content, electrolyte leakage, and antioxidant enzyme activities, under different concentrations (0, 25, 50, and 100 mM) of NaCl treatment in “Yangyou 9” was determined at the germination stage. Immunofluorescent staining and high-performance liquid chromatography-assisted quantification were conducted to analyze the level and distribution patterns of DNA and histone methylation under salt stress. Results of morphological and physiological analyses under salt stress indicated that 25 mM NaCl treatment promoted the growth of “Yangyou 9” seedlings, whereas 50 and 100 mM NaCl treatments inhibited the growth of “Yangyou 9” seedlings. Epigenetic investigations showed that 25 mM NaCl mediated the enrichment of H3K4me3, as well as decreases in H3K9me2 and 5-methylcytosine (5-mC), whereas 50 and 100 mM NaCl induced increases in H3K9me2 and 5-mC and a decrease in H3K4me3. Overall, this study offers new insights into the epigenetic changes in salt stress response in rapeseed, and this information would be propitious to engineer crops with enhanced salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号