首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although considerable evidence lends credence to the association between insulin resistance, hyperinsulinemia and essential hypertension, the precise nature of this relationship remains unexplained. In the present investigation, we examined the proposition that these metabolic defects contribute causally to the development of high blood pressure. If these metabolic abnormalities were responsible for the development of hypertension, then drug interventions that improve these defects should also decrease high blood pressure. Since previous studies have demonstrated that vanadium compounds enhance insulin action and lower plasma insulin levels in nondiabetic rats, we examined the effects of these compounds on insulin sensitivity, plasma insulin concentration and blood pressure in two hyperinsulinemic models of experimental hypertension. The animal models studied were the genetically predisposed spontaneously hypertensive rat and the fructose-hypertensive rat, where hypertension is induced in normotensive rats by feeding them a high fructose diet. Vanadium compounds caused marked and sustained decreases in plasma insulin concentration and blood pressure in both the animal models studied. Furthermore, the effect of the drugs on blood pressure was reversed by restoring plasma insulin levels in the drug-treated rats to those observed in their untreated counterparts. These data suggest that either hyperinsulinemia contributes to the development of hypertension in both the spontaneously hypertensive and the fructose-hypertensive rats or that the underlying mechanism is closely related to the expression of both these disorders.  相似文献   

2.
The role of altered vascular smooth muscle function in the etiology of essential hypertension has been extensively studied by a number of investigators. The results obtained from in vivo studies do not always correlate with results from in vitro studies and it is not always apparent whether the results reflect differences related to hypertension or to the genetic background of the animal model. In vitro and perfused vascular bed studies in our laboratory have utilized the spontaneously hypertensive rat (SHR), the normotensive Wistar Kyoto rat (WKY), genetically related crossbred rats (F1, F2, and BC1), and also Dahl salt-sensitive (DS) and salt-resistant (DR) rats. The role of altered smooth muscle function in relation to the development of the elevated blood pressure (BP) of the SHR or DS rat was studied and emphasis was placed on determining the role of altered neuronal uptake1 (U1) in hypertensives in masking elevated postsynaptic sensitivity to noradrenaline. In addition, the relationship between postsynaptic sensitivity to cations and BP was assessed. Such studies have indicated that alterations in postsynaptic sensitivity, U1 activity, and sensitivity to cations are not entirely consistent with the etiology of hypertension in the SHR and DS rat but may simply reflect genetic strain differences between the hypertensive and normotensive animals.  相似文献   

3.
In various models of experimental and genetic hypertension in rats, blood pressure is markedly reduced during late pregnancy. The period during which the blood pressure reduction occurs is also the period when plasma progesterone is maximally elevated, and administration of progesterone to renal hypertensive rats has been reported to reduce blood pressure (J. Armstrong, 1959, Proc. Soc. Exp. Biol. Med. 102:452-455). To test the possibility that elevated plasma progesterone is responsible for the blood pressure reduction in late pregnancy, on Day 14 of pregnancy a group of New Zealand genetically hypertensive (NZGH) rats was ovariectomized and implanted with progesterone-filled capsules, to maintain plasma progesterone at low levels just sufficient to maintain pregnancy, and compared with intact, pregnant NZGH. Ovariectomy did not alter the characteristic course of blood pressure reduction seen in late-pregnant intact NZGH rats. In addition, daily administration of progesterone (15 mg/kg, sc) for 14 days did not alter blood pressure of either nonpregnant NZGH rats or New Zealand normotensive rats with chronic 1-kidney, 1-clip hypertension. It is concluded that blood pressure of NZGH rats is reduced to near normotensive levels in late pregnancy, as reported for other models of rat hypertension, but that elevated plasma progesterone levels are not requisite for that reduction and do not reduce blood pressure of renal hypertensive rats.  相似文献   

4.
F J Haddy  M B Pamnani 《Life sciences》1987,41(25):2685-2696
Anatagonists to angiotensin, catecholamines, aldosterone, and vasopressin have long been used to help determine agonist roles in hypertension. We here call attention to a possible extension of this approach to detect, evaluate, and treat vascular sodium transport defects in hypertension. Two basic types of transport defects have been identified in the blood vessels of hypertensive animals, increased sodium permeability and decreased sodium pump activity. Intravenous injection of 6-iodo-amiloride, a sodium channel blocker and vasodilator, produces an immediate and sustained decrease in blood pressure in two genetic models of hypertension characterized by increased permeability of the vascular smooth muscle cell membrane to sodium (Okamoto spontaneously hypertensive rat, Dahl salt sensitive rat), whereas it produces only a transient fall in arterial pressure in two renal models of hypertension having normal sodium permeability in vascular smooth muscle cells (reduced renal mass-saline rat, one-kidney, one clip rat). Canrenone, a metabolic product of spironolactone which can compete with oubain for binding to Na+,K+-ATPase at the digitalis receptor site, decreases blood pressure in a low renin, volume expanded model of hypertension which has been shown to have depressed sodium pump activity in arteries and increased sodium pump inhibitor in plasma (reduced renal mass-saline rat) but has no effect on blood pressure in a genetic model of hypertension which has been shown to have increased sodium pump activity secondary to increased sodium permeability (spontaneously hypertensive rat). Thus, a sodium channel blocker and a competitor to ouabain binding can detect and determine the functional significance of sodium transport defects in the blood vessels of intact hypertensive animals. Studies in red and white blood cells suggest that similar defects may exist in the blood vessels of hypertensive humans. Thus, this approach, probing for vascular transport defects in the intact animal, may ultimately also be useful in the clinical setting.  相似文献   

5.
Increased systemic resistance is the main haemodynamic abnormality in DOCA-salt hypertension which is more pronounced in young than in adult rats. A mild increase of cardiac output also contributes to higher blood pressure in young animals. Arterial compliance is decreased only in young hypertensive rats. The acute blockade of different pressor systems indicates that the role of back-up pressor systems (vasopressin and angiotensin II) is increased in adult DOCA-salt hypertensive animals while the increased activity of adrenergic system and digoxin-like factors contributes to the enhanced hypertensive response of young rats.  相似文献   

6.
Aorta-coarcted hypertensive rats and sham-operated normotensive rats were compared in order to assess the contribution of sympathetic nervous system activity to the elevated blood pressure in these rats at an early (6 days) and chronic (42 days) stage of hypertension. Norepinephrine (NE), epinephrine (E) and dopamine (DA) levels were quantitated in plasma, heart and vascular tissues (aorta, inferior vena cava, mesenteric artery and vein) using a radioenzymatic procedure. Body weight was significantly reduced and mean arterial blood pressure (MABP) significantly increased in the coarcted rats at both stages of hypertension. Plasma catecholamines did not differ at either stage of hypertension. The NE content of the heart and mesenteric artery was significantly decreased in the coarcted rats at both stages of hypertension but unchanged in the other vessels studied. E and DA levels in the heart and all vasculature analyzed remained unaltered at both stages of hypertension. The present results suggest that neither E nor DA makes a major contribution to the development and maintenance of hypertension in the aorta-coarcted rat. The observation of the reduced cardiac NE concentration in the coarcted rats together with literature reports of similar observations in other animal models of hypertension suggests that myocardial NE depletion is a common feature of the hypertension and not dependent on the methodology used to produce that hypertension.  相似文献   

7.
We previously reported that mild deoxycorticosterone acetate (DOCA)-salt hypertension develops in the absence of generalized sympathoexcitation. However, sympathetic nervous system activity (SNA) is regionally heterogeneous, so we began to investigate the role of sympathetic nerves to specific regions. Our first study on that possibility revealed no contribution of renal nerves to hypertension development. The splanchnic sympathetic nerves are implicated in blood pressure (BP) regulation because splanchnic denervation effectively lowers BP in human hypertension. Here we tested the hypothesis that splanchnic SNA contributes to the development of mild DOCA-salt hypertension. Splanchnic denervation was achieved by celiac ganglionectomy (CGX) in one group of rats while another group underwent sham surgery (SHAM-GX). After DOCA treatment (50 mg/kg) in rats with both kidneys intact, CGX rats exhibited a significantly attenuated increase in BP compared with SHAM-GX rats (15.6 ± 2.2 vs. 25.6 ± 2.2 mmHg, day 28 after DOCA treatment). In other rats, whole body norepinephrine (NE) spillover, measured to determine if CGX attenuated hypertension development by reducing global SNA, was not found to be different between SHAM-GX and CGX rats. In a third group, nonhepatic splanchnic NE spillover was measured as an index of splanchnic SNA, but this was not different between SHAM (non-DOCA-treated) and DOCA rats during hypertension development. In a final group, CGX effectively abolished nonhepatic splanchnic NE spillover. These data suggest that an intact splanchnic innervation is necessary for mild DOCA-salt hypertension development but not increased splanchnic SNA or NE release. Increased splanchnic vascular reactivity to NE during DOCA-salt treatment is one possible explanation.  相似文献   

8.
Calcitonin gene-related peptide and hypertension   总被引:7,自引:0,他引:7  
Deng PY  Li YJ 《Peptides》2005,26(9):1676-1685
Capsaicin-sensitive sensory nerves participate in the regulation of cardiovascular functions both in the normal state and the pathophysiology of hypertension through the actions of potent vasodilator neuropeptides, including calcitonin gene-related peptide (CGRP). CGRP, a very potent vasodilator, is the predominant neurotransmitter in capsaicin-sensitive sensory nerves, and plays an important role in the initiation, progression and maintenance of hypertension via: (1) the alterations in its synthesis and release and/or in vascular sensitivity response to it; (2) interactions with pro-hypertensive systems, including renin-angiotensin-aldosterone system, sympathetic nervous system and endothelin system; and (3) anti-hypertrophy and anti-proliferation of vascular smooth muscle cells. The decrease in CGRP synthesis and release contributes to the elevated blood pressure, as shown in the spontaneously hypertensive rats, alpha-CGRP knockout mice, Dahl-salt or phenol-induced hypertensive rats. In contrast, the increase in CGRP levels or the enhancement of vascular sensitivity response to CGRP plays a beneficial compensatory depressor role in the development of hypertension, as shown in deoxycorticosterone-salt, sub-total nephrectomy-salt, N(omega)-nitro-L-arginine methyl ester or two-kidney, one-clip models of hypertension in rats. We found that rutaecarpine causes a sustained depressor action by stimulation of CGRP synthesis and release via activation of vanilloid receptor subtype 1 (VR1) in hypertensive rats, which reveals the therapeutic implications of VR1 agonists for treatment of hypertension.  相似文献   

9.
The renal afferent nerves in the pathogenesis of hypertension   总被引:2,自引:0,他引:2  
The renal nerves play a role in the pathogenesis of hypertension in a number of experimental models. In the deoxycorticosterone acetate - salt (DOCA-NaCl) hypertensive rat and the spontaneously hypertensive rat (SHR) of the Okamoto strain, total peripheral renal denervation delays the development and blunts the severity of hypertension and causes an increase in urinary sodium excretion, suggesting a renal efferent mechanism. Further, selective lesioning of the renal afferent nerves by dorsal rhizotomy reduces hypothalamic norepinephrine stores without altering the development of hypertension in the SHR, indicating that the renal afferent nerves do not play a major role in the development of hypertension in this genetic model. In contrast, the renal afferent nerves appear to be important in one-kidney, one-clip and two-kidney, one-clip Goldblatt hypertensive rats (1K, 1C and 2K, 1C, respectively) and in dogs with chronic coarctation hypertension. Total peripheral renal denervation attenuates the severity of hypertension in these models, mainly by interrupting renal afferent nerve activity, which by a direct feedback mechanism attenuates systemic sympathetic tone, thereby lowering blood pressure. Peripheral renal denervation has a peripheral sympatholytic effect and alters the level of activation of central noradrenergic pathways but does not alter sodium or water intake or excretion, plasma renin activity or creatinine clearance, suggesting that efferent renal nerve function does not play an important role in the maintenance of this form of hypertension. Selective lesioning of the renal afferent nerves attenuates the development of hypertension, thus giving direct evidence that the renal afferent nerves participate in the pathogenesis of renovascular hypertension.  相似文献   

10.
In hypertension, the blood pressure response to exercise is exaggerated. We demonstrated previously that this heightened pressor response to physical activity is mediated by an overactive skeletal muscle exercise pressor reflex (EPR), with important contributions from its metaboreflex and mechanoreflex components. However, the mechanisms driving the abnormal blood pressure response to EPR activation are largely unknown. Recent evidence in humans suggests that the muscle metaboreflex partially mediates the enhanced EPR-induced pressor response via abnormally large changes in sympathetic nerve activity (SNA). Whether the muscle mechanoreflex induces similarly exaggerated alterations in SNA in hypertension remains unknown, as does the role of the mechanoreceptors mediating muscle reflex activity. To address these issues, the EPR was selectively activated by electrically inducing hindlimb muscle contraction in decerebrate normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Stimulation of the EPR evoked significantly larger increases in mean arterial pressure (MAP) and renal SNA (RSNA) in SHR compared with WKY (ΔRSNA from baseline: 140 ± 11 vs. 48 ± 8%). The mechanoreflex was stimulated by stretching hindlimb muscle which likewise elicited significantly greater elevations in MAP and RSNA in SHR than WKY (ΔRSNA from baseline: 105 ± 11 vs. 35 ± 7%). Blockade of mechanoreceptors in muscle with gadolinium significantly attenuated the MAP and RSNA responses to contraction and stretch in SHR. These data suggest that 1) the exaggerated pressor response to activation of the EPR and muscle mechanoreflex in hypertension is mediated by abnormally large reflex-induced augmentations in SNA and 2) this accentuated sympathetic responsiveness is evoked, in part, by stimulation of muscle mechanoreceptors.  相似文献   

11.
Hypertension is dominantly inherited in cross hybrids between hypertensive SHR/Mol and normotensive BB/OK rats. We used these cross hybrids for repeated backcrossing of selected hypertensive animals onto normotensive BB/OK rats to fix high blood pressure and to generate a hypertensive and diabetic BB/OK rat subline. After 8 backcrosses, the backcross parents were genetically analysed with the aid of 259 microsatellite markers to identify SHR genes causing blood pressure of 177 +/- 10 mmHg in this BB/OK rat subline. Loci on chromosomes 1, 14 and 18 showed longest heterozygosity. These loci might contain major genes of the SHR rat causing hypertension in this BB/OK rat subline. This classical strategy seems to be most suitable to fix major genes of hypertension in particular and complex traits in general and therefore to generate new animal models.  相似文献   

12.
Recent studies have suggested that the central nervous system is responsible for activation of sympathetic nerve activity (SNA) and the renin-angiotensin system in heart failure (HF). The aim of this study was to determine whether activation of the renin-angiotensin system within the nucleus of the solitary tract (NTS) plays a role in enhanced SNA in HF. High-output HF was induced by an aortocaval (A-V) shunt with some modifications in the rat. These rats exhibited a left ventricular dilatation and hemodynamic signs of high-output HF. Urinary catecholamine excretion and maximal renal SNA (RSNA) were greater in the A-V shunted rats than in the control rats. Microinjection of an angiotensin II type 1-receptor antagonist, CV11974, into the NTS was performed. The arterial pressure and RSNA were reduced by CV11974 to a greater degree in the A-V shunted rats than in the control rats. The expression of angiotensin-converting enzyme mRNA in the medulla was greater in the A-V shunted rats than in the control rats. These results suggest that activation of the renin-angiotensin system within the NTS contributes to an enhanced SNA in this model.  相似文献   

13.
Increasing evidence shows that the olfactory bulb is involved in blood pressure regulation in health and disease. Enhanced noradrenergic transmission in the olfactory bulb was reported in hypertension. Given that endothelins modulate catecholamines and are involved in the pathogenesis of hypertension, in the present study we sought to establish the role of the endothelin receptor type A on tyrosine hydroxylase, the rate limiting enzyme in catecholamine biosynthesis, in the olfactory bulb of DOCA-salt hypertensive rats.Sprague-Dawley male rats, randomly divided into Control and DOCA-Salt hypertensive groups, were used to assess endothelin receptors by Western blot and confocal microscopy, and their co-localization with tyrosine hydroxylase in the olfactory bulb. Blood pressure and heart rate as well as tyrosine hydroxylase expression and activity were assessed following BQ610 (ETA antagonist) applied to the brain. DOCA-Salt hypertensive rats showed enhanced ETA and decreased ETB expression. ETA co-localized with tyrosine hydroxylase positive neurons. Acute ETA blockade reduced blood pressure and heart rate and decreased the expression of total tyrosine hydroxylase and its phosphorylated forms. Furthermore, it also diminished mRNA tyrosine hydroxylase expression and accelerated the enzyme degradation through the proteasome pathway as shown by pretreatment with MG132, (20s proteasome inhibitor) intracerebroventricularly applied.Present findings support that the brain endothelinergic system plays a major role through ETA activation in the increase of catecholaminergic activity in the olfactory bulb of DOCA-Salt hypertensive rats. They provide rationale evidence that this telencephalic structure contributes in a direct or indirect way to the hemodynamic regulation in salt dependent hypertension.  相似文献   

14.
The present study was designed to investigate the involvement of the renal nerve in glucocorticoid hypertension and to assess the role of the renin-angiotensin system in dexamethasone-induced hypertension. The elevated blood pressure in dexamethasone treated rats showing a significant increase in plasma renin concentration (PRC) and activity (PRA) was attenuated dose-dependently by the angiotensin I converting enzyme (ACE) inhibition. Bilateral renal denervation caused a partial decrease in the elevated blood pressure, abolished the increased PRC and PRA, and reduced the dose-dependent decrease in blood pressure with ACE inhibition in dexamethasone treated rats. Although the reduction in body weight and increases in urine volume, urinary sodium excretion and hematocrit were clearly seen following dexamethasone administration, dexamethasone-treated renal denervated rats showed the same degree of change in any of the variables as dexamethasone-treated sham-operated rats. Thus, our results indicate that the stimulation of the renin-angiotensin system through the activation of the renal nerve may be partially responsible for the dexamethasone-induced high blood pressure and, therefore, bilateral renal denervation reduces, partially but significantly, the elevated blood pressure, suggesting that the attenuation of oversecretion of renin contributes to the lowering of the blood pressure.  相似文献   

15.
Several animal models have been developed to study the pathogenesis of hypertension. Deoxycorticosterone acetate (DOCA) salt induced hypertensive rats are adrenal models used to mimic human Conn's syndrome. Because previous studies showed a beneficial effect of chronic exercise (swimming) on the development of arterial hypertension in spontaneously hypertensive rats (which appears similar to human essential hypertension), we decided to evaluate the effects of swimming on DOCA-salt induced hypertension and liver antioxidant status. Therefore, the aim of this experiment was to study whether the swim training would improve hypertension and liver antioxidant status in DOCA-salt rats. DOCA-salt rats and control Sprague-Dawley rats were trained to swim 1 h/day, 5 days/week for 6 weeks and were sacrificed 48 h after the last exercise period. Systolic blood pressure was recorded before the sacrifice, and liver antioxidant status was evaluated in hepatic homogenates after the sacrifice. Swim exercise did not decrease systolic blood pressure in control and DOCA-salt rats but induced changes in liver activities of antioxidant enzymes, showing that exercise provoked liver oxidative stress in control and DOCA-salt rats. In comparison with our previous studies using spontaneously hypertensive rats, we conclude that the beneficial effects of chronic exercise on systolic blood pressure in rats are dependent on strain and the type of experimental hypertension.  相似文献   

16.
17.
Recent studies have demonstrated that the feeding of low protein diets to rats during pregnancy induces hypertension in their offspring. Maternal-diet-induced hypertension has been previously associated with elevated pulmonary angiotensin converting enzyme (ACE) activity. In the present study, the importance of the renin angiotensin system, and in particular ACE, in the maintenance of the hypertensive state, is investigated. Pulmonary and plasma ACE activity were determined in rats of different ages, following in utero exposure to 18 (control) or 9% (deficient) casein diets. No maternal diet induced changes in pulmonary ACE were noted, but at 4 and 13 weeks of age, plasma ACE activity was increased by 34 and 134%, respectively in 9% casein exposed rats relative to controls (P<0.001). Thirteen-week-old rats had significantly raised systolic blood pressure (28 mmHg, P<00.05), and tended to have higher diastolic blood pressure (not significant). These hypertensive animals had slightly raised plasma angiotensin II concentrations (30% higher, not significant), but similar renin activities, when compared with normotensive controls. Treatment of normotensive and hypertensive rats with the ACE inhibitor captopril demonstrated that higher plasma ACE activity may play a major role in the maintenance of maternal-diet-induced hypertension. Whilst normotensive rats showed no significant response to drug treatment, systolic blood pressure in the hypertensive rats fell rapidly to the level observed in the normotensive control group. Blood pressure remained at this lower level until treatment was withdrawn, at which time pressure began to increase slowly, but steadily. A period of 7–8 weeks was required following cessation of captopril administration for the restoration of hypertension.The data are consistent with the hypothesis that components of the renin-angiotensin system, and in particular plasma ACE, are involved in the maintenance of maternal-diet-induced hypertension.  相似文献   

18.
Deng PY  Ye F  Cai WJ  Deng HW  Li YJ 《Regulatory peptides》2004,119(3):155-161
Previous investigations have demonstrated that capsaicin-sensitive sensory nerves are involved in the development of hypertension in some rat models of hypertension. To determine the role played by calcitonin gene-related peptide (CGRP; the predominant neurotransmitter in capsaicin-sensitive sensory nerves) in a rat model of neurogenic hypertension, in which hypertension was induced by injecting 50 microl of 10% phenol in the lower pole of the left kidney, systolic blood pressure (SBP) was monitored by the tail-cuff method throughout the experiment. Fifteen days after injection of phenol, mean arterial pressure (MAP), concentrations of CGRP in the plasma, the expression of CGRP mRNA in dorsal root ganglia (DRG) and CGRP content in laminae I and II of the spinal cord were measured. SBP was significantly increased 5 days after the intrarenal injection of phenol (164+/-7 mm Hg, p<0.01). At the end of experiment, blood pressure (BP) was significantly elevated in the phenol-injected rats compared with the controls (SBP: 187+/-6 vs. 122+/-4 mm Hg, p<0.01; MAP: 157.56+/-3.02 vs. 103.80+/-2.04 mm Hg, p<0.01). Treatment with capsaicin, which selectively depletes neurotransmitters from the capsaicin-sensitive nerves, failed to enhance the development of hypertensive responses to the intrarenal injection of phenol. Intravenous administration of CGRP(8-37), the specific CGRP receptor antagonist, also failed to increase the already elevated MAP. The expression of CGRP mRNA (both alpha- and beta-CGRP isoforms), the content of CGRP in laminae I and II of the dorsal horn of the spinal cord and the concentration of CGRP in the plasma was decreased in the rats treated with phenol. These results suggest that CGRP does not play a counterregulatory role in the phenol-induced hypertensive rats, and support the hypothesis that reduction of CGRP (alpha and beta isoforms) could contribute to a blood pressure elevation in this setting.  相似文献   

19.
E R Levin  S Mills  M A Weber 《Peptides》1986,7(6):977-981
Endogenous opioids have been implicated as modulators of the central nervous system regulation of blood pressure and heart rate. Whether these neuropeptides participate in blood pressure regulation in hypertension is unknown. To begin to study this question, we examined the response to opiate antagonists and agonists in the spontaneously hypertensive rat (SHR) and the normotensive Wistar-Kyoto (WKY) rat. The long-acting opiate antagonist naltrexone, 2.5 micrograms/kg, was injected into the lateral ventricle of the brain in awake, freely-moving SHR and produced a significant 19 mmHg decrease in mean arterial blood pressure compared to basal blood pressure (p less than 0.01); a decrease was not observed at a two logarithm lower dose. In contrast, naltrexone had no effect on the blood pressure of normotensive Wistar-Kyoto (WKY) rats. To evaluate a possible regulatory role for the predominantly kappa receptor active opioids, alpha- and beta-neo-endorphin, 10 micrograms each, was administered to SHR on separate days by intracerebroventricular injection. alpha- and beta-neo-endorphin caused significant decreases in mean arterial blood pressure of 11 and 9 mmHg respectively, effects reversed by pre-treatment with the opiate antagonist, naloxone. Heart rate was unaffected by any of the injected opioids or antagonists. Our naltrexone results support the hypothesis that an endogenous opioid(s) contributes to the hypertensive state of the SHR. Additionally, alpha- and beta-neo-endorphin can lower blood pressure in this model.  相似文献   

20.
Nitrendipine is a calcium antagonistic 1,4-dihydropyridine derivative with a pronounced antihypertensive activity in animal experiment. Similar to other calcium entry blockers, nitrendipine decreases blood pressure by lowering the elevated peripheral vascular resistance. However, its long-term effect differs from that of vasodilators such as hydralazine and minoxidil. In contrast to vasodilators, nitrendipine reduces heart hypertrophy in various forms of experimental hypertension in rats. Nitrendipine is highly effective in normalizing blood pressure, reducing heart hypertrophy, and preventing mortality in salt-related hypertension (two-kidney renal hypertension, salt-induced hypertension in Dahl rats), which are rather refractory to the effect of vasodilators. Nitrendipine reduces renovascular resistance in spontaneously hypertensive rats but has no effect on that of normotensive rats. In conscious renal hypertensive dogs, nitrendipine decreases blood pressure more than does hydralazine. The reflex tachycardia is more pronounced after hydralazine than after nitrendipine; blood pressure decrease is greater and the duration of the effect is longer than that of nifedipine. Nitrendipine is thus predicted as an effective drug for antihypertensive monotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号