首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rap1p binds to sites embedded within the Saccharomyces cerevisiae telomeric TG1-3 tract. Previous studies have led to the hypothesis that Rap1p may recruit Sir3p and Sir3p-associating factors to the telomere. To test this, we tethered Sir3p adjacent to the telomere via LexA binding sites in the rap1-17 mutant that truncates the Rap1p C-terminal 165 amino acids thought to contain sites for Sir3p association. Tethering of LexA-Sir3p adjacent to the telomere is sufficient to restore telomeric silencing, indicating that Sir3p can nucleate silencing at the telomere. Tethering of LexA-Sir3p or the LexA-Sir3p(N2O5) gain-of-function protein to a telomeric LexA site hyperrepresses an adjacent ADE2 gene in wild-type cells. Hence, Sir3p recruitment to the telomere is limiting in telomeric silencing. In addition, LexA-Sir3p(N2O5) hyperrepresses telomeric silencing when tethered to a subtelomeric site 3.6 kb from the telomeric tract. This hyperrepression is dependent on the C terminus of Rap1p, suggesting that subtelomeric LexA-Sir3p(N205) can interact with Rap1p-associated factors at the telomere. We also demonstrate that LexA-Sir3p or LexA-Sir3p(N205) tethered in cis with a short tract of telomeric TG1-3 sequences is sufficient to confer silencing at an internal chromosomal position. Internal silencing is enhanced in rap1-17 strains. We propose that sequestration of silencing factors at the telomere limits the efficiency of internal silencing.  相似文献   

2.
Budding yeast ( Saccharomyces cerevisiae ) Rap1p has been expressed in fission yeast ( Schizosaccharo-myces pombe ) under the control of the regulatable fructose bisphosphatase ( fbp ) promoter. When the fbp promoter was derepressed, cells containing the complete RAP1 gene failed to show any significant growth, suggesting that Rap1p is toxic. A derivative of Rap1p that has a temperature-sensitive mutation in the DNA-binding domain was not toxic in cells grown at 37°C, a temperature at which DNA binding by rap1p ts is severely inhibited. Removal of a short region downstream of the DNA-binding domain, including a region previously shown to be essential for Rap1p toxicity in budding yeast, also abolished the toxic effect. The toxic effect of Rap1p has therefore been conserved between two distantly related yeasts. In budding yeast, overexpression of Rap1p also caused changes to the lengths of the telomeric repeats. No effects on telomeres were detected in fission yeast.  相似文献   

3.
4.
5.
6.
Okuzaki D  Nojima H 《FEBS letters》2001,489(2-3):197-201
Kcc4, a kinase of the budding yeast Saccharomyces cerevisiae, is homologous to the bud neck protein kinases Hsl1/Nik1 and Gin4. We report here that a GFP-Kcc4 fusion protein is localized at the bud neck and that the non-kinase domain is required for this localization. We also demonstrate that Kcc4 associates with septin proteins in vitro and in vivo by two-hybrid analysis, GST pull-down experiments, immunoprecipitation, and analysis of direct association with affinity-purified GST-Kcc4 and MBP-Septin proteins. From the results obtained here, we suggest that Cdc11 is the primary association partner of Kcc4.  相似文献   

7.
Smith S  Banerjee S  Rilo R  Myung K 《Genetics》2008,178(2):693-701
The temperature-sensitive phenotypes of yku70Delta and yku80Delta have provided a useful tool for understanding telomere homeostasis. Mutating the helicase domain of the telomerase inhibitor Pif1 resulted in the inactivation of cell cycle checkpoints and the subsequent rescue of temperature sensitivity of the yku70Delta strain. The inactivation of Pif1 in yku70Delta increased overall telomere length. However, the long G-rich, single-stranded overhangs at the telomeres, which are the major cause of temperature sensitivity, were slightly increased. Interestingly, the rescue of temperature sensitivity in strains having both pif1-m2 and yku70Delta mutations depended on the homologous recombination pathway. Furthermore, the BLM/WRN helicase yeast homolog Sgs1 exacerbated the temperature sensitivity of the yku70Delta strain. Therefore, the yKu70-80 heterodimer and telomerase maintain telomere size, and the helicase activity of Pif1 likely also helps to balance the overall size of telomeres and G-rich, single-stranded overhangs in wild-type cells by regulating telomere protein homeostasis. However, the absence of yKu70 may provide other proteins such as those involved in homologous recombination, Sgs1, or Pif1 additional access to G-rich, single-stranded DNA and may determine telomere size, cell cycle checkpoint activation, and, ultimately, temperature sensitivity.  相似文献   

8.
C. Liu  A. J. Lustig 《Genetics》1996,143(1):81-93
We have identified three SIR3 suppressors of the telomeric silencing defects conferred by missense mutations within the Rap1p C-terminal tail domain (aa 800-827). Each SIR3 suppressor was also capable of suppressing a rap1 allele (rap1-21), which deletes the 28 aa C-terminal tail domain, but none of the suppressors restored telomeric silencing to a 165 amino acid truncation allele. These data suggest a Rap1p site for Sir3p association between the two truncation points (aa 664-799). In SIR3 suppressor strains lacking the Rap1p C-terminal tail domain, the presence of a second intragenic mutation within the rap1s domain (aa 727-747), enhanced silencing 30-300-fold. These data suggest a competition between Sir3p and factors that interfere with silencing for association in the rap1(s) domain. rap1-21 strains containing both wild-type Sir3p and either of the Sir3 suppressor proteins displayed a 400-4000-fold increase in telomeric silencing over rap1-21 strains carrying either Sir3p suppressor in the absence of wild-type Sir3p. We propose that this telomere-specific synergism is mediated in part through stabilization of Rap1p/Sir3p telomeric complexes by Sir3p-Sir3p interactions.  相似文献   

9.
10.
S. Enomoto  M. S. Longtine    J. Berman 《Genetics》1994,136(3):757-767
We have previously shown that circular replicating plasmids that carry yeast telomere repeat sequence (TG(1-3)) tracts segregate efficiently relative to analogous plasmids lacking the TG(1-3) tract and this efficient segregation is dependent upon RAP1. While a long TG(1-3) tract is sufficient to improve plasmid segregation, the segregation efficiency of telomere plasmids (TEL-plasmids) is enhanced when the X-Telomere Associated Sequence (X-TAS) is also included on the plasmids. We now demonstrate that the enhancement of TEL-plasmid segregation by the X-TAS depends on SIR2, SIR3, SIR4 and ABF1 in trans and requires the Abflp-binding site within the X-TAS. Mutation of the Abflp-binding site within the X-TAS results in TEL-plasmids that are no longer affected by mutations in SIR2, SIR3 or SIR4, despite the fact that other Abflp-binding sites are present on the plasmid. Mutation of the ARS consensus sequence within the X-TAS converts the X-TAS from an enhancer element to a negative element that interferes with TEL-plasmid segregation in a SIR-dependent manner. Thus, telomere associated sequences interact with TG(1-3) tracts on the plasmid, suggesting that the TASs have an active role in modulating telomere function.  相似文献   

11.
12.
Silent chromatin in Saccharomyces cerevisiae is established in a stepwise process involving the SIR complex, comprised of the histone deacetylase Sir2 and the structural components Sir3 and Sir4. The Sir3 protein, which is the primary histone-binding component of the SIR complex, forms oligomers in vitro and has been proposed to mediate the spreading of the SIR complex along the chromatin fiber. In order to analyze the role of Sir3 in the spreading of the SIR complex, we performed a targeted genetic screen for alleles of SIR3 that dominantly disrupt silencing. Most mutations mapped to a single surface in the conserved N-terminal BAH domain, while one, L738P, localized to the AAA ATPase-like domain within the C-terminal half of Sir3. The BAH point mutants, but not the L738P mutant, disrupted the interaction between Sir3 and nucleosomes. In contrast, Sir3-L738P bound the N-terminal tail of histone H4 more strongly than wild-type Sir3, indicating that misregulation of the Sir3 C-terminal histone-binding activity also disrupted spreading. Our results underscore the importance of proper interactions between Sir3 and the nucleosome in silent chromatin assembly. We propose a model for the spreading of the SIR complex along the chromatin fiber through the two distinct histone-binding domains in Sir3.  相似文献   

13.
14.
3 structurally related compounds, 4-chloromethylbiphenyl (4CMB), 4-hydroxymethylbiphenyl (4HMB), and benzyl chloride (BC) were assayed for their ability to induce mitotic gene conversion in stationary phase cultures of the yeast, Saccharomyces cerevisiae JD1. This strain allows gene conversion to be scored at 2 independent loci, trp 5 and his 4.The results reported in this paper indicate that both 4CMB and BC are genetically active in yeast, producing dose-related increases in mitotic gene conversion at both the loci tested; 4HMB showed no such activity. At high survival levels 4CMB and BC showed comparable activity. However, as toxicity increased BC showed much more potent convertogenic activity, whereas with 4CMB a reduction in induced gene conversion was observed. The presence of a microsomal activation system derived from the livers of Aroclor-induced male rats did not significantly affect the activity of any of the compounds.  相似文献   

15.
The Silent Information Regulatory proteins, Sir3 and Sir4, and the telomeric repeat-binding protein RAP1 are required for the chromatin- mediated gene repression observed at yeast telomeric regions. All three proteins are localized by immunofluorescence staining to foci near the nuclear periphery suggesting a relationship between subnuclear localization and silencing. We present several lines of immunological and biochemical evidence that Sir3, Sir4, and RAP1 interact in intact yeast cells. First, immunolocalization of Sir3 to foci at the yeast nuclear periphery is lost in rap1 mutants carrying deletions for either the terminal 28 or 165 amino acids of RAP1. Second, the perinuclear localization of both Sir3 and RAP1 is disrupted by overproduction of the COOH terminus of Sir4. Third, overproduction of the Sir4 COOH terminus alters the solubility properties of both Sir3 and full-length Sir4. Finally, we demonstrate that RAP1 and Sir4 coprecipitate in immune complexes using either anti-RAP1 or anti-Sir4 antibodies. We propose that the integrity of a tertiary complex between Sir4, Sir3, and RAP1 is involved in both the maintenance of telomeric repression and the clustering of telomeres in foci near the nuclear periphery.  相似文献   

16.
17.
The small Ras-like GTPase Ran/Gsp1p is a highly conserved nuclear protein required for the nucleocytoplasmic trafficking of macromolecules. Recent findings suggest that the Ran/Gsp1p pathway may have additional roles in several aspects of nuclear structure and function, including spindle assembly, nuclear envelope formation, nuclear pore complex assembly and RNA processing. Here, we provide evidence that Gsp1p can regulate telomeric function in Saccharomyces cerevisiae. We show that overexpression of PRP20, encoding the Gsp1p GDP/GTP nuclear exchange factor, specifically weakens telomeric silencing without detectably affecting nucleocytoplasmic transport. In addition to this silencing defect, we show that Rap1p and Sir3p delocalize from their normal telomeric foci. Interestingly, Gsp1p was found to interact genetically and physically with the telomeric component Sir4p. Taken together, these results suggest that the GSP1 pathway could regulate proper telomeric function in yeast through Sir4p.  相似文献   

18.
L Kern  J de Montigny  R Jund  F Lacroute 《Gene》1990,88(2):149-157
The FUR1 gene of Saccharomyces cerevisiae encodes uracil phosphoribosyltransferase (UPRTase) which catalyses the conversion of uracil into uridine 5'-monophosphate (UMP) in the pyrimidine salvage pathway. The FUR1 gene is included in a 2.1 kb genomic segment of DNA and is transcribed into a 1 kb poly(A)+mRNA. Sequencing has determined a 753 bp open reading frame capable of encoding a protein of 251 amino acids. The FUR1 genes for three recessive fur1 alleles, having different sensibilities to 5-fluorouridine (5-FUR) but identical levels of resistance to 5-fluorouracil (5-FU), were cloned and sequenced. Single bp changes located in different regions of the gene were found in each mutant. Two in vitro-constructed deletions of the FUR1 gene have been integrated at the chromosomal locus, giving strains with 5-FURR and 5-FURR mutant phenotype. Assays of UPRTase, uridine kinase, uridine ribohydrolase and uridine 5'-monophosphate nucleotidase enzymatic activities, in extracts of strains where the FUR1 gene is overexpressed or deleted, indicate that the FUR1 encoded protein possesses only UPRTase activity.  相似文献   

19.
Saccharomyces cerevisiae Sir4p plays important roles in silent chromatin at telomeric and silent mating type loci. The C terminus of Sir4p (Sir4CT) is critical for its functions in vivo because over-expression or deletion of Sir4CT fragments disrupts normal telomeric structure and abolishes the telomere position effect. The 2.5A resolution X-ray crystal structure of an Sir4CT fragment (Sir4p 1217-1358) reveals a 72 residue homodimeric, parallel coiled coil, burying an extensive 3600A(2) of surface area. The crystal structure is consistent with results of protein cross-linking and analytical ultracentrifugation results demonstrating that Sir4CT exists as a dimer in solution. Disruption of the coiled coil in vivo by point mutagenesis results in total derepression of telomeric and HML silent mating marker genes, suggesting that coiled coil dimerization is essential for Sir4p-mediated silencing. In addition to the coiled coil dimerization interface (Sir4CC interface), a crystallographic interface between pairs of coiled coils is significantly hydrophobic and buries 1228A(2) of surface area (interface II). Remarkably, interface II mutants are deficient in telomeric silencing but not in mating type silencing in vivo. However, point mutants of interface II do not affect the oligomerization state of Sir4CT in solution. These results are consistent with the hypothesis that interface II mimics a protein interface between Sir4p and one of its protein partners that is essential for telomeric silencing but not mating type silencing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号