首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 6.7 murine monoclonal antibody (mAb) recognizes the human CD18 antigen and is therefore of interest as an anti-inflammatory agent. The 6.7 heavy variable chain (VH) was humanized using the closest human germline sequence as the template on to which to graft the murine complementary determining regions (CDRs). Two versions were proposed, one in which the residue proline 45 of the murine form was maintained and another in which this framework residue was changed to the leucine found in the human sequence. These VH humanized versions were expressed in the yeast Pichia pastoris as hemi-humanized single-chain Fv (scFvs), with the VL from the murine antibody. The scFv from the murine antibody was also expressed. The binding activities of the murine and both hemi-humanized scFvs were determined by flow cytometry analysis. All the constructions were able to recognize human lymphocytes harboring CD18, indicating successful humanization with transfer of the original binding capability. Some differences between the two hemi-humanized versions were observed. The method used was simple and straightforward, with no need for refined structural analyses and could be used for the humanization of other antibodies.  相似文献   

2.
Previous studies have indicated differences in the specificity-determining residues (SDRs) of antibodies that recognize haptens, peptides, or proteins. Here, we designed a V(H) repertoire based on the human scaffold 3-23/J(H)4 and diversification of high and medium-usage SDRs of anti-protein and anti-peptide antibodies. The repertoire was synthesized by overlapping polymerase chain reaction (PCR) and combined with the V(L) chain of the anti-hen egg-white lysozyme (HEL) antibody D1.3. The resulting chimeric single-chain Fv fragments (scFvs) phage-displayed library was panned in HEL-coated immunotubes. After two rounds of selection under non-stringent conditions, that is, trypsinization after 2 h of incubation at room temperature, 63 of 167 clones analyzed (38%) were found to express scFvs specific to HEL. Twenty clones were characterized by DNA sequencing resulting in 10 unique scFvs. Interestingly, the panel of unique scFvs was highly diverse, with V(H) sequences differing in 16 of the 17 positions variegated in the repertoire. Thus, diverse chemico-physical and structural solutions were selected from the library, even when the V(H) repertoire was constrained by the V(L) chain of D1.3 to yield binders against a definite region of HEL surface. The more often selected scFvs, namely H6-1 and B7-1, which differed in eight SDRs, showed levels of expression in E. coli TG1 strain, 6 and 10 times higher than the parental D1.3 Fv fragment, respectively. Dissociation constants (K(Ds)) measured in the BIAcore were 11 and 6.6 nM for H6-1 and B7-1, respectively. These values compared well to the K(D) of 4.7 nM measured for D1.3, indicating that the V(H) repertoire here designed is a valuable source of diverse, well-expressed and high affinity V(H) domains.  相似文献   

3.
The peptide tag GATPQDLNTML, corresponding to amino acids 46-56 of the human immunodeficiency virus type 1 (HIV-1) capsid protein p24, is the linear epitope of the murine monoclonal antibody CB4-1. This antibody shows high affinity (KD = 1.8 x 10(-8) M) to the free epitope peptide in solution. The original p24 peptide tag and mutant derivatives were fused to the C terminus of a single-chain antibody (scFv) and characterized with respect to sensitivity in Western blot analyses and behavior in purification procedures using affinity chromatography. The p24 tag also proved to be a suitable alternative to the (Gly4Ser)3 linker commonly used to connect single-chain antibody variable regions derived from a heavy (VH) and light chain (VL). Binding of CB4-1 antibody to the p24 tag was not hampered when the tag was located internally in the protein sequence, and the specific antigen affinity of the scFv was only slightly reduced. All scFv variants were solubly expressed in Escherichia coli and could be purified from the periplasm. Our results highlight the p24 tag as a useful tool for purifying and detecting recombinantly expressed scFvs.  相似文献   

4.
Carbonic anhydrase IX (CAIX, gene G250/MN-encoded transmembrane protein) is highly expressed in various human epithelial tumors such as renal clear cell carcinoma (RCC), but absent from the corresponding normal tissues. Besides the CA signal transduction activity, CAIX may serve as a biomarker in early stages of oncogenesis and also as a reliable marker of hypoxia, which is associated with tumor resistance to chemotherapy and radiotherapy. Although results from preclinical and clinical studies have shown CAIX as a promising target for detection and therapy for RCC, only a limited number of murine monoclonal antibodies (mAbs) and one humanized mAb are available for clinical testing and development. In this study, paramagnetic proteoliposomes of CAIX (CAIX-PMPLs) were constructed and used for anti-CAIX antibody selection from our 27 billion human single-chain antibody (scFv) phage display libraries. A panel of thirteen human scFvs that specifically recognize CAIX expressed on cell surface was identified, epitope mapped primarily to the CA domain, and affinity-binding constants (KD) determined. These human anti-CAIX mAbs are diverse in their functions including induction of surface CAIX internalization into endosomes and inhibition of the carbonic anhydrase activity, the latter being a unique feature that has not been previously reported for anti-CAIX antibodies. These human anti-CAIX antibodies are important reagents for development of new immunotherapies and diagnostic tools for RCC treatment as well as extending our knowledge on the basic structure-function relationships of the CAIX molecule.  相似文献   

5.
A prerequisite for the enrichment of antibodies screened from phage display libraries is their stable expression on a phage during multiple selection rounds. Thus, if stringent panning procedures are employed, selection is simultaneously driven by antigen affinity, stability and solubility. To take advantage of robust pre-selected scaffolds of such molecules, we grafted single-chain Fv (scFv) antibodies, previously isolated from a human phage display library after multiple rounds of in vitro panning on tumor cells, with the specificity of the clinically established murine monoclonal anti-CD22 antibody RFB4. We show that a panel of grafted scFvs retained the specificity of the murine monoclonal antibody, bound to the target antigen with high affinity (6.4-9.6 nM), and exhibited exceptional biophysical stability with retention of 89-93% of the initial binding activity after 6 days of incubation in human serum at 37 degrees C. Selection of stable human scaffolds with high sequence identity to both the human germline and the rodent frameworks required only a small number of murine residues to be retained within the human frameworks in order to maintain the structural integrity of the antigen binding site. We expect this approach may be applicable for the rapid generation of highly stable humanized antibodies with low immunogenic potential.  相似文献   

6.
7.
Despite their favorable pharmacokinetic properties, single-chain Fv antibody fragments (scFvs) are not commonly used as therapeutics, mainly due to generally low stabilities and poor production yields. In this work, we describe the identification and optimization of a human scFv scaffold, termed FW1.4, which is suitable for humanization and stabilization of a broad variety of rabbit antibody variable domains. A motif consisting of five structurally relevant framework residues that are highly conserved in rabbit variable domains was introduced into FW1.4 to generate a generically applicable scFv scaffold, termed FW1.4gen. Grafting of complementarity determining regions (CDRs) from 15 different rabbit monoclonal antibodies onto FW1.4 and their derivatives resulted in humanized scFvs with binding affinities in the range from 4.7 × 10−9 to 1.5 × 10−11 m. Interestingly, minimalistic grafting of CDRs onto FW1.4gen, without any substitutions in the framework regions, resulted in affinities ranging from 5.7 × 10−10 to <1.8 × 10−12 m. When compared with progenitor rabbit scFvs, affinities of most humanized scFvs were similar. Moreover, in contrast to progenitor scFvs, which were difficult to produce, biophysical properties of the humanized scFvs were significantly improved, as exemplified by generally good production yields in a generic refolding process and by apparent melting temperatures between 53 and 86 °C. Thus, minimalistic grafting of rabbit CDRs on the FW1.4gen scaffold presents a simple and reproducible approach to humanize and stabilize rabbit variable domains.  相似文献   

8.
Expression of anti human IL-4 and IL-6 scFvs in transgenic tobacco plants   总被引:3,自引:0,他引:3  
The two murine single-chain Fv (scFv) genes against human interleukin IL-4 and IL-6 cytokines were cloned in a plant expression vector (pGEJAE1) and mobilized to Agrobacterium tumefaciens. Tobacco leaf discs were co-cultured with Agrobacterium and transferred to selective media for regeneration. The tobacco in vitro plants produced scFvs against human IL-4 and IL-6. Only 8% of transformed plants expressing anti-IL-4 scFv were obtained versus 76% of transformed plants expressing anti-IL-6 scFv. In addition, some plants producing anti-IL-4 and anti-IL-6 scFvs aged more rapidly in in vitro conditions and in greenhouse pots than did control plants. Western blot analysis showed that the transformed Nicotiana tabacum plants contained proteins with an apparent molecular mass on electrophoresis of ca. 32 kDa, corresponding to the predicted size of the scFvs. As entire plant root seemed to accumulate more scFv than did leaves, we decided to continue working with isolated roots. Anti-IL-6 scFvs were detected in cultivated roots and their culture media. Functional anti-IL-6 scFv accounted for 0.16–0.18% of total soluble proteins. The affinity of the anti-IL-6 scFv produced in plants and measured by Biacore was similar to that of scFv produced in Escherichia coli. The high levels of antibody accumulation in isolated roots and secretion into the medium demonstrate the potential for producing recombinant protein in bioreactor systems.these authors contributed equally to this workthese authors contributed equally to this work  相似文献   

9.
Single-chain variable fragments (scFvs) are tumor-recognition units that hold enormous potential in antibody-based therapeutics. Their clinical applications, however, require the large scale production and purification of biologically active recombinant scFvs. In the present study, we engineered and expressed divalent non-covalent [(scFv)(2)-His(6)] and covalent [sc(Fv)(2)-His(6)] scFvs of a tumor-associated monoclonal antibody (MAb) CC49 in Pichia pastoris. The purity and immunoreactivity of the scFvs were analyzed by SDS-PAGE, HPLC, and competitive ELISA. The binding affinity constant (K(A)), determined by surface plasmon resonance analysis using BIAcore, was 4.28 x 10(7), 2.75 x 10(7), and 1.14 x 10(8) M(-1) for (scFv)(2)-His(6), sc(Fv)(2)-His(6), and CC49 IgG, respectively. The expression of scFvs in P. pastoris was 30 to 40-fold higher than in Escherichia coli. Biodistribution studies in athymic mice bearing LS-174T human colon carcinoma xenografts showed equivalent tumor-targeting of CC49 dimers generated in yeast (scFv)(2)-His(6) and bacteria (scFv)(2) with 12.52% injected dose/gram (%ID/g) and 11. 42%ID/g, respectively, at 6 h post-injection. Interestingly, the pharmacokinetic pattern of dimeric scFvs in xenografted mice exhibited a slower clearance of His-tagged scFvs from the blood pool than scFvs lacking the His-tag (0.1 >/= p >/= 0.05). In conclusion, improved yields of divalent scFvs were achieved using the P. pastoris expression/secretion system. The in vitro and in vivo properties of these scFvs suggest possible therapeutic applications.  相似文献   

10.
Human antibodies against specific targets of tumor cells are the most desirable molecules for possible immunotherapy. They could be developed by using the combinatorial antibody library displayed on a phage. We selected four human antibody fragments (scFv) binding to the oncoplacental antigen Heat Stable Alkaline Phosphatase (HSAP, the placental isozyme of alkaline phosphatase) from a synthetic human antibody library. Characterization of these scFvs showed they bound HSAP with moderate affinity but did not have isozyme specificity, as determined by binding to cell lines exhibiting differential expression of isozymes of alkaline phosphatase. The V(H) sequences of two of these scFvs were similar and although both bound to HSAP only one was cross-reactive with albumin. The sequences revealed a difference in the framework region (FR1) of these antibodies, indicating a role for this region in the determination of specificity. This is also significant considering that the heavy chains generated the diversity of the synthetic library used in this study, and only a single light chain showing binding to BSA was used for the entire library.  相似文献   

11.
Novel in vitro methods for the display of antibody libraries against disease-related antigens have led to the development of powerful protein-based biotherapeutics. Eukaryotic ternary ribosome complexes can be used to display human single chain antibodies (scFvs) to isolate specific binding reagents to these antigens. Here, we present the isolation of human scFv against the immunotherapeutic target antigen CD22 from a patient-derived human scFv library using ribosome display technology. The ribosome complexes were enriched against the extra-cellular domain of human CD22 conjugated to magnetic beads. Isolated constructs were further affinity-matured and specific binding activity was demonstrated by surface plasmon resonance and validated using in vitro cell assays. The isolated human anti-CD22 scFvs can provide a basis for the development of new immunotherapeutic strategies in CD22-expressing malignant diseases.  相似文献   

12.
Zameer A  Schulz P  Wang MS  Sierks MR 《Biochemistry》2006,45(38):11532-11539
Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta (Abeta) protein in the brain. Immunization studies have demonstrated that anti-Abeta antibodies reduce Abeta deposition and improve clinical symptoms seen in AD. However, conventional antibody-based therapies risk an inflammatory response that can result in meningoencephalitis and cerebral hemorrhage. Here we report on the development of human-based single chain variable domain antibody fragments (scFvs) directed against the Abeta 25-35 region as potential therapeutics for AD that do not risk an inflammatory response. The 25-35 region of Abeta represents a promising therapeutic target since it promotes aggregation and is highly toxic. Two scFvs with differing affinities for Abeta were studied, and both inhibited aggregation of Abeta42 as determined by thioflavin T binding assay and atomic force microscopy analysis and blocked Abeta-induced toxicity toward human neuroblastoma SH-SY5Y cells as determined by MTT and LDH release assays. These results provide additional evidence that scFvs against Abeta provide an attractive alternative to more conventional antibody-based therapeutics for controlling aggregation and toxicity of Abeta.  相似文献   

13.
Duffy binding protein (DBP) plays a critical role in Plasmodium vivax invasion of human red blood cells. We previously reported a single-chain antibody fragment (scFv) that was specific to P. vivax DBP (PvDBP). However, the stabilization and the half-life of scFvs have not been studied. Here, we investigated the effect of PEGylated scFvs on their biological activity and stability in vitro. SDS-PAGE analysis showed that three clones (SFDBII-12, -58, and -92) were formed as dimers (about 70 kDa) with PEGylation. Clone SFDBII-58 gave the highest yield of PEGylated scFv. Binding analysis using BIAcore between DBP and scFv showed that both SFDBII-12 and -58 were decreased approximately by two folds at the level of binding affinity to DBP after PEGylation. However, the SFDBII-92 clone still showed a relatively high level of binding affinity (KD=1.02 x 10(-7) M). Binding inhibition assay showed that PEGylated scFv was still able to competitively bind the PvDBP and play a critical role in inhibiting the interactions between PvDBP protein expressed on the surface of Cos-7 cells and Duffy receptor on the surface of erythrocytes. When both scFvs and their PEGylated counterparts were exposed to trypsin, scFv was completely degraded only after 24 h, whereas 35% of PEGylated scFvs remained intact, maintaining their stability against the proteolytic attack of trypsin until 72 h. Taken together, these results suggest that the PEGylated scFvs retain their stability against proteolytic enzymes in vivo, with no significant loss in their binding affinity to target antigen, DBP.  相似文献   

14.
《MABS-AUSTIN》2013,5(1):130-142
The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro, the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.  相似文献   

15.
目的:从天然的大容量噬菌体抗体库中筛选特异的抗结核分枝杆菌晶体蛋白( alpha-crystallin Acr)的人源抗体.方法:以结核分枝杆菌Acr蛋白包被免疫管,通过对噬菌体抗体库进行4轮“吸附-洗脱-扩增”的过程从大容量抗体库中筛选特异性抗结核分枝杆菌Acr蛋白的抗体,并对可变区序列进行了测序分析.将特异性的噬菌体抗体感染HB2151菌,经IPTG诱导表达,制备了抗结核分枝杆菌Acr蛋白的可溶性单链抗体;对其序列和抗原结合活性进行分析鉴定.结果:经过4轮筛选,获得了43个与结核分枝杆菌Acr蛋白结合的阳性克隆,其中29个特异结合的克隆;测序分析有26不同的可变区片段;通过可溶性单链抗体(scFv)表达筛选到14株特异性结合Acr蛋白的可溶性单链抗体克隆;经过基因测序,分析了可变区基因的亚群.成功制备了可溶性单链抗体.Westren blotting分析证实筛选的人源单链抗体能与天然蛋白结合.结论:利用单链大容量抗体库获得抗结核分枝杆菌Acr蛋白的噬菌体抗体并且成功制备抗结核分枝杆菌Acr天然蛋白的可溶性单链抗体,为今后的研究和应用奠定基础.  相似文献   

16.
The development of efficient strategies for generating fully human monoclonal antibodies with unique functional properties that are exploitable for tailored therapeutic interventions remains a major challenge in the antibody technology field. Here, we present a methodology for recovering such antibodies from antigen-encountered human B cell repertoires. As the source for variable antibody genes, we cloned immunoglobulin G (IgG)-derived B cell repertoires from lymph nodes of 20 individuals undergoing surgery for head and neck cancer. Sequence analysis of unselected “LYmph Node Derived Antibody Libraries” (LYNDAL) revealed a naturally occurring distribution pattern of rearranged antibody sequences, representing all known variable gene families and most functional germline sequences. To demonstrate the feasibility for selecting antibodies with therapeutic potential from these repertoires, seven LYNDAL from donors with high serum titers against herpes simplex virus (HSV) were panned on recombinant glycoprotein B of HSV-1. Screening for specific binders delivered 34 single-chain variable fragments (scFvs) with unique sequences. Sequence analysis revealed extensive somatic hypermutation of enriched clones as a result of affinity maturation. Binding of scFvs to common glycoprotein B variants from HSV-1 and HSV-2 strains was highly specific, and the majority of analyzed antibody fragments bound to the target antigen with nanomolar affinity. From eight scFvs with HSV-neutralizing capacity in vitro, the most potent antibody neutralized 50% HSV-2 at 4.5 nM as a dimeric (scFv)2. We anticipate our approach to be useful for recovering fully human antibodies with therapeutic potential.  相似文献   

17.
Lymphocytes from eight individuals out of 60 healthy donors, whose plasmas showed relatively higher antibody titer for a target antigen of death receptor 5 (DR5), were selected for the source of antibody genes to construct so called an anti-DR5 pseudo-immune human single-chain fragment variable (scFv) library on the yeast cell surface (approximately 2x10(6) diversity). Compared with a large nonimmune human scFv library (approximately 1x10(9) diversity), the repertoire of the pseudo-immune scFv library was significantly biased toward the target antigen, which facilitated rapid enrichments of the target-specific high affinity scFvs during selections by fluorescence activated cell sortings. Isolated scFvs, HW5 and HW6, from the pseudo-immune library showed much higher specificity and affinity for the targeted antigen than those from the nonimmune library. Our results suggest that a pseudo-immune antibody library is very efficient to isolate target-specific high affinity antibody from a relatively small sized library.  相似文献   

18.
We previously developed murine and chimeric antibodies against a specific epithelial ovarian carcinoma (EOC) marker, named folate receptor (FR), and promising results were obtained in phase II trials. More recently, we successfully generated a completely human Fab fragment, C4, by conversion of one of the murine anti-FR antibodies to human antibody using phage display and guided selection. However, subsequent efforts to obtain C4 in a dimer format, which seems especially desirable for EOC locoregional treatment, resulted in a highly heterogeneous product upon natural dimerization and in a very poor production yield upon chemical dimerization by a non-hydrolyzable linker to a di-Fab-maleimide (DFM). We therefore designed, constructed and characterized a large Fab dual combinatorial human antibody phage display library obtained from EOC patients and potentially biased toward an anti-tumor response in an effort to obtain new anti-FR human antibodies suitable for therapy. Using this library and guiding the selection on FR-expressing cells with murine/human antibody chains, we generated four new human anti-FR antibody (AFRA) Fab fragments, one of which was genetically and chemically manipulated to obtain a chemical dimer, designated AFRA-DFM5.3, with high yield production and the capability for purification scaled-up to clinical grade. Overall affinity of AFRA-DFM5.3 was in the 2-digit nanomolar range, and immunohistochemistry indicated that the reagent recognized the FR expressed on EOC samples. 131I-AFRA-DFM5.3 showed high immunoreactivity, in vitro stability and integrity, and specifically accumulated only in FR-expressing tumors in subcutaneous preclinical in vivo models. Overall, our studies demonstrate the successful conversion of murine to completely human anti-FR antibodies through the combined use of antibody phage display libraries biased toward an anti-tumor response, guided selection and chain shuffling, and point to the suitability of AFRA5.3 for future clinical application in ovarian cancer.  相似文献   

19.
The tripartite toxin produced by Bacillus anthracis is the key determinant in the etiology of anthrax. We have engineered a panel of toxin-neutralizing antibodies, including single-chain variable fragments (scFvs) and scFvs fused to a human constant kappa domain (scAbs), that bind to the protective antigen subunit of the toxin with equilibrium dissociation constants (K(d)) between 63 nM and 0.25 nM. The entire antibody panel showed high serum, thermal, and denaturant stability. In vitro, post-challenge protection of macrophages from the action of the holotoxin correlated with the K(d) of the scFv variants. Strong correlations among antibody construct affinity, serum half-life, and protection were also observed in a rat model of toxin challenge. High-affinity toxin-neutralizing antibodies may be of therapeutic value for alleviating the symptoms of anthrax toxin in infected individuals and for medium-term prophylaxis to infection.  相似文献   

20.
《MABS-AUSTIN》2013,5(6):552-562
Apoptosis through the TRAIL receptor pathway can be induced via agonistic IgG to either TRAIL-R1 or TRAIL-R2. Here we describe the use of phage display to isolate a substantive panel of fully human anti-TRAIL receptor single chain Fv fragments (scFvs); 234 and 269 different scFvs specific for TRAIL-R1 and TRAIL-R2 respectively. In addition, 134 different scFvs that were cross-reactive for both receptors were isolated. To facilitate screening of all 637 scFvs for potential agonistic activity in vitro, a novel high-throughput surrogate apoptosis assay was developed. Ten TRAIL-R1 specific scFv and 6 TRAIL-R2 specific scFv were shown to inhibit growth of tumor cells in vitro in the absence of any cross-linking agents. These scFv were all highly specific for either TRAIL-R1 or TRAIL-R2, potently inhibited tumor cell proliferation, and were antagonists of TRAIL binding. Moreover, further characterization of TRAIL-R1 agonistic scFv demonstrated significant anti-tumor activity when expressed and purified as a monomeric Fab fragment. Thus, scFv and Fab fragments, in addition to whole IgG, can be agonistic and induce tumor cell death through specific binding to either TRAIL-R1 or TRAIL-R2. These potent agonistic scFv were all isolated directly from the starting phage antibody library and demonstrated significant tumor cell killing properties without any requirement for affinity maturation. Some of these selected scFv have been converted to IgG format and are being studied extensively in clinical trials to investigate their potential utility as human monoclonal antibody therapeutics for the treatment of human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号