首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical framework was developed to provide a quantitative basis for either in vivo tissue or in vitro microdialysis. Established physiological and mass transport principles were employed to obtain explicit expressions relating dialysate concentration to tissue extracellular concentration for in vivo applications or external medium concentrations for in vitro probe characterization. Some of the important generalizations derived from the modeling framework are: (i) the microdialysis probe can perturb the spatial concentration profile of the substance of interest for a considerable distance from the probe, (ii) for low molecular weight species the tissue is generally more important than the probe membrane in determining the dialysate-to-tissue concentration relationship, (iii) metabolism, intracellular-extracellular and extracellular-microvascular exchange, together with diffusion, determine the role of the tissue in in vivo probe behavior, and, consequently, (iv) in vitro "calibration" procedures could be useful for characterizing the probe, if properly controlled, but have limited applicability to in vivo performance. The validity of the proposed quantitative approach is illustrated by the good agreement obtained between the predictions of a model developed for tritiated water ([3]H2O) in the brain and experimental data taken from the literature for measurements in the caudoputamen of rats. The importance of metabolism and efflux to the microvasculature is illustrated by the wide variation in predicted tissue concentration profiles among [3]H2O, sucrose and dihydroxyphenylacetic acid (DOPAC).  相似文献   

2.
The behavior of a microdialysis probe in vivo is mathematically described. A diffusion-reaction model is developed that not only accounts for transport of substances through tissues and probe membranes but also accounts for transport across the microvasculature and metabolism. Time-dependent equations are presented both for the effluent microdialysate concentration and for concentration profiles about the probe. The analysis applies either to measuring the tissue pharmacokinetics of drugs administered systemically, or for sampling of endogenously produced substances from tissue. In addition, an expression is developed for the transient concentration about the probe when it is used as an infusion device. All mathematical expressions are found to be a sum of an algebraic and an integral term. Theoretical prediction of time-dependent probe behavior in brain has been compared with experimental data for acetaminophen administered at 15 mg/kg to rats by intravenous bolus. Plasma and whole striatal tissue samples were used to describe plasma kinetics and to estimate a capillary permeability-area product of 0.07 min-1. Theoretical prediction of transient effluent dialysate concentrations exhibited close agreement with experimental data over 60 min. Terminal decline of the dialysate effluent concentration was slightly overestimated but theoretical concentrations still lay within the 95% confidence interval of the experimental data at 112 min. Microvasculature transport and metabolism play major roles in determining microdialysate transient responses. Extraction fraction (recovery) has been shown to be a declining function in time for five probe operating conditions. High rates of metabolism and/or capillary transport affect the time required to approach steady-state extraction, shortening the time as the rates increase. Conversely, for substances characterized by low permeabilities and negligible metabolism, experimental situations exist that are predicted to have very slow approaches to microdialysis steady state.  相似文献   

3.
Although microdialysis is widely used to sample endogenous and exogenous substances in vivo, interpretation of the results obtained by this technique remains controversial. The goal of the present study was to examine recent criticism of microdialysis in the specific case of dopamine (DA) measurements in the brain extracellular microenvironment. The apparent steady-state basal extracellular concentration and extraction fraction of DA were determined in anesthetized rat striatum by the concentration difference (no-net-flux) microdialysis technique. A rate constant for extracellular clearance of DA calculated from the extraction fraction was smaller than the previously determined estimate by fast-scan cyclic voltammetry for cellular uptake of DA. Because the relatively small size of the voltammetric microsensor produces little tissue damage, the discrepancy between the uptake rate constants may be a consequence of trauma from microdialysis probe implantation. The trauma layer has previously been identified by histology and proposed to distort measurements of extracellular DA levels by the no-net-flux method. To address this issue, an existing quantitative mathematical model for microdialysis was modified to incorporate a traumatized tissue layer interposed between the probe and surrounding normal tissue. The tissue layers are hypothesized to differ in their rates of neurotransmitter release and uptake. A post-implantation traumatized layer with reduced uptake and no release can reconcile the discrepancy between DA uptake measured by microdialysis and voltammetry. The model predicts that this trauma layer would cause the DA extraction fraction obtained from microdialysis in vivo calibration techniques, such as no-net-flux, to differ from the DA relative recovery and lead to an underestimation of the DA extracellular concentration in the surrounding normal tissue.  相似文献   

4.
The relative efficiencies of microdialysis probes were determined both in vitro and in vivo using tritiated water. Tritiated water (THO) freely distributes throughout the fluid spaces of an experimental animal and, at equilibrium, the brain extracellular concentration of THO is the same as the plasma concentration. Microdialysis probes were inserted into the right caudoputamen of anesthetized rats. The rats were injected with THO and after one hour microdialysis samples were collected at flow rates between 0.2 and 10.0 ul/min. The in vitro relative efficiency for THO was computed as the ratio of the THO concentration in the dialysate to that of the solution the probe was immersed in. The in vivo relative efficiency was computed as the ratio of the concentration of THO in the brain dialysate to that measured in the plasma of the rat. Both the in vitro and in vivo relative efficiencies for THO decrease with increasing flow rates, but they differ from each other except at very low flow rates (less than 0.25 ul/min). The in vitro relative efficiency at a given probe flow is the maximum efficiency that can be attained in vivo at that flow. The surface of effective exchange (Se) is the fraction of that maximum which is attained in vivo. This study also demonstrates how the effective surface area can be computed at any probe flow rate and how it can be used as a correction factor.  相似文献   

5.
The in vitro and in vivo performance of three different semipermeable microdialysis membranes was compared: a proprietary polycarbonate-ether membrane made by Carnegie Medecin; cuprophan, a regenerated cellulose membrane; and polyacrylonitrile. When microdialysis probes were tested in a stirred in vitro solution, large and statistically significant differences among the three membranes in extraction of acid metabolites (3,4-dihydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, and homovanillic acid) and acetaminophen were found. Polyacrylonitrile had the highest extractions in vitro. In contrast, when microdialysis probes were implanted in vivo (in rat striatum), extraction of acid metabolites and acetaminophen did not differ significantly among the different membranes. These results are consistent with predictions made by a mathematical model of microdialysis and can be explained by the fact that in vitro the main factor limiting extraction is membrane resistance to diffusion, whereas tissue resistance to diffusion plays a more dominant role in vivo. These findings suggest that (aside from differences in surface area), the choice of semipermeable membrane will generally have little effect on in vivo microdialysis results. Furthermore, in vitro measurements of microdialysis probe extractions are not a reliable way of calibrating in vivo performance.  相似文献   

6.
Experimental and theoretical microdialysis studies of in situ metabolism   总被引:2,自引:0,他引:2  
Microdialysis sampling was performed to monitor localized metabolism in vivo and in vitro. A mathematical model that accounts for analyte mass transport during microdialysis sampling was used to predict metabolite concentrations in the microdialysis probe during localized metabolism experiments. The model predicts that metabolite concentrations obtained in the microdialysis probe are a function of different experimental parameters including membrane length, perfusion fluid flow rate, and sample diffusive and kinetic properties. Different microdialysis experimental parameters including membrane length and perfusion fluid flow rate were varied to affect substrate extraction efficiency (E(d)), or loss to the sample matrix, in vivo and in vitro. Local hepatic metabolism was studied in vivo in male Sprague-Dawley rats by infusing acetaminophen through the microdialysis probe. Acetaminophen sulfate concentrations increased linearly with respect to acetaminophen E(d) in contrast to modeling predictions. Xanthine oxidase was used as an in vitro model of localized metabolism. In vitro experimental results partially matched modeling predictions for 10-mm probes. These results suggest that monitoring local metabolism using microdialysis sampling is feasible. It is important to consider system parameters such as dialysis flow rate, membrane length, and sample properties because these factors will affect analyte concentrations obtained during local metabolism experiments.  相似文献   

7.
Inhibitory signaling in the ventral tegmental area (VTA) is involved in the mechanism of action for many drugs of abuse. Although drugs of abuse have been shown to alter extracellular γ-aminobutyric acid (GABA) concentration in the VTA, knowledge on how uptake mechanisms are regulated in vivo is limited. Quantitative (no-net-flux) microdialysis is commonly used to examine the extracellular concentration and clearance of monoamine neurotransmitters, however it is unclear whether this method is sensitive to changes in clearance for amino acid neurotransmitters such as GABA. The purpose of this study was to determine whether changes in GABA uptake are reflected by in vivo extraction fraction within the VTA. Using quantitative (no-net-flux) microdialysis adapted for transient conditions, we examined the effects of local perfusion with the GABA uptake inhibitor, nipecotic acid, in the VTA of Long Evans rats. Basal extracellular GABA concentration and in vivo extraction fraction were 44.4?±?1.9 nM (x-intercepts from 4 baseline regressions using a total of 24 rats) and 0.19?±?0.01 (slopes from 4 baseline regressions using a total of 24 rats), respectively. Nipecotic acid (50 μM) significantly increased extracellular GABA concentration to 170?±?4 nM and reduced in vivo extraction fraction to 0.112?±?0.003. Extraction fraction returned to baseline following removal of nipecotic acid from the perfusate. Conventional microdialysis substantially underestimated the increase of extracellular GABA concentration due to nipecotic acid perfusion compared with that obtained from the quantitative analysis. Together, these results show that inhibiting GABA uptake mechanisms within the VTA alters in vivo extraction fraction measured using microdialysis and that in vivo extraction fraction may be an indirect measure of GABA clearance.  相似文献   

8.
In this paper, we further develop the general theory of microdialysis by extending the linear model of Bungay et al. to provide a theoretical basis for in vitro and in vivo microdialysis. Specifically, we considered the effect of active clearance processes on in vivo microdialysis, and thereby elaborated the theory of Benveniste et al. to endogenous compounds. We examined the use of steady state tissue diffusion resistance with negligible clearance processes to interpret microdialysis data. The influence of the tissue properties on the in vitro and in vivo recoveries in dual-probe microdialysis was analyzed and we simulated the effect of the operating parameters on dual probe microdialysis performance. We estimated that the minimum clearance rate constant detectable by microdialysis in a quasi-steady state is about 5.5 x 10(-5) s(-1). This minimum rate constant establishes a criterion, below which inhibition of the active clearance processes does not show detectable influences on the microdialysis extraction efficiency.  相似文献   

9.
Subcutaneous adipose tissue lipolysis was studied in vivo by Fick's arteriovenous (a-v) principle using either calculated (microdialysis) or directly measured (catheterization) adipose tissue venous glycerol concentration. We compared results during steady-state (rest and prolonged continuous exercise), as well as during non-steady-state (onset of exercise and early exercise) experimental settings. Fourteen healthy women [age: 74 +/- 1 (SE) yr] were studied at rest and during 60-min continuous bicycling at 60% of peak O(2) uptake. Calculated and measured subcutaneous abdominal adipose tissue venous glycerol concentrations increased substantially from rest to exercise but were similar both at rest and during later stages of exercise. In contrast, during the initial approximately 40 min of exercise, calculated glycerol concentration was significantly lower (approximately 40%) than measured adipose tissue venous glycerol concentration. Despite several methodological limitations inherent to both techniques, the results strongly suggest that microdialysis and catheterization provide similar estimates of subcutaneous adipose tissue lipolysis in steady-state experimental settings like rest and continuous prolonged exercise. However, during shorter periods of exercise (<40 min), the results from the two techniques may differ quantitatively in the studied subjects. Caution should, therefore, be taken when lipolysis is evaluated, based on results obtained by the two techniques under non-steady-state conditions.  相似文献   

10.
L St?hle 《Life sciences》1991,49(24):1835-1842
Microdialysis was applied to estimate concentrations of caffeine and theophylline in vitro or in vivo in blood, adipose tissue, muscle, liver and brain of rats. The in vivo and in vitro recovery of a compound was estimated by perfusing the dialysis probe with varying concentrations of caffeine and theophylline. The difference between the concentration in the dialysate and the concentration in the perfusion medium was plotted against the concentration in the perfusion medium and the slope of the resulting line was taken as an estimate of the recovery (difference method). In all experiments caffeine (20 mg/kg sc) and theophylline (20 mg/kg sc) were administered simultaneously. The recovery in vitro was virtually identical for caffeine and theophylline. The in vivo recovery of theophylline was significantly smaller than the recovery of caffeine in brain, liver, muscle and adipose tissue. The difference in recovery was significantly larger in the brain than in other tissues. The results show that the transport of a substance from the tissue to the dialysis probe may differ between tissues and between chemically very similar compounds. It is shown that the recovery of theophylline rapidly declines after death ensues which shows that energy-dependent processes are involved in the transport to the dialysis probe and not solely passive diffusion. It is suggested the differences in transport over brain capillaries explain the difference between caffeine and theophylline. It is concluded that the use of internal standards in microdialysis experiments requires validation in every specific application.  相似文献   

11.
Microdialysis has been used for studying neurochemistry in brain regions that respond to afferent inputs or administered drugs. As the knowledge derived from and concerning microdialysis grows, so do the concerns over its invasiveness and, hence, the credibility of resulting data. Recent experimental and theoretical studies impugned the validity of the microdialysis zero-net-flux (ZNF) method in measuring brain extracellular neurotransmitters, suggesting that the tissue trauma resulting from probe implantation seriously compromises its worth. This paper developed a theoretical model to study the influences of two categories of tissue trauma on microdialysis ZNF operation: (1) morphological alterations in tissue extracellular structure and (2) physiological impairment of neurotransmitter release and uptake processes. Model results show that alterations of tissue extracellular structure negligibly affect the accuracy of the ZNF method in determining the basal level of extracellular neurotransmitter but do affect the fundamental characteristics of microdialysis: the extraction efficiency and relative recovery. An inhibited or damaged neurotransmitter uptake process always decreases the efficiency of microdialysis extraction, but rise of the relative recovery of neurotransmitters with the same uptake inhibition/damage occurs only when there is far more damage to the neurotransmitter release than to the uptake process in the tissue. A criterion for this rising trend of microdialysis relative recovery is discussed in terms of trauma parameters and neurotransmitter uptake inhibition.  相似文献   

12.
微透析校正的相关问题和方法   总被引:9,自引:0,他引:9  
微透析技术是研究生物动态变化的一种新型的活体生物采样技术,近年来由于实验方法的不断改进,微透析技术已广泛应用于在体的定量研究。在进行生物细胞外液的定量研究中,微透析探针的校正是十分必要的。本从微透析的回收率、影响因素及校正方法等方面简要介绍了微透析校正的相关问题。  相似文献   

13.
Microdialysis is a relatively new in vivo sampling technique, which allows repeated collecting of interstitial fluid and infusion of effector molecules into the tissue without influencing whole body function. The possibility of using microdialysis catheter with a large-pore size dialysis membrane (100 kDa) to measure concentrations of the adipocyte-derived peptide hormone leptin in interstitial fluid of adipose tissue was explored. Krebs–Henseleit buffer with 40 g/l dextran-70 was used to prevent perfusion fluid loss across the dialysis membrane. The relative recovery of leptin in vitro was determined using CMA/65 microdialysis catheter (100 kDa cut-off, membrane length 30 mm; CMA, Stockholm, Sweden) and four perfusion rates were tested (0.5, 1.0, 2.0, 5.0 μl/min). Furthermore, the microdialysis catheter CMA/65 was inserted into subcutaneous abdominal adipose tissue of 11 healthy human subjects and leptin concentrations in the interstitial fluid of adipose tissue in vivo were measured. The present findings are the first documentation on the use of microdialysis to study local leptin concentrations in the interstitial fluid of adipose tissue.  相似文献   

14.
We have demonstrated the usefulness of a novel hemoglobin-trapping technique to quantify nitric oxide (NO) concentrations in vivo. Concentric microdialysis probes were implanted into the hippocampus of rats under urethane anesthesia and perfused with 1 μM oxyhemoglobin in artificial CSF to sequester NO in extracellular fluid. The concentration of methemoglobin was then determined spectrophotometrically. The basal level of NO in hippocampus was 2.2 ± 0.5 nM(in vitro sensitivity of the probe was 0.2 nM). Administration of 13 mg/kg, i.p., of kainic acid (KA) produced a maximal 5.3-fold increase at 100 min in NO levels (11.8 ± 0.2 nM). This response was significantly attenuated by pretreatment with the NO synthase inhibitor N-monomethyl-L-arginine (50 mg/kg, 30 min before KA). These results demonstrate that a microdialysis probe using a novel hemoglobin-trapping technique possesses adequate sensitivity to determine the basal levels of NO and document the ability of KA to increase these levels via a NO synthase-mediated mechanism.  相似文献   

15.
This study evaluated the suitability of some disinfection and sterilization methods for use with microdialysis probes. Disinfection or sterilization should minimize the tissue inflammatory reaction and improve the long-term health of rats on study and ensure the quality of data obtained by microdialysis sampling. Furthermore, the treatment should not negatively impact probe integrity or sampling performance. The techniques chosen for evaluation included two disinfection methods (70% ethanol and a commercial contact lens solution) and two sterilization methods (hydrogen peroxide plasma, and e-beam radiation). Linear microdialysis probes treated by these processes were compared to untreated probes removed from the manufacturer's packaging as if sterile (the control group). The probes were aseptically implanted in the livers of rats and monitored for 72 hours. The parameters chosen to evaluate probe performance were relative sample mass recovery and the relative in vivo extraction efficiency of the probe for caffeine. Post mortem bacterial counts and histopathology examination of liver tissue were also conducted. The probes remained intact and functional for the entire study period. The methods tested did not acutely alter the probes although hydrogen peroxide plasma and contact lens solution groups showed reduced extraction efficiencies. Minimal tissue damage was observed surrounding the probes and acute inflammatory reaction was mild to moderate. Low numbers of bacterial colonies from the implantation sites indicates that the health of animals in this study was not impaired. This was also true for the control group (untreated probe).  相似文献   

16.
Hydroxyl radical (.OH) is a reactive oxygen species produced during severe hypoxia, asphyxia, or ischemia that can cause cell death resulting in brain damage. Generation of .OH may occur in the fetal brain during asphyxia in utero. The very short half-life of .OH requires use of trapping agents such as salicylic acid or phenylalanine for detection, but their hydroxylated derivatives are either unstable, produced endogenously, or difficult to measure in the small volume of microdialysis samples. In the present study, we used terephthalic acid (TA), hydroxylation of which yields a stable and highly fluorometric isomer (excitation, 326 nm; emission, 432 nm). In vitro studies using .OH generated by the Fenton reaction showed that hydroxylated TA formed quickly (<10 s), was resistant to bleaching (<5% change in fluorescence), and permitted detection of <0.5 pmol .OH. In vivo studies were performed in fetal sheep using microdialysis probes implanted into the parasagittal cortex. The probe was perfused at 2 mul/min with artificial cerebrospinal fluid containing 5 mM TA, and samples were collected every 30 min. Fluorescence measured in 10 mul of dialysate was significantly greater than in the efflux from probes perfused without TA. High-performance liquid chromotography analysis showed that the fluorescence in dialysis samples was entirely due to hydroxylation of TA. Thus this study shows that it is possible to use TA as a trapping agent for detecting low concentrations of .OH both in vitro and in vivo and that low concentrations of .OH are present in fetal brain tissue and fluctuate with time.  相似文献   

17.
Membrane preparations from growing regions of 8-day old Pisum sativum epicotyls contain multiple beta-1,4-glucan (cellulose) synthetase activities (UDP- or GDP-glucose: beta-1,4-glucan-glucosyl transferase), and the levels of some of these are influenced by treatments with the growth hormone, indoleacetic acid (IAA). When membranes from control epicotyl segments (zero time) are fractionated by isopycnic sedimentation in sucrose density gradients, all of the synthetase activities are associated mainly with Golgi membrane (density 1.55 g/cm3). After decapitation and treatment of epicotyls with IAA, synthetases also appear in a smooth vesicle fraction (density 1.11 g/cm3) which is rich in endoplasmic reticulum (ER) marker enzyme. Major fractions of these synthetases are not recovered in association with plasma membrane or washed cell walls. When [14-C]sucrose is supplied in vivo to segments +/- IAA, radioactive cellulose is deposited only in the wall. Cellulose or cellodextrin precursors do not accumulate in those membranes in which synthetase activities are recovered in vitro. In experiments where tissue slices containing intact cells are supplied with [14C]sugar nucleotide in vitro, alkali-insoluble beta-1,4-glucan is synthesized (presumably outside the protoplast) at rates which greatly exceeded (20-30 times) those obtained using isolated membrane preparations. Progressive disruption of cell structure results in increasing losses of this high activity. These results are consistent with the interpretation that Golgi and ER-associated synthetases are not themselves loci for cellulose synthesis in vivo, but represent enzymes in transit to sites of action at the wall:protoplast omterface. There they operate only if integrity of cellular organization is maintained.  相似文献   

18.
The microdialysis technique was used for following the glucose content of the extracellular subcutaneous (SC) fluid under varying blood glucose levels in rats. The glucose content in the microdialysis perfusion fluid was continuously analyzed by means of the measuring flow chamber of an ex vivo glucose monitor. In six ChBB rats blood glucose levels were varied between 40 mg/dl and 575 mg/dl by intravenous (IV) infusion of glucose and by SC injections of insulin, respectively. After a running-in period of about half an hour, the glucose content in the perfusion fluid was closely related to the blood glucose concentration (r > 0.92) up to a time period of 6 hrs. The "relative recovery" rate of glucose by the microdialysis probe in the SC tissue varied within the 6 experimental sessions. The relative recovery rate could be shown to be not dependent on the absolute blood glucose levels in the individual rat within the glucose concentration range tested.  相似文献   

19.
Some methodological aspects of the intracerebral microdialysis technique have been investigated: the existence of a pressure gradient at the level of the dialyzing membrane, the substance diffusion from the microdialysis probe and the extent of tissue damage induced by the implantation of the microdialysis probe. At the level of the dialyzing membrane a rough balance between the pressure inside the probe and the one present in the extracellular fluid compartment has been observed. The pattern of substance diffusion in the tissue showed a large variability depending on the substance used and the experimental conditions. Relevant deductions can be made by the use of labeled markers. By means of this approach, the diffusion pattern of tritiated ganglioside GM1 in the tissue around the probe could be shown to follow a biexponential pattern, suggesting a two-step process of diffusion. The degree of tissue damage induced by the microdialysis probe was assessed by analyzing the glial reaction, and was measured by means of semiquantitative immunocytochemistry of glial fibrillary acidic protein immunoreactivity. Only a limited area of neuronal damage was observed in the region surrounding the microdialysis probe. The amount of glial reaction after probe implantation was shown to be comparable with that induced by the implantation of a microinjection cannula.  相似文献   

20.
The present study compared two different in vivo microdialysis methods which estimate the extracellular concentration of analytes at a steady state where there is no effect of probe sampling efficiency. Each method was used to estimate the basal extracellular concentration of dopamine (DA) in the nucleus accumbens of the rat. In the first method, DA is added to the perfusate at concentrations above and below the expected extracellular concentration (0, 2.5, 5, and 10 nM) and DA is measured in the dialysate from the brain to generate a series of points which are interpolated to determine the concentration of no net flux. Using this method, basal DA was estimated to be 4.2 +/- 0.2 nM (mean +/- SEM, n = 5). The slope of the regression gives the in vivo recovery of DA, which was 65 +/- 5%. This method was also used to estimate a basal extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) concentration in the nucleus accumbens of 5.7 +/- 0.6 microM, with an in vivo recovery of 52 +/- 11% (n = 5). A further experiment which extended the perfusate concentration range showed that the in vivo recovery of DA is significantly higher than the in vivo recovery of DOPAC (p less than 0.001), whereas the in vitro recoveries of DA and DOPAA are not significantly different from each other. The in vivo difference is thought to be caused by active processes associated with the DA nerve terminal, principally release and uptake of DA, which may alter the concentration gradient in the tissue surrounding the probe.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号