首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Those amazing dinoflagellate chromosomes   总被引:2,自引:0,他引:2  
Rizzo PJ 《Cell research》2003,13(4):215-217
Dinoflagellates are a very large and diverse group of eukaryotic algae that play a major role in aquaticfood webs of both fresh water and marine habitats. Moreover, the toxic members of this group posea health threat in the form of red tides. Finally, dinoflagellates are of great evolutionary importance,because of their taxonomic position, and their unusual chromosome structure and composition. While the cytoplasm of dinoflagellates is typically eukaryotic, the nucleus is unique when compared to the nucleusof other eukaryotes. More specifically, while the chromosomes of all other eukaryotes contain histones,dinoflagellate chromosomes lack histones completely. There are no known exceptions to this observation: all dinoflagellates lack histones, and all other eukaryotes contain histones. Nevertheless, dinoflagellates remain a relatively unstudied group of eukaryotes.  相似文献   

3.
Dinoflagellates are eukaryotic microalgae with distinct chromosomes throughout the cell cycle which lack histones and nucleosomes. The molecular organization of these chromosomes is still poorly understood. We have analysed the presence of telomeres in two evolutionarily distant and heterogeneous dinoflagellate species (Prorocentrum micans and Amphidinium carterae) by FISH with a probe containing the Arabidopsis consensus telomeric sequence. Telomere structures were identified at the chromosome ends of both species during interphase and mitosis and were frequently associated with the nuclear envelope. These results identify for the first time telomere structures in dinoflagellate chromosomes, which are formed in the absence of histones. The presence of telomeres supports the linear nature of dinoflagellate chromosomes.  相似文献   

4.
5.
Dinoflagellates are a highly diversified group of unicellular protists that present fascinating nuclear features which have intrigued researchers for many years. As examples, a dense nuclear matrix accommodates permanently condensed chromosomes that are composed of fibers organized without histones and nucleosomes in stacked rows of parallel nested arches. The macromolecular chromosome structure corresponds to cholesteric liquid crystals with a constant left-handed twist. RNA acts to maintain the chromosome structure. Whole mounted chromosomes have a left-handed screw-like configuration with coils which progressively increase their pitch. This helical arrangement seems to be the result of a couple of narrow strands coiling together. Chromosomes do not show Q, G and C banding patterns. However, a roughly spherical differentiated upper end (primitive kinetochore?) and two differentiated coiling regions, the upper one composed of two to three coils where a couple of sister strands run together and parallel to each other, and the lower one where sister strands run out of phase by 180 degrees angular difference along the immediate next turns, can be distinguished. The chromosome segregation into two daughter chromatids begins at the telomere that attaches to the nuclear envelope, follows along the chromosome axis constituting first a Y-shaped and afterwards a V-shaped chromosome, which packs the newly synthesized DNA inside the "old" chromosome. Dividing chromosomes remain highly condensed, and the diameters of the new chromatids and the undivided chromosome are similar, but the number of arches is twice as large in G1 as in G2. The nuclear envelope remains through the cell cycle and shows spindle fibers, which penetrate intranuclear cytoplasmic channels during mitosis constituting an extra nuclear spindle. These and other cytogenetic features suggest that dinoflagellates are a group of enigmatic protists, unique and different from the usual eukaryotes. In contrast, DNA sequence studies propose that dinoflagellates are true eukaryotes, closely related to Apicomplexa, and ciliates (Alveolata), suggesting that the unusual features of chromosome and nuclear organization are not primitive but derived characters. Nevertheless, dinoflagellates have reached enigmatic specific nuclear and chromosome solutions, extremely far from those of other living beings.  相似文献   

6.
7.
8.
Physical and biochemical aspects of a proposed search for extraterrestrial eukaryotes (SETE) are considered. Such a program should approach the distinction between a primitive eukaryote and an archaebacteria. The emphasis on gene silencing suggests a possible assay suitable for a robotic investigation of eukaryoticity, so as to be able to decide whether the first steps towards eukaryogenesis have been taken in an extraterrestrial planet, or satellite. The experiment would consist of searching for cellular division and the systematic related delay in replication of heterochromatic chromosome segments. It should be noticed that the direct search for a membrane-bounded set of chromosomes does not necessarily determine eukaryotic identity, as there are prokaryotes that have membrane-bounded nucleoids. A closer look at the protein fraction of chromatin (mainly histones) does not help either, as there are some eukaryotes that may lack histones; there are also some bacteria as well as archaebacteria with histone-like proteins in their nucleoids. Comments on the recent suggestion of possible environments for a SETE program are discussed: the deep crust of Mars, and the Jovian satellite Europa, provided the existence of an ocean under its ice-covered surface is confirmed by the current Galileo mission.  相似文献   

9.
Dinoflagellates are protists with permanently condensed chromosomes that lack histones and whose nuclear membrane remains intact during mitosis. These unusual nuclear characters have suggested that the typical cell cycle regulators might be slightly different than those in more typical eukaryotes. To test this, a cyclin has been isolated from the dinoflagellate Gonyaulax polyedra by functional complementation in cln123 mutant yeast. This GpCyc1 sequence contains two cyclin domains in its C-terminal region and a degradation box typical of mitotic cyclins. Similar to other dinoflagellate genes, GpCyc1 has a high copy number, with approximately 5000 copies found in the Gonyaulax genome. An antibody raised against the N-terminal region of the GpCYC1 reacts with a 68kDa protein on Western blots that is more abundant in cell cultures enriched for G2-phase cells than in those containing primarily G1-phase cells, indicating its cellular level follows a pattern expected for a mitotic cyclin. This is the first report of a cell cycle regulator cloned and sequenced from a dinoflagellate, and our results suggest control of the dinoflagellate cell cycle will be very similar to that of other organisms.  相似文献   

10.
11.
The organization of eukaryotic chromatin has a major impact on all nuclear processes involving DNA substrates. Gene expression is affected by the positioning of individual nucleosomes relative to regulatory sequence elements, by the folding of the nucleosomal fiber into higher-order structures and by the compartmentalization of functional domains within the nucleus. Because site-specific acetylation of nucleosomal histones influences all three aspects of chromatin organization, it is central to the switch between permissive and repressive chromatin structure. The targeting of enzymes that modulate the histone acetylation status of chromatin, in synergy with the effects mediated by other chromatin remodeling factors, is central to gene regulation.  相似文献   

12.
The mesokaryote Gyrodinium cohnii lacks nucleosomes   总被引:3,自引:0,他引:3  
The dinoflagellate Gyrodiniumcohnii has a distinct nuclear membrane but apparently lacks histones associated with its chromatin. Approximately 13% of the nuclear DNA is rapidly digested by micrococcal nuclease to acid soluble fragments and not to nucleosomal sized fragments as in the typical eukaryote. Moreover in the electron microscope the chromatin of G.cohnii appears as a thin filament of 40–60 Å in width without regularly spaced nucleosomes. These observations support the view that the dinoflagellates exhibit characteristics of both prokaryotes and eukaryotes.  相似文献   

13.
14.
15.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

16.
17.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号