首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clear, shallow, oligotrophic waters of Florida Bay are characterized by low phytoplankton biomass, yet periodic cyanobacteria and diatom blooms do occur. We hypothesized that allochthonous dissolved organic matter (DOM) was providing a subsidy to the system in the form of bound nutrients. Water from four bay sites was incubated under natural light and dark conditions with enrichments of either DOM ( > 1 kD, 2×DOM) or inorganic nutrients (N+P). Samples were analyzed for bacterial numbers, bacterial production, phytoplankton biomass, phytoplankton community structure, and production, nutrients, and alkaline phosphatase (AP) activity. The influence of 2×DOM enrichment on phytoplankton biomass developed slowly during the incubations and was relatively small compared to nutrient additions. Inorganic nutrient additions resulted in an ephemeral bloom characterized initially as cyanobacterial and brown algae but which changed to dinoflagellate and/or brown algae by day six. The DIN:TP ratio decreased 10-fold in the N+P treatments as the system progressed towards N limitation. This ratio did not change significantly for 2×DOM treatments. In addition, these experiments indicated that both autotrophic and heterotrophic microbial populations in Florida Bay may fluctuate in their limitation by organic and inorganic nutrient availability. Both N+P and 2×DOM enrichments revealed significant and positive response in bioavailability of dissolved organic carbon (BDOC). Potential BDOC ranged from 1.1 to 35.5%, with the most labile forms occurring in Whipray Basin. BDOC at all sites was stimulated by the 2×DOM addition. Except for Duck Key, BDOC at all sites was also stimulated by the addition of N+P. BDOC was lower in the dry season than in the wet season (5.56% vs. 16.86%). This may be explained by the distinct chemical characteristics of the DOM produced at different times of year. Thus, both the heterotrophic and autotrophic microbial communities in Florida Bay are modulated by bioavailability of DOM. This has ramifications for the fate of DOM from the Everglades inputs, implicating DOM bioavailability as a contributing factor in regulating the onset, persistence, and composition of phytoplankton blooms.  相似文献   

2.
1. Wind‐induced sediment resuspension can affect planktonic primary productivity by influencing light penetration and nutrient availability, and by contributing meroplankton (algae resuspended from the lake bed) to the water column. We established relationships between sediment resuspension, light and nutrient availability to phytoplankton in a shallow lake on four occasions. 2. The effects of additions of surficial sediments and nutrients on the productivity of phytoplankton communities were measured in 300 mL gas‐tight bottles attached to rotating plankton wheels and exposed to a light gradient, in 24 h incubations at in situ temperatures. 3. While sediment resuspension always increased primary productivity, resuspension released phytoplankton from nutrient limitation in only two of the four experiments because the amount of available nitrogen and phosphorus entrained from the sediments was small compared with typical baseline levels in the water column. In contrast, chlorophyll a entrainment was substantial compared with baseline water column concentrations and the contribution of meroplankton to primary production was important at times, especially when seasonal irradiance in the lake was high. 4. Comparison of the in situ light climate with the threshold of light‐limitation of the phytoplankton indicated that phytoplankton in the lake were only likely to be light‐limited at times of extreme turbidity (e.g. >200 nephelometric turbidity units), particularly when these occur in winter. Therefore, resuspension influenced phytoplankton production mainly via effects on available nutrients and by entraining algae. The importance of each of these varied in time. 5. The partitioning of primary productivity between the water column and sediments in shallow lakes greatly influences the outcome of resuspension events for water column primary productivity.  相似文献   

3.
Summary Nutrient concentrations and phytoplankton species composition in near surface samples were studied along a S-N gradient in the Drake Passage, in early December 1984. Nitrate concentrations were much lower than usually previously reported from circum-Antarctic waters. Comparison of dissolved nutrient concentrations with growth requirements of Antarctic plankton algae suggests potential limitation of at least some species by nitrate or silicate. The taxonomic composition of the phytoplankton in our samples seemed to be partially controlled by competition for limiting nutrients.  相似文献   

4.
5.
Predominance of picoplankton and nanoplankton in eutrophic Calder Lake   总被引:2,自引:2,他引:0  
John D. Wehr 《Hydrobiologia》1990,203(1-2):35-44
A study was conducted to examine factors regulating the biomass of algal picoplankton in Calder Lake, a small eutrophic lake in southern New York state. A particular focus was a current paradigm which suggests that larger cells may dominate in nutrient-rich waters, while smaller cells may predominate only in oligotrophic waters. Over two years, phytoplankton biomass consisted predominantly (74% on average) of very small organisms; nanoplankton (<20 to 2 µm: 39%) and picoplankton (<2 µm to 0.2 µm: 35%), despite the presence of surface blooms of colonial cyanobacteria (Microcystis aeruginosa, Anabaena limnetica), and dense metalimnetic populations of the dinoflagellate Ceratium hirundinella. This dimictic system is characterized by relatively high levels of total P (max = 85, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara% aaaa!3702!\[\bar x\] = 9.7 µg P/L), inorganic P (max = 26, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara% aaaa!3702!\[\bar x\] = 4.5 µg P/L), and total inorganic N (max = 285, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaara% aaaa!3702!\[\bar x\] = 85 µg P/L), but larger forms were rarely the most abundant. Unlike some marine systems, greater abundance of algal picoplankton was not associated with deeper strata (low light), or warmer temperatures. Data suggest that midsummer nutrient limitation, especially P-limitation, favors the development of pico- and nanoplankton in the limnetic zone of eutrophic lakes.  相似文献   

6.
The impact of nutrient additions, zooplankton grazing and light intensity on phytoplankton net growth with depth and season was studied with five microcosm experiments in meso-oligotrophic, subalpine Castle Lake, California, during the period of summer stratification in June-September 1994. The incubations (4 day) were performed at 5 m intervals from the surface to the bottom using natural phytoplankton and zooplankton assemblages, with enrichments of phosphorus and nitrogen. The phytoplankton community was only limited by nutrients in the upper 5 m (epilimnion), as indicated by change in chlorophyll concentration. Nutrient enrichments had the greatest effect on the phytoplankton net growth in June and July. High light inhibited the phytoplankton net growth at the surface. Low light intensities limited phytoplankton at 20 m and below, and at the end of the growing season already around 10-15 m. A deep chlorophyll maximum in the hypolimnion in June-August was not limited by either light or nutrients. The results showed variation in grazers' impact on phytoplankton. These results suggest the importance of nutrient limitation only in the epilimnion with light inhibition at the surface, light limitation in the hypolimnion, and varying impact of zooplankton grazing in influencing the development of the phytoplankton in Castle Lake.   相似文献   

7.
1. To investigate the influence of elevated temperatures and nutrients on photosynthesis, respiration and growth of natural phytoplankton assemblages, water was collected from a eutrophic lake in spring, summer, autumn, winter and the following spring and exposed to ambient temperature and ambient +2, +4 and +6 °C for 2 weeks with and without addition of extra inorganic nutrients. 2. Rates of photosynthesis, respiration and growth generally increased with temperature, but this effect was strongly enhanced by high nutrient availability, and therefore was most evident for nutrient amended cultures in seasons of low ambient nutrient availability. 3. Temperature stimulation of growth and metabolism was higher at low than high ambient temperature showing that long‐term temperature acclimation of the phytoplankton community before the experiments was of great importance for the measured rates. 4. Although we found distinct responses to relatively small temperature increases, the interaction between nutrient availability, time of the year and, thus, ambient temperature was responsible for most of the observed variability in phytoplankton growth, photosynthesis and respiration. 5. Although an increase in global temperature will influence production and degradation of organic material in lakes, the documented importance of ambient temperatures and nutrient conditions suggests that effects will be most pronounced during winter and early spring, while the remaining part of the growth season will be practically unaffected by increasing temperatures.  相似文献   

8.
We aim to define the best nutrient limitation indicator predicting phytoplankton biomass increase as a result of nutrient enrichment (N, P, or both). We compare the abilities of different indicators, based on chemical measurements of nitrogen (N) and phosphorus (P) fractions in the initial plankton community, to predict the limiting factor for phytoplankton growth as inferred independently from short-term laboratory experiments on the same natural communities in a data set from NE Baltic Sea (Tamminen and Andersen, Mar Ecol Prog Ser 340:121–138, 2007). The best indicators had a true positive rate of about 80% for predicting both N and P limitation, but with a higher false positive rate for N than for P limitation (25 vs. 5%). Estimated threshold ratios for total nutrients (TN:TP) were substantially higher than the Redfield ratio, reflecting the relatively high amounts of biologically less available dissolved organic N in the study area. The best overall performing indicator, DIN:TP, had chlorophyll-response based threshold ratios far below Redfield, with N limitation below 2:1 and P limitation above 5:1 (by atoms). On the contrary, particulate N:P ratio was the overall worst predictor for N or P limitation, with values clustering around the Redfield N:P ratio (16:1, by atoms) independent of the limiting factor. Estimated threshold ratios based on inorganic nutrients (DIN:DIP) and so-called biologically available nutrients (BAN:BAP = (PON + DIN):(POP + DIP)) were also generally clearly above 16:1, indicating that the Redfield ratio rather reflects the transition from N limitation to combined N + P limitation, than to single limitation by P. Coastal systems are complex systems with regard to nutrient dynamics, historically considered to represent the transition from P-limited freshwater to N-limited marine systems. Our analysis shows that rather simple ratios reflect phytoplankton requirement for nutrients. Based on the high prediction performance, analytical considerations, and general data availability, the DIN:TP ratio appears to be the best indicator for inferring in situ N vs. P limitation of phytoplankton from chemical monitoring data.  相似文献   

9.
10.
Kisand  Veljo  Tuvikene  Lea  Nõges  Tiina 《Hydrobiologia》2001,457(1-3):187-197
Nutrient (P and N) enrichment experiments in small enclosures (20 l) were carried out to determine P and/or N limitation of bacterioplankton in Lake Võrtsjärv. The specific interest of the study was to test if it is possible to detect nutrient `physiological' or growth (rate) limitation of bacterioplankton and competition for nutrients (N and P) with phytoplankton in generally nutrient rich lake. Thymidine and leucine incorporation; leucine aminopeptidase, -D-glucosidase and alkaline phosphatase activity, total count of bacteria, chlorophyll a concentration and primary production as well as the concentrations of different chemical forms of N and P were followed during 4–5 days of the experiment. To address the question of the interactions between nutrients, bacterio- and phytoplankton, experimental and seasonal data sets were included in the analyses. Phosphorus (P) had a positive effect on bacterioplankton in enclosure experiments in June 1997; no effects of nutrients were found in September 1996, while in May 1996, P affected mainly the phytoplankton. On the seasonal scale, the development of bacterioplankton was connected to primary production, total phosphorus and temperature. In enrichment experiments, bacterioplankton was mainly related with primary productivity but the possible importance of bacterial grazers could be presumed. Thus, no evidence was found for nutrient growth limitation and/or competition for N and/or P, rather bacterioplankton depended on organic food supply originating from phytoplankton.  相似文献   

11.
Productivity of seagrasses can be controlled by physiological processes, as well as various biotic and abiotic factors that influence plant metabolism. Light, temperature, and inorganic nutrients affect biochemical processes of organisms, and are considered as major factors controlling seagrass growth. Minimum light requirements for seagrass growth vary among species due to unique physiological and morphological adaptations of each species, and within species due to photo-acclimation to local light regimes. Seagrasses can enhance light harvesting efficiencies through photo-acclimation during low light conditions, and thus plants growing near their depth limit may have higher photosynthetic efficiencies. Annual temperatures, which are highly predictable in aquatic systems, play an important role in controlling site specific seasonal seagrass growth. Furthermore, both thermal adaptation and thermal tolerance contribute greatly to seagrass global distributions. The optimal growth temperature for temperate species range between 11.5 °C and 26 °C, whereas the optimal growth temperature for tropical/subtropical species is between 23 °C and 32 °C. However, productivity in persistent seagrasses is likely controlled by nutrient availability, including both water column and sediment nutrients. It has been demonstrated that seagrasses can assimilate nutrients through both leaf and root tissues, often with equal uptake contributions from water column and sediment nutrients. Seagrasses use HCO3 inefficiently as a carbon source, thus photosynthesis is not always saturated with respect to DIC at natural seawater concentrations leading to carbon limitation for seagrass growth. Our understanding of growth dynamics in seagrasses, as it relates to main environmental factors such as light, temperature, and nutrient availability, is critical for effective conservation and management of seagrass habitats.  相似文献   

12.
Galveston Bay, Texas, is a large shallow estuary with a watershed that includes 60% of the major industrial facilities of Texas. However, the system exhibits low to moderate (2-20 μg l−1) microalgal biomass with sporadic phytoplankton blooms. Both nitrogen (N) and phosphate (P) limitation of phytoplankton growth have been proposed for the estuary. However, shifts between N and P limitation of algae growth may occur due to annual fluctuations in nutrient concentrations. The primary goal of this work was to determine the primary limiting nutrient for phytoplankton in Galveston Bay. Nutrient addition bioassays were used to assess short-term (1-2 days) phytoplankton responses (both biomass and community composition) to potentially limiting nutrients. The experimental bioassays were conducted over an annual cycle using natural water collected from the center to lower part of the estuary. Total phytoplankton biomass increased in the nitrate (10 μM) additions in 11 of the 13 bioassays, but no significant increases were detected in the phosphate (3 μM)-only additions. Bioassay results suggest that the phytoplankton community was usually not phosphate limited. All major groups increased in biomass following nitrate additions but diatoms increased in biomass at a faster rate than other groups, shifting the community composition toward higher relative abundance of diatoms. The results of this study suggest that pulsed N input events preferentially favor increases in diatom biomass in this estuary. The broader implications of this study are that N pulsing events, primarily due to river discharge, play an important role in structuring the phytoplankton community in the Galveston Bay estuary.  相似文献   

13.
1. This paper summarizes the salient features of the contributions to the workshop on The Role of Food Quality for Zooplankton. In this paper we attempt critically to evaluate our present knowledge in the light of new studies. 2. For the growth and reproduction of zooplankton, the existing literature considers two main limiting factors in the diet, i.e. phosphorus (homeostasis theory) and fatty acids. Nevertheless, interpretations and opinions regarding the importance of these two factors are the subject of controversy in the literature. No attempts have been made to link these two potentially limiting factors, let alone give a coherent view based on the mechanisms behind limitation. Aquaculture studies provide some direct evidence of the importance of the long-chained poly unsaturated fatty acids (PUFA) for zooplankton. The presence of PUFA in phytoplankton is reported to affect the growth rates of zooplankton significantly. 3. Field data on carbon and phosphorus indicate a greater constancy of the C : P ratios of zooplankton than of their food. Empirical data and modelling studies suggest that zooplankton, especially Daphnia spp., may maintain nutrient homeostasis by incorporating a greater proportion of the limiting nutrients ingested and releasing more of nutrients in excess supply. The need for conserving nutrients in short supply increases with the increase in growth rates. 4. Phosphorus certainly influences zooplankton food directly. Direct supplementation of the P-insufficient algal diet with PO4-P alone discernibly improves the growth in daphnids. It is highly plausible that P limitation and fatty acid limitation are not mutually exclusive alternatives. The two, separately or in conjunction, can control growth of at least some lake zooplankters, especially daphnids. 5. Besides a shortage of nutrient (P), other environmental factors (irradiance, UV-radiation, temperature) can also adversely affect the zooplankton diet, including its digestibility and assimilation efficiency. 6. It is not yet clear if PUFA deficiency in the diet is in some way related to or caused by P deficiency. It is, however, now known that the EPA (eicosapentaenoic acid, 20 : 5ω3) content of certain algae is markedly reduced under P-limitation and that it differs significantly among the different taxonomic groups of phytoplankton. Diatoms and flagellates are generally considered as good-quality foods because of their high EPA content. On the contrary, cyanobacteria are low-quality food, having both low EPA and P content. 7. Recent experiments reveal that the relative importance of fatty acids for daphnids increases with a decreasing C : P ratio in the food, i.e. if P is no longer limiting, and vice versa. For daphnids, there is possibly a switch between P-limitation and PUFA limitation at intermediate C : P ratios. At higher C : P ratios, P is more important but at lower ratios PUFA are more crucial for growth and reproduction. 8. Lastly, the accumulating evidence for P limitation is stronger than that for fatty acid limitation.  相似文献   

14.
Phytoplankton productivity was measured in Byram Lake Reservoir during summer 1977. Depth integrated productivity (0–5 gC m– 2 d–1) increased with station depth, which together with visibility measurements indicated that light did not limit deep station productivity (C1 and S2). Macrophytes at station C5 (shallow) reduced the euphotic zone to 0 in June.On a unit depth basis, C5 was the most productive station. Apparently changes in macrophyte growth, regulated by light and temperature, controlled phytoplankton production. At C1, productivity was related to levels of different nutrients at different depths, the thermocline influencing nutrient availability at mid-depth. At S2, NH3-N controlled mid-depth productivity. Surface and mid-depth productivity appeared influenced by factors not measured in this study.  相似文献   

15.
Light (20-450 μmol photons m-2 s-1), temperature (3-11°C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl a) and primary production of the cold water diatom Chaetoceros wighamii. During exponential growth, the maximum growth rate (~0.8 d-1) was observed at high temperture and light; at 3°C the growth rate was ~30% lower under similar light conditions. The interaction effect of light and temperature were clearly visible from growth and cellular stoichiometry. The average C:N:P molar ratio was 80:13:1 during exponential growth, but the range, due to different light acclimation, was widest at the lowest temperature, reaching very low C:P (~50) and N:P ratios (~8) at low light and temperature. The C:Chl a ratio had also a wider range at the lowest temperature during exponential growth, ranging 16-48 (weight ratio) at 3°C compared with 17-33 at 11°C. During exponential growth, there was no clear trend in the Chl a normalized, initial slope (α*) of the photosynthesis-irradiance (PE) curve, but the maximum photosynthetic production (Pm) was highest for cultures acclimated to the highest light and temperature. During the stationary growth phase, the stoichiometric relationship depended on the limiting nutrient, but with generally increasing C:N:P ratio. The average photosynthetic quotient (PQ) during exponential growth was 1.26 but decreased to <1 under nutrient and light limitation, probably due to photorespiration. The results clearly demonstrate that there are interaction effects between light, temperature and nutrient limitation, and the data suggests greater variability of key parameters at low temperature. Understanding these dynamics will be important for improving models of aquatic primary production and biogeochemical cycles in a warming climate.  相似文献   

16.
We tested the hypothesis that excretion of nutrients by zooplanktoncan reduce the severity of nutrient limitation of phytoplankton,and determine whether the phytoplankton community is limitedby nitrogen or phosphorus. In situ experiments were conductedin eutrophic Lake Mendota (Wisconsin, USA) during the summerof 1988, where phytoplankton were limited by N and P, but periodsof nutrient limitation were transitory Increased zooplanktonbiomass and the consequent increased excretion of nutrientsby zooplankton reduced P limitation (as measured by specificalkaline phosphatase activity) in all experiments Excretionof nutrients also reduced N limitation (as measured by ammoniumenhancement response) in one of three experiments. In additionalexperiments in the more highly eutrophic Lake Wingra, excretionof nutrients by zooplankton reduced both N and P limitationThese results support the hypothesis that zooplankton have potentiallyimportant indirect effects on phytoplankton communities throughrecycling of nutrients  相似文献   

17.
In the Laurentian Great Lakes, phytoplankton growth and biomass are secondarily limited by silica (Si), as a result of phosphorus (P) enrichment. Even modest levels of P enrichment can induce secondary Silimitation, which, in turn, promotes a shift from the native diatom phytoplankton flora to chlorophyte and cyanobacteria species. However, very little is known about the nutritional status of benthic populations and their response to nutrient enrichment. Two experiments were performed in the littoral zone of Lake Michigan where nutrients were delivered to in situ benthic algal (episammic and epilithic) assemblages using nutrient‐diffusing substrata. In order to test the hypothesis that benthic algae in Lake Michigan are Si limited, a 2 × 3 factorial experiment was used to deliver all combinations of Si, N, and P to resident assemblages growing on artificial substrata composed of natural (Si rich) versus calcium carbonate (Si poor) sand. A second experiment utilized a serial enrichment to evaluate the role of Si in mediating changes in taxonomic composition. These findings indicate that benthic algae in Lake Michigan exhibit signs of secondary Si limitation, and that their response to enrichment is similar to the phytoplankton. Moreover, natural sand substrata may provide a source of Si to resident benthic algae.  相似文献   

18.
1. In order to evaluate limitation of different phytoplankton groups by inorganic nutrients, multiple nutrient enrichment bioassays using the addition of iron (Fe) and the combined addition of nitrogen and phosphorus (NP) were carried out in the north and the south of Lake Tanganyika during the rainy and dry seasons in 2003 and 2004. 2. Nutrient additions resulted in an increase in phytoplankton growth rate relative to control treatments in all experiments. HPLC pigment data and epifluorescence microscopy counts indicated differential stimulation of the dominant phytoplankton groups. Iron additions mainly stimulated prokaryotic picophytoplankton, while enrichments with nitrogen and phosphorus stimulated green algae and in some cases diatoms. Extended incubation (3 days) indicated co‐limitation of Fe and NP, in particular for picocyanobacteria.  相似文献   

19.
Nutrient control of bacterioplankton and phytoplankton dynamics   总被引:5,自引:0,他引:5  
To determine whether positive correlations between phytoplankton and bacterioplankton growth in nutrient addition experiments are due to growth coupling or growth stimulation by the same nutrients, we examined phyto- and bacterioplankton growth in a series of eleven nutrient addition (N × P) and light/dark experiments. In mesotrophic Castle Lake, the phyto- and bacterioplankton growth responses to phosphorus (P) addition were strongly correlated (r2=0.59), while only a weak correlation (r2=0.10) was observed for the nitrogen addition treatments. After normalizing the N + P treatments for the growth stimulation observed in the respective P treatments, we found a substantial stimulation of the phytoplankton (e.g., costimulation by N + P) and no stimulation of the bacterioplankton. Bacteria growth rates were similar in both light and dark incubated P treatments. In these experiments, we found clear evidence suggesting the dynamics of bacteria and phytoplankton were correlated because they are often limited by the same resource (mainly inorganic phosphorus). We found only limited evidence that bacterioplankton growth coupling to algal dynamics was occurring in these experiments. However, we did not consider several factors such as dissolved organic nutrient availability, bacterivory, availability of physical substrates, and temperature which are also thought to influence the nature of bacterial/phytoplankton interactions. Based on the results of our experiments, we conclude the biomass of the bacterio- and phytoplankton covaried because they were stimulated by the same nutrients. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Seasonal patterns in resource limitation of phytoplankton growth were assessed monthly within three large rivers with differing extents of water regulation. The Ohio River is regulated by low dams that do not substantially modify discharge, while the Cumberland and Tennessee Rivers are impounded by a series of high dams to enhance water storage for downstream flood control. Laboratory dilution assays with light and nutrient manipulations indicated that light was the main factor limiting phytoplankton growth at irradiances below 7 E m–2 d–1. Light limited growth was frequent in the turbid, higher discharge of the Ohio River, but was rare in the heavily regulated Tennessee and Cumberland Rivers. When irradiance exceeded 7 E m–2 d–1, phytoplankton were either P-limited (Cumberland River), co-limited by P and N (Tennessee River), or Si limited (Ohio River). Site-specific differences in nutrient limitation were consistent with differences in ambient nutrient levels, with the Tennessee and Cumberland Rivers characterized by lower N and P concentrations, and the Ohio River by lower Si. Downstream nutrient depletion was evident in the Ohio River through comparison of an upstream and a downstream site, with nutrient limitation (Si) occurring more frequently downstream. Phytoplankton growth rates at ambient light and nutrient levels ranged from 0.1 to 1.5 d–1 in the Ohio River and 0.2 to 0.6 d–1 in the Tennessee and Cumberland Rivers. Growth rates were greatest at the onset of the summer base pool, as light intensities increased and nutrient levels were maximal. Our findings indicate that multiple factors regulate phytoplankton growth in regulated rivers and that spatial complexity may arise from differences in discharge and water aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号