首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The aim of this study was evaluate the effect of bioaugmentation by free and immobilized strains of microbial consortium on the phytoremediation of polychlorinated biphenyl (PCB)-contaminated soil using the Avena sativa, Brachiaria decumbens, Brassica juncea, and Medicago sativa plants. Alginate and biochar were used as carrier materials and free cells were used as the control. PCBs 44, 66, 118, 138, 153, 170, and 180 were chosen as indicator PCB congeners. After 60 days of plant growth, the concentration of each congener and the survival of the microbial inoculum were evaluated. The removal of the PCB congener was greater in B. juncea planted treatments and using biochar as a carrier material. PCB 66 was the congener with the highest removal percentage in all using biochar and alginate-immobilized microorganisms and free microorganisms, while PCB 170 had the lowest removal percentage in all treatments. The largest removal percentage for all congeners was obtained using biochar as a carrier material (7.2–30.3%) and the lowest with planted treatments using free microorganisms (2.3–6.8%). Real-time polymerase chain reaction (PCR) showed that the microbial inoculum survived when it was immobilized using both alginate and biochar without any significant differences between treatments; however, PCB removal percentages were obtained with biochar, which demonstrated that this carrier material has a positive effect on microbial activity.  相似文献   

2.
Polychlorinated biphenyls (PCBs) in Kanechlor-300 and -400 mixtures dissipated significantly compared with a sterilized control under anaerobic conditions in three Japanese paddy soils with no history of PCB contamination, demonstrating the anaerobic microbial degradation of PCBs. The PCB-degrading activity was maintained successfully in a static flooded soil medium for more than 3 years by serial transfer at intervals of 56 days (13 transfers). Ortho-, meta-, and para-substituted PCBs, 15.2 ± 9.9 mol% in total, were significantly degraded after 56 days of incubation. Analysis of menaquinones-6 and -7 and cloning of 16S rRNA gene fragments from a polymerase chain reaction denaturing gradient gel electrophoresis (DGGE) profile indicated the predominance of Firmicutes in the consortium. A PCR-based identification of the gene fragments showed the frequent presence of Desulfitobacterium sp., but not Dehalobacter sp. or Dehalococcoides sp., in the consortium. It is proposed that Japanese paddy soils with no history of PCB contamination contain an anaerobic microbial consortium consisting predominantly of Firmicutes that have the potential for anaerobic degradation of PCB.  相似文献   

3.
Present work describes microbial degradation of selected polychlorinated biphenyls (PCBs) congeners in Clophen oil which is used as transformer oil and contains high concentration of PCBs. Indigenous PCBs degrading bacteria were isolated from Clophen oil contaminated soil using enrichment culture technique. A 15 days study was carried out to assess the biodegradation potential of two bacterial cultures and their consortium for Clophen oil with a final PCBs concentration of 100 mg kg−1. The degradation capability of the individual bacterium and the consortium towards the varying range of PCBs congeners (di- through hepta-chlorobiphenyls) was determined using GCMS. Also, dehydrogenase enzyme was estimated to assess the microbial activity. Maximum degradation was observed in treatment containing consortium that resulted in up to 97 % degradation of PCB-44 which is a tetra chlorinated biphenyl whereas, hexa chlorinated biphenyl congener (PCB-153) was degraded up to 90 % by the consortium. This indicates that the degradation capability of microbial consortium was significantly higher than that of individual cultures. Furthermore, the results suggest that for degradation of lower as well as higher chlorinated PCB congeners; a microbial consortium is required rather than individual cultures.  相似文献   

4.
In this work, we evaluate the abilities of the plants Brassica juncea, Avena sativa, Brachiaria decumbens, and Medicago sativa to uptake polychlorinated biphenyls (PCBs) and induce degradation of soil microorganisms from contaminated soil. Removal of PCBs 44, 66, 118, 153, 170, and 180 was evaluated in both rhizospheric and nonrhizospheric soils. Microbial and bphA1 gene quantifications were performed by real-time PCR. The PCB concentrations in plant tissues and soil were determined, and a fluorescein diacetate (FDA) hydrolysis assay was used to measure microbial activity in soil. The removal percentages for all PCB congeners in planted soil versus unplanted control soil were statistically significant and varied between 45% and 63%. PCBs 118, 153, 138, and 170 were detected in Brachiaria decumbens roots at different concentrations. In planted soil, an increase in the concentration of bacteria was observed compared to the initial concentration and the concentration in unplanted control soil; however, no significant differences were identified between plants. The number of copies of the bphA1 gene was higher in rhizospheric versus non- rhizospheric soil for all plants at the end of the experiment. However, alfalfa and oat rhizospheric soil showed significant differences in the copy number of the bphA1 gene. In general, the concentration of fluorescein in the rhizospheric soil was greater than that in the nonrhizospheric soil. Although the plants had a positive effect on PCB removal, this effect varied depending on the type of PCB, the plant, and the soil.  相似文献   

5.
An indigenous polychlorinated biphenyl (PCB)-degrading bacterial consortium was obtained from soils contaminated by transformer oil with a high content of PCBs. The PCB degrader strains were isolated and identified as Brevibacterium antarcticum, Pandoraea pnomenusa, and Ochrobactrum intermedium by 16S rRNA gene sequence phylogenetic analysis. The PCB-degrading ability of the consortium and of individual strains was determined by using GC/MS. The PCB-degrading capacities of the consortium were evaluated for three concentrations of transfomer oil ranging from 55 to 152 μM supplemented with 0.001% biphenyl and 0.1% of Tween 80 surfactant. PCB biodegradation by the consortium was favored in the presence of both additives and the greatest extent of biodegradation (67.5%) was obtained at a PCB concentration of 55 μM. Each bacterial species exhibited a particular pattern of degradation relating to specific PCB congeners. Isolated strains showed a moderate degradation capability towards tetra-, hepta-, and octa-chlorobiphenyls; although no effect on penta-, hexa-, and nona-chlorobiphenyls was observed. Recently, PCB degradation capacity was recognized in a Pandorea member; however, this is the first study that describes the ability of Brevibacterium and Ochrobactrum species to degrade PCBs.  相似文献   

6.
Polychlorinated biphenyls (PCBs) are a family of xenobiotic compounds that are ubiquitous and oftentimes persistent environmental pollutants. As such, PCBs are a common target of sediment remediation efforts. Microbial degradation of sediment pollutants such as PCBs offers an environmentally sound and economically favorable alternative to conventional means of remediation such as dredging. This project describes the development of a PCR-based assay to determine the potential for PCB bioremediation by the resident microbial consortium in contaminated sediments. Using PCR and RT-PCR of DNA and RNA, respectively, extracted from aquatic sediments collected from the western basin of Lake Erie and one of its tributaries, we were able to amplify the bphA1 gene that encodes the large subunit of biphenyl dioxygenase. Since other studies have determined that the BphA1 gene product dictates PCB congener specificity, this assay may prove to be a useful screen for endemic catabolic activities for PCB mixtures in aquatic sediments.  相似文献   

7.
In our experiments the effect of different plants on microbial activities resulting in degradation and PCB removal from long-term contaminated soil was evaluated. Total bacteria and bacteria representing the dominating microflora within rhizosphere of individual plant species – tobacco (Nicotiana tabacum), black nightshade (Solanum nigrum), horseradish (Armoracia rusticana) and goat willow (Salix caprea) planted in PCB contaminated soil as well as from the same, but non-vegetated PCBs soil, were isolated and biochemically characterized. PCB bacterial degraders, stimulated by root exudates of individual plants, were detected after isolation from rhizosphere soil and precultivation on minimal medium with biphenyl as the sole carbon source. Detection of BphA1 gene (first gene of bacterial aerobic PCB degradative pathway) in genomes of rhizosphere microorganisms was performed by nested PCR technique using previously designed specific primers. Rhizosphere of individual plants contained different bacterial species, mostly gram-negative non-fermenting bacteria of Pseudomonas, Agrobacterium, Ochrobactrum and other species. Gene BphA1 was identified in genome of only several of them. From tested species, S. caprea and A. rusticana have shown to be promising candidates for rhizoremediation purposes.  相似文献   

8.
Solutions from the washing of polychlorinated biphenyl (PCB)-contaminated soil with a variety of commercial nonionic or anionic surfactants were incubated with Pseudomonas sp. LB400 in an attempt to remediate the soil and destroy the PCBs. Nonionic surfactants washed more PCBs from the soil (up to 89%) but inhibited their biodegradation. Anionic surfactants washed less PCBs from the soil but were more effective in biodegradation tests, removing up to 67% of total PCBs.  相似文献   

9.
During microbial degradation of PCBs in a liquid medium, two processes influence the PCB concentration in the medium simultaneously: biodegradation and evaporation. The physical loss of PCB due to evaporation frequently causes false positive results in biodegradation experiments. Therefore, if only PCBs are monitored, the determination of the PCB concentration in both liquid and gaseous phases is necessary for a correct appraisal of biodegradation. The kinetics of PCB evaporation and biodegradation were monitored and described by a simple mathematical model. The evaporation and biodegradation rate constants for individual PCB congeners were determined for PCB degradation in liquid medium byPseudomonas stutzeri andAlcaligenes xylosoxidans, both isolated from a longterm PCB-contaminated soil.Symbols a 1,b 1,a 2,b 2 fitting parameters - c 0 initial concentration of PCB congener in liquid medium - c l concentration of PCB congener in liquid medium - c ev concentration of PCB congener in sorbent - k ev rate constant of PCB congener evaporation - k met rate constant of PCB congener metabolization - n s amount of PCB congener in sorbent - t 1/2 half-time of evaporation - V t volume of liquid medium  相似文献   

10.
Exudates from the brown algaeCaepidium antarcticum andDesmarestia sp. were investigated for their ability to associate with hydrophobic pollutants such as polychlorinated biphenyls (PCB s). The percentage of PCB associated with algal exudates ranged from 79% for decachlorobiphenyl to 23% for the pentachlorobiphenyl congener No. 95. Exudates from the tested brown algae may therefore alter the bioavailability of PCBs in natural or artificial ecosystems.  相似文献   

11.
红树林(mangrove)是海陆交汇带重要的湿地生态系统,也是环境污染物蓄积与转化的热区.多环芳烃(polycyclic aromatic hydrocarbons,PAHs)因其环境蓄积特点在红树林生境中广泛分布,威胁生态系统健康,其降解转化是近年的研究重点.本文聚焦红树林湿地多环芳烃的微生物降解研究现状,从红树林生...  相似文献   

12.
【背景】磁性纳米颗粒介导分离(magnetic nanoparticle-mediated isolation, MMI)技术是近年来发展起来的一种无须底物标记就能从复杂菌群中分离活性功能微生物的方法,目前尚无研究报道该技术应用于难降解污染物3,3′,4,4′-四氯联苯(3,3′,4,4′-tetrachlorobiphenyl, PCB77)。【目的】从土壤中筛选PCB77活性降解菌并研究其污染物降解特性。【方法】利用磁性纳米颗粒(magnetic nanoparticles, MNPs)富集原位活性PCB77降解菌群,通过高通量测序分析细菌群落变化,经平板筛选得到PCB77降解菌,并研究其对多氯联苯和多溴联苯醚的降解特性。【结果】基于MMI技术获取的富集培养液能够高效地转化PCB77,与对照组相比底物降解效率从6%提升至79.3%,同时该富集培养液中细菌物种多样性显著降低,群落组成发生明显变化。从对照组和MMI处理组中分别筛选到PCB77降解菌红球菌CT2和类芽孢杆菌MT2,发现红球菌为对照组中唯一的优势物种,而MMI处理组的优势物种由红球菌和类芽孢杆菌共同组成。菌株MT2对PCB...  相似文献   

13.
Whole cell microbial biosensors offer excellent possibilities for assaying the complex nature of the bioavailable and bioaccessible fraction of pollutants in contaminated soils, which currently cannot be easily addressed. This paper describes the application and evaluation of three microbial biosensor strains designed to detect the bioavailability and biodegradation of PCBs (and end-products) in contaminated soils and sediments. Polychlorinated biphenyls (PCBs) are considered to be one of the most wide spread, hazardous and persistent pollutants. Herein we describe that there was a positive correlation between the PCB levels within the samples and the percentage of biosensor cells that were expressing their reporter gene; gfp. Immobilisation of the biosensors in calcium alginate beads allowed easy and accurate detection of the biosensor strains in contaminated soil and sludge samples. The biosensors also showed that PCB degradation activity was occurring at a much greater level in Pea inoculated planted soil compared to inoculated unplanted soil indicating rhizoremediation (the removal of pollutants by plant root associated microbes) shows considerable promise as a solution for removing organic xenobiotics from the environment.  相似文献   

14.
15.
In view of the fact that there are presently no cost-effective in situ treatment technologies for contaminated sediments, a 60-week-long phytoremediation feasibility study was conducted in seawater-supplied outdoor ponds to determine whether eelgrass (Zostera marina) is capable of removing polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from submerged marine sediments. It was determined that all PAHs and PCBs, independent of the number of aromatic rings and degree of chlorination, respectively, were removed to a much larger extent in planted sediments compared to unplanted controls. After 60 weeks of treatment, the concentration of total PAHs decreased by 73% in planted sediments but only 25% in unplanted controls. Similarly, total PCBs declined by 60% in the presence of plants while none were removed in the unplanted sediment. Overall, the apparent PAH and PCB biodegradation was greatest in the sediment layer that contained most of the eelgrass roots. Abiotic desorption tests conducted at week 32 confirmed that the phytoremediation process was not controlled by mass-transfer or bioavailability limitations since all PAHs and PCBs desorbed rapidly and to a large extent from the sediment. PAHs were detected in both roots and shoots, with root and shoot bioaccumulation factors for total PAHs amounting to approximately 3 and 1, respectively, after 60 weeks of phytoremediation treatment. Similarly, the root bioaccumulation factor for total PCBs was around 4, while no PCBs were detected in the eelgrass leaves at the end of the experiment. The total mass fraction of PAHs and PCBs absorbed and translocated by plant biomass during the 60-week period was insignificant, amounting to less than 0.5% of the total mass of PAHs and PCBs which was initially present in the sediment. Finally, the number of total heterotrophic bacteria and hydrocarbon degraders was slightly but not statistically significantly greater in planted sediments than in unplanted controls. After ruling out contaminant loss to the water column or absorption and transformation within plant cells, it is most likely that the presence of eelgrass stimulated the microbial biodegradation of PAHs and PCBs in the rhizosphere by releasing root exudates, plant enzymes, or even oxygen. Additional research is needed to further elucidate these potential phytoremediation mechanisms.  相似文献   

16.

Background  

The biotreatability of actual-site polychlorinated biphenyl (PCB)-contaminated soils is often limited by their poor content of autochthonous pollutant-degrading microorganisms. In such cases, inoculation might be the solution for a successful bioremediation. Some pure and mixed cultures of characterized PCB degrading bacteria have been tested to this purpose. However, several failures have been recorded mostly due to the inability of inoculated microbes to compete with autochthonous microflora and to face the toxicity and the scarcity of nutrients occurring in the contaminated biotope. Complex microbial systems, such as compost or sludge, normally consisting of a large variety of robust microorganisms and essential nutrients, would have better chances to succeed in colonizing degraded contaminated soils. However, such sources of microorganisms have been poorly applied in soil bioremediation and in particular in the biotreatment of soil with PCBs. Thus, in this study the effects of Enzyveba, i.e. a consortium of non-adapted microorganisms developed from composted material, on the slurry- and solid-phase aerobic bioremediation of an actual-site, aged PCB-contaminated soil were studied.  相似文献   

17.
Extracellular polymeric substances (EPS) can contribute to the cellular degradation of hydrocarbons and have a huge potential for application in biotechnological processes, such as bioremediation and microbial enhanced oil recovery (MEOR). Four bacterial strains from a Brazilian petroleum reservoir were investigated for EPS production, emulsification ability and biodegradation activity when hydrocarbons were supplied as substrates for microbial growth. Two strains of Bacillus species had the highest EPS production when phenanthrene and n-octadecane were offered as carbon sources, either individually or in a mixture. While Pseudomonas sp. and Dietzia sp., the other two evaluated strains, had the highest hydrocarbon biodegradation indices, EPS production was not detected. Low EPS production may not necessarily be indicative of an absence of emulsifier activity, as indicated by the results of a surface tension reduction assay and emulsification indices for the strain of Dietzia sp. The combined results gathered in this work suggest that a microbial consortium consisting of bacteria with interdependent metabolisms could thrive in petroleum reservoirs, thus overcoming the limitations imposed on each individual species by the harsh conditions found in such environments.  相似文献   

18.
A chemical and microbial characterization of lab-scale biostimulation assays with groundwater samples taken from an industrial site in which the aquifer had been contaminated by linear non-sulfonate alkyl benzenes (LABs) was carried out for further field-scale bioremediation purposes. Two lab-scale biodegradability assays were performed, one with a previously obtained gas-oil-degrading consortium and another with the native groundwater flora. Results for the characterization of the groundwater microbial population of the site revealed the presence of an important LAB-degrading microbial population with a strong degrading capacity. Among the microorganisms identified at the site, the detection of Parvibaculum lavamentivorans, which have been described in other studies as alkyl benzene sulfonates degraders, is worth mentioning. Incubation of P. lavamentivorans DSMZ13023 with LABs as reported in this study shows for the first time the metabolic capacity of this strain to degrade such compounds. Results from the biodegradation assays in this study showed that the indigenous microbial population had a higher degrading capacity than the gas-oil-degrading consortium, indicating the strong ability of the native community to adapt to the presence of LABs. The addition of inorganic nutrients significantly improved the aerobic biodegradation rate, achieving levels of biodegradation close to 90%. The results of this study show the potential effectiveness of oxygen and nutrients as in situ biostimulation agents as well as the existence of a complex microbial community that encompasses well-known hydrocarbon- and LAS-degrading microbial populations in the aquifer studied.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAH; naphthalene, anthracene and phenanthrene) degrading microbial consortium C2PL05 was obtained from a sandy soil chronically exposed to petroleum products, collected from a petrochemical complex in Puertollano (Ciudad Real, Spain). The consortium C2PL05 was highly efficient degrading completely naphthalene, phenanthrene and anthracene in around 18 days of cultivation. The toxicity (Microtox™ method) generated by the PAH and by the intermediate metabolites was reduced to levels close to non-toxic in almost 40 days of cultivation. The identified bacteria from the contaminated soil belonged to γ-proteobacteria and could be include in Enterobacter and Pseudomonas genus. DGGE analysis revealed uncultured Stenotrophomonas ribotypes as a possible PAH degrader in the microbial consortium. The present work shows the potential use of these microorganisms and the total consortium for the bioremediation of PAH polluted areas since the biodegradation of these chemicals takes place along with a significant decrease in toxicity.  相似文献   

20.
Cultivated surfaces of genetically modified (GM) crops increased year by year, becoming in 2012 more extensive in developed than in industrialized countries. Furthermore, it has been postulated that the plant is which leads to the selection of the microorganisms on its root exudates, creating specific conditions which in turn regulate the specific microbial structure of each plant. In this study, our main objective was to examine whether the introduction of transgenic maize herbicide-tolerant plants will impact the microbial structures that inhabit at the rhizosphere and rhizoplane with respect to conventional hybrid maize plants. Bacterial populations were determined (CFU/g) using four different semi-selective media. The bacterial genera isolated from the rhizoplane and rhizosphere were identified by sequencing its 16S ribosomal DNA. Although minor differences were found in bacterial populations, our results indicated that there was not a strong change of the microorganisms populations that interact at the rhizosphere of an either conventional hybrid or genetically modified maize. However, we found some bacteria that were only isolated in the either genetically modified [Chryseobacterium sp. (4.39%) and Micrococcus sp. (3.72%)] or conventional maize [Sphingobium sp. (13.17%) and Microbacterium sp. (14.81%)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号