首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During experiments on an isolated segment of the spinal cord of 2- to 3-week-old rats, a study was made of the effects of vasopressin and oxytocin on the activity of dorsal horn cells produced by stimulating the afferent root. Both field and action potentials were recorded in single cells. It was established that vasopressin and oxytocin produced reversible inhibition of the postsynaptic component of field potentials. The amplitude of potentials was reduced by 33–39% by vasopressin and by 12–34% using oxytocin. The effect of the test substances depended on the concentration used and the duration of their action on the brain. Both vasopressin and oxytocin reversibly depressed discharges of single dorsal horn cells evoked by stimulating the dorsal root. These two neuropeptides prolonged latency, and reduced the number of evoked potentials or completely suppressed response. A facilitatory effect was recorded in a small number of cells. We deduced from our findings that their hypothalamospinal neurohormonal system inhibits transmission of afferent impulses at the level of interneurons of the dorsal horn.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 634–640, September–October, 1985.  相似文献   

2.
Effects of dopamine on dorsal root potentials were investigated during experiments on a segment of spinal cord isolated from 12- to 18-day-old rats. Applying dopamine to the brain was found to produce a slow, reversible, dose-dependent depolarization at primary afferent fiber terminals. This dopamine-induced depolarization was retained during complete blockade of synaptic transmission brought about by exchanging calcium ions in the perfusing fluid by magnesium or manganese ions. Minimum dopamine concentration required to produce this effect was 1·10–10–1·10–9 M. Peak amplitude of depolarization equaled 1.5 mV. Duration of this reaction ranged from 5.5 to 36.7 min, depending on the duration and concentration of dopamine application. Depolarizing response to dopamine differed considerably from GABA-induced dorsal root depolarization in amplitude and rate of rise. Haloperidol, a dopamine antagonist, reduced dopamine-induced dorsal root depolarization. Findings indicate that dopamine acts directly on the membrane of primary afferent fiber terminals, shifting membrane potential toward depolarization. This raises the possibility that dopaminergic brainstem-spinal pathways may exert an effect on sensory information transmission in segmental reflex arcs already traveling to the spinal cord.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 741–748, November–December, 1987.  相似文献   

3.
The effects on dorsal root potentials of applying dopamine to the perfusing fluid were investigated in experiments on a segment isolated from the spinal cord of 13- to 18-day-old rats. Dopamine induced slow, dose-dependent depolarization in motoneurons in 28 trials out of 32, retained in the solution blocking synaptic transmission. Threshold concentration of dopamine in the normal perfusing fluid measured 1·10–6 M and 1·10–5 M in a calcium-free perfusate containing magnesium or manganese ions. Depolarization was accompanied by an increased rate of motor discharges recorded from the ventral root. Segmental reflex response produced by dorsal root stimulation was depressed following depolarization. Hyperpolarization in response to dopamine was observed in 4 out of 32 experiments. Dopamine-induced electrotonic dorsal root potentials were suppressed by prior haloperidol application to the brain.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 735–741, November–December, 1987.  相似文献   

4.
The effect of vasopressin and oxytocin, added to the perfusion solution, on the spontaneous firing rate of single dorsal horn cells was studied in experiments on an isolated segment of spinal cord from rats aged 2–3 weeks. Both neuropeptides were found to have a mainly inhibitory action. Under the influence of vasopressin the spontaneous firing rate of 74% of cells (29 of 39 cells responding to vasopressin) fell, and only in 26% (10 of 39 cells) did it rise. Oxytocin inhibited spontaneous activity of 67% of cells (14 of 21 which responded) and excited 33% of neurons (seven of 21). The effects were dose-dependent and reversible. The cells either responded in the same way to vasopressin and oxytocin or they responded to application of one peptide but not of the other.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 314–320, May–June, 1985.  相似文献   

5.
It was found during experiments on isolated frog spinal cord involving extracellular recording from the dorsal roots (sucrose bridging) and intracellular recording from motoneurons by microelectrodes that 10 mM of the M-cholinomimetic arecoline produces motoneuronal depolarization which is matched by depolarizing electronic ventral root potentials and a rise in motoneuronal input resistance. Arecoline changes synaptic transmission by increasing the amplitude of postsynaptic potentials during intracellular recording and that of motoneuronal reflex discharges in the ventral roots but reduces the duration of dorsal root potentials. In the presence of arecoline, L-glutamate-induced motoneuronal response increases. Facilitation of synaptic transmission produced by arecoline in the spinal cord is bound up with cholinergic M2- activation, since it is suppressed by atropine but not by low concentrations of pirenzipine; it is also coupled with a reduction in adenylcyclase activity. When motoneuronal postsynaptic response has been suppressed, as in the case of surplus calcium or theophylline, arecoline produces an inhibitory effect on the amplitude of motoneuronal monosynaptic reflex discharges which is suppressed by pirenzipine at a concentration of 1×10–7 M. This would indicate the presence at the primary afferent terminals of presynaptic cholinergic M1 receptors which mediate its inhibition of impulses of transmitter release. This effect is independent of changes in cyclic nucleotide concentration.A. M. Gorkii Medical Institute, Donetsk. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 399–405, May–June, 1987.  相似文献   

6.
Rhythmic stimulation of the dorsal hippocampus causes a long-lasting (2–6 sec) depression of both the fast and the electrotonic dorsal root potentials. The depression depends on the intensity of the stimulation of the hippocampus and on the time interval between the stimulation of the hippocampus and the nerve. The sortest time interval producing the depression was within 15–20 msec. The action of afferent impulsation is depressed during both the ipsilateral and contralateral stimulation of the hippocampus. The stimulation of the fornix also exerts a depressing influence on the dorsal root potentials; however, it is not so prolonged as the stimulation of the hippocampus (500–600 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 186–193, September–October, 1969.  相似文献   

7.
The dorsal cord and dorsal root potentials were recorded in immobilized thalamic cats during fictitious scratching evoked by mechanical stimulation of the ear. Depolarization of primary afferents was shown to be simulated by the central scratching generator. Antidromic spike discharges appeared at the peak of the primary afferent depolarization waves in certain afferent fibers. Similar discharges arise in the resting state in response to stimulation of limb mechanoreceptors. It is suggested that during real scratching primary afferent depolarization and antidromic spikes evoked by it may effectively modulate the level of the afferent flow to spinal neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 173–176, March–April, 1978.  相似文献   

8.
The effects of stimulation of the dorsal funiculus on dorsal surface potentials (DSPs) of the spinal cord evoked by stimulation of a peripheral nerve and on antidromic action potentials (AAPs) evoked by stimulation of terminal branches of primary afferent fibers and recorded from the afferent nerve or dorsal root, were investigated in acute experiments on spinal cats and on cats anesthetized with pentobarbital and chloralose. Stimulation of the dorsal funiculus led to biphasic inhibition of the N1-component of the DSP with maxima at the 15th–30th and 60th–80th milliseconds between the conditioning and testing stimuli. Maximal reinforcement of the AAP was found with these intervals. Bilateral division of the dorsal funiculi between the point of application of the conditioning stimuli and the point of recording the DSP abolished the first wave of inhibition of the DSP and the reinforcement of the AAP. After total transection of the cord above the site of conditioning stimulation the picture was unchanged. It is concluded that the initial changes in DSP and AAP are due to activation of the presynaptic inhibition mechanism by antidromic impulses traveling along nerve fibers running in the dorsal funiculus. Repeated inhibition of the DSP, like reinforcement of the AAP, can possibly be attributed to activation of similar inhibitory mechanisms through the propriospinal neurons of the spinal cord.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 401–405, July–August, 1973.  相似文献   

9.
Parallel recordings of potentials from primary afferent fibers and motoneurons connected monosynaptically with them were obtained in experiments on the isolated, perfused frog spinal cord and this was followed by intra-axonal and intracellular injection of horseradish peroxidase. Terminals of the primary afferent fibers were shown to reach the motor nuclei of the ventral horn, and one fiber could form contacts with several motoneurons. Synapses formed by afferent terminals were found not only on distal, but also on proximal segments of dendrites and also on motoneuron bodies. Synapses were most numerous on the proximal segments of the dendrites and branches of the second-third orders. Recurrent axon collaterals of motoneurons forming synapses with dendrites were found.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 60–68, January–February, 1982.  相似文献   

10.
It was found during experiments on immobilized decerebrate (at intracollicular level) cats that tonic sub-threshold activation of the spinal generator of scratching action (following application of tubocurarine or bicuculline to segments C1-C2) was accompanied by depolarization of primary afferent terminals, a reduction in the N1 component of dorsal surface potential produced by stimulating the cutaneous afferents, and a reduction in the amplitude of dorsal root potentials and lead-phase polysynaptic response produced in motoneurons by stimulating the cutaneous and muscle afferents. A rise or a reduction in the activity of interneurons belonging to the interstitial nucleus connected respectively mono- and di-(oligo)synaptically with the afferents occurred in parallel with this. Spinalization produced the same changes in reverse in the animal. By administering DOPA to the spinal animal, a comparison could be made of changes occurring in the state of the segmental apparatus of the lumbar section of the spinal cord during tonic sub-threshold activation of spinal scratch generators and locomotor movements.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 236–243, March–April, 1987.  相似文献   

11.
Mechanisms of the effect of stimulation of afferent fibers in ventral roots on dorsal horn interneurons were investigated in experiments on anesthetized cats. Dorsal horn interneurons on which such fibers project were shown to exist. In particular, some dorsal horn interneurons can exert an inhibitory influence on effects of dorsal root fiber activation.Institute of Physiology, Academy of Sciences of the Kazakh SSR, Alma-Ata. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 300–305, May–June, 1985.  相似文献   

12.
Using unanesthetized and decorticated (or decerebrated at level A 13) cats, it was found that spinalization leads to depolarization of the central terminals of primary afferents and an increase in the N1 component of dorsal surface potential and dorsal root potential (DRP) produced by stimulating the low-threshold cutaneous and muscle afferents. Other effects include an increase in early polysynaptic responses and DRP produced by stimulation of high-threshold muscle afferents, a reduction in the intensity of interneuron activation in the nucleus interpositus mono- and polysynaptically connected with primary afferents, and a rise in the activity of n. interpositus interneurons di- and oligo-synaptically connected with afferent terminals. Changes in the opposite direction were produced by injecting DOPA into spinal animals. The connection between changes in the state of the segmental neuronal apparatus of the lumbosacral spinal cord and the level of spinal locomotor generator activity is discussed in the light of the findings obtained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 669–678, September–October, 1986.  相似文献   

13.
Dorsal root potentials (DRPs) were recorded by a sucrose gap method in experiments on parasagittal slices of the isolated rat spinal cord. In most cases the DRP consisted of fast and slow waves. The fast wave of DRP was inhibited by the GABA antagonist picrotoxin and the blocker of GABA-activated chloride channels, furosemide, but it was potentiated by pentobarbital sodium. The slow wave of DRP disappeared if the extracellular K+ concentration was raised to 10 mM and it was depressed by tetraethylammonium and 4-aminopyridine, blockers of electrically excitable potassium channels. It is concluded that the fast wave of DRP and the initial components of the slow wave of DRP are GABA-ergic in origin; the slow wave of DRP, however, is linked with an increase in extracellular K+ concentration near the primary afferent terminals. The possible mechanisms of the increase in extracellular K+ concentration during dorsal root stimulation are discussed.A. M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 796–800, November–December, 1984.  相似文献   

14.
The effects of a number of peptides which are found in the gastrointestinal tract have been ascertained on the direct current recorded dorsal and ventral root responses of the isolated hemisected toad spinal cord. Motilin, substance P, bombesin, neurotensin, and thyrotropin releasing hormone had potent depolarizing actions on dorsal root terminals and motoneurons. These substances evoked discernable effects at concentrations as low as 10--7 M, or even lower with motilin. The effects of motilin, neurotensin, and thyrotropin-releasing hormone were greatly reduced or abolished by perfusion of the preparation with tetrodotoxin. Adrenocorticotrophic hormone, secretin, and pancreozymin (cholecystokinin) also depolarized dorsal root terminals and motoneurons. The effects of secretin and cholecystokinin were not abolished by tetrodotoxin. Leu- and Met-enkephalin had weak hyperpolarizing actions on the dorsal and ventral root potentials of repetitively stimulated preparations. Gastrin, gastric inhibitory peptide, glucagon, and somatostatin had no apparent effects on the responses of the preparation. Angiotensin and vasopressin both had rather weak depolarizing effects on the dorsal and ventral roots.  相似文献   

15.
Antidromic dorsal root activity during naturally occurring locomotion (swimming and treadmill walking) was investigated during experiments on white rats. The activity observed consisted of phaselinked and tonic components of antidromic action potentials (APP). A strong correlation was found between intensity of AAP and that of afferent input during actual locomotion; AAP correlated less well with degree of electromyographic activity. Possible sources of the initiation of antidromic activity and the part played in spinal reflex control by presynaptic depolarization are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 579–585, September–October, 1988.  相似文献   

16.
The following were measured during experiments on spinal anesthetized cats: firstly, variations in the amplitude of dorsal root potentials produced by applying single or regular stimuli in 120–150 trails to hindlimb cutaneous nerves and dorsal surface of the spinal cord and secondly, numbers of extracellular discharges in neurons involved in generating these potentials. A reduction in the variation between these parameters was found when applying stimulation at the rate of 0.1–5.0 Hz. The authors attribute the effect observed to the influence of homosynaptic depression.Institute of Biology, State University Commemorating 300th Anniversary of Russian-Ukrainian Reunion, Dnepropetrovsk. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 180–185, March–April, 1988.  相似文献   

17.
Cao DY  Niu HZ  Tang XD  Li Q 《生理学报》2003,55(1):105-109
在距脊髓约 15mm处切断大鼠L5背根 ,将中枢端分成 4~ 5条细束 ,电刺激腓肠神经在背根细束上记录背根反射 (dorsalrootreflex ,DRR)。共记录到DRR 5 1例 ,根据引起DRR所兴奋的腓肠神经纤维类别和DRR在背根逆向传出的纤维类别将DRR分为 5类 :Aαβ Aαβ·DRR、Aβδ Aδ·DRR、Aβδ C·DRR、Aαβδδ C·DRR和C C·DRR。结果证明 ,电刺激外周神经激活各类纤维不但能引起A类 (包括Aδ)纤维的DRR ,而且也能引起C类纤维的DRR。记录的Aδ·DRR和C·DRR为细纤维传入终末产生突触前抑制提供了客观指标 ,为DRR逆向传出冲动到达外周组织 ,释放神经肽类递质 ,调节外周效应器的功能提供了证据  相似文献   

18.
Summary Cultured spinal cord explants in which little spontaneous bioelectric activity was present showed, when monitored using sensory ganglion-evoked monosynaptic action potentials, diffuse innervation by ingrowing afferent fibers at 3–4 weeks in vitro. In contrast, highly active cultures of the same age showed a strong tendency for functional sensory connections to be made within the dorsal half of the cord. Regional specificity was present in mature cultures (4–5 weeks in vitro), however, even when their spontaneous activity level was low. The results support earlier results using tetrodotoxin, and make it appear likely that centrally generated neuronal discharges can influence the topography of afferent terminals within the developing spinal cord.  相似文献   

19.
The distribution and ultrastructure of primary afferent terminals in the gray matter of the cervical and lumbar regions of the cat spinal cord were studied by the experimental degeneration method of Fink and Heimer. Most preterminals of primary afferents were shown to be concentrated in the region of the intermediate nucleus of Cajal (central part of Rexed's laminae VI–VII), in the substantial gelatinosa (laminae II–III), and in the nucleus proprius of the dorsal horn (central and medial parts of lamina IV). Fewer are found in the region of the motor nuclei. The number of degenerating axon terminals in the lateral parts of laminae IV and V differed: 31.5 and 0.4% respectively of all axon terminals. Many terminals of primary afferents in lamina IV contribute to the formation of glomerular structures in which they exist as terminals of S-type forming axo-axonal connections with other terminals. These results are in agreement with electrophysiological data to show that interneurons in different parts of the base of the dorsal horn differ significantly in the relative numbers of synaptic inputs formed by peripheral afferents and descending systems.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 406–414, July–August, 1973.  相似文献   

20.
Summary Axonal tracing techniques were used in combination with immunohistochemistry to examine the distribution of neuropeptides in afferent pathways from the uterine cervix of the cat. Primary afferent neurons innervating the uterine cervix were identified by axonal transport of the dye, fast blue, injected into the cervix. Fifteen to twenty-five days after the injection, dorsal root ganglia (L1–S3) were removed and incubated for 48–72 h in culture medium containing colchicine to increase the levels of peptides. Calcitonin gene-related peptide (CGRP), cholecystokinin (CCK), leucine-enkephalin (LENK), somatostatin, substance P and vasoactive intenstinal polypeptide (VIP) were identified by use of indirect immunohistochemical techniques. Eighty-four percent of uterine cervix afferent neurons were identified in the sacral dorsal root ganglia (S1–S3), and 16% in the middle lumbar dorsal root ganglia (L3–L4). In sacral dorsal root ganglia, VIP was present in the highest percentage of dye-labeled cells (71%), CGRP in 42%, and substance P in 18% of the cells. CCK and LENK were present in 13% of the cells. In lumbar dorsal root ganglia, CGRP (51%) was most prominent peptide followed by VIP (34%), substance P (28%), LENK (17%) and CCK (13%). Somatostatin was present in the ganglia but did not occur in dye-labeled neurons. In conclusion, the uterine cervix of the cat receives a prominent VIP-and CGRP-containing afferent innervation. The percentage of neurons containing VIP is three to five times higher than the percentage of these neurons in afferent pathways to other pelvic organs. These observations coupled with the results of physiological studies suggest that VIP is an important transmitter in afferent pathways from the cervix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号