首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Akita mice are a genetic model of type 1 diabetes. In the present studies, we investigated the phenotype of Akita mice on the FVB/NJ background and examined urinary nephrin excretion as a marker of kidney injury. Male Akita mice were compared with non-diabetic controls for functional and structural characteristics of renal and cardiac disease. Podocyte number and apoptosis as well as urinary nephrin excretion were determined in both groups. Male FVB/NJ Akita mice developed sustained hyperglycemia and albuminuria by 4 and 8 weeks of age, respectively. These abnormalities were accompanied by a significant increase in systolic blood pressure in 10-week old Akita mice, which was associated with functional, structural and molecular characteristics of cardiac hypertrophy. By 20 weeks of age, Akita mice developed a 10-fold increase in albuminuria, renal and glomerular hypertrophy and a decrease in the number of podocytes. Mild-to-moderate glomerular mesangial expansion was observed in Akita mice at 30 weeks of age. In 4-week old Akita mice, the onset of hyperglycemia was accompanied by increased podocyte apoptosis and enhanced excretion of nephrin in urine before the development of albuminuria. Urinary nephrin excretion was also significantly increased in albuminuric Akita mice at 16 and 20 weeks of age and correlated with the albumin excretion rate. These data suggest that: 1. FVB/NJ Akita mice have phenotypic characteristics that may be useful for studying the mechanisms of kidney and cardiac injury in diabetes, and 2. Enhanced urinary nephrin excretion is associated with kidney injury in FVB/NJ Akita mice and is detectable early in the disease process.  相似文献   

2.
This study was undertaken to determine whether hyperfiltration exists at the single nephron level and whether albumin excretion is increased early in the course of diabetes in Biobreeding rats. Diabetic rats were studied at 8-12 weeks after the onset of diabetes. Control animals were age-matched, diabetes-resistant rats. Urinary and tubular fluid albumin concentrations were measured by polyacrylamide gel electrophoresis. Clearance and micropuncture techniques were used to determine whole kidney and single nephron glomerular filtration rate, renal blood flow, and glomerular capillary pressure. The urinary albumin excretion rate (1.3 +/- 0.1 mg/24 hr) and the tubular fluid albumin concentration (4.7 +/- 0.7 mg/dl) in the diabetic group were significantly elevated when compared with urinary albumin excretion (0.9 +/- 0.1 mg/24 hr) and tubular fluid albumin concentration (2.5 +/- 0.5 mg/dl) in the control group. There were no significant differences in glomerular hemodynamics (whole kidney or single nephron glomerular filtration rate or glomerular capillary pressure) between diabetic and control rats. The kidney weight and kidney weight to body weight ratio were significantly higher in diabetic rats when compared with control rats. Early diabetes in Biobreeding rats is characterized by mild albuminuria and increased kidney size, but not glomerular hyperfiltration.  相似文献   

3.
Angiotensin converting enzyme (ACE) inhibitors, particularly enalapril and captopril, have been shown to decrease proteinuria in diabetic animals and human subjects. Since heparan sulfate proteoglycan confers a negative charge on the glomerular basement membrane, and either decreased synthesis or loss of this charge causes albuminuria in diabetic animals, we examined the possibility that enalapril prevents albuminuria through glomerular preservation of heparan sulfate in long-term diabetic rats. A total of 22 male Wistar rats were used in the study. Diabetes was induced in 15 rats by a single intraperitoneal injection of streptozotocin (60 mg/kg). The remaining 7 rats received buffer. One week following induction of diabetes, 8 diabetic rats were allowed to drink tap water containing enalapril at a concentration of 50 mg/liter; the remaining 7 diabetic and 7 nondiabetic rats were given only tap water. The drug treatment was continued for 20 weeks. Systolic blood pressure and 24-hr urinary excretion of albumin were measured at 2, 8, 16, and 20 weeks. At the end of 20 weeks, all rats were killed, kidneys were removed, and glomeruli were isolated by differential sieving technique. Total glycosaminoglycan and heparan sulfate synthesis was determined by incubating glomeruli in the presence of [35S]sulfate. Characterization of heparan sulfate was performed by ion-exchange chromatography. Systolic blood pressures were significantly lower in enalapril-treated diabetic rats compared to untreated diabetic rats. Diabetic glomeruli synthesized less heparan sulfate than glomeruli from nondiabetic rats. Also, glomerular heparan sulfate content of diabetics was significantly lower than that of nondiabetics. Further characterization of heparan sulfate showed that the fraction eluted with 1 M NaCl was significantly lower and the fraction eluted with 1.25 M NaCl significantly higher in diabetic than in normal rats. Enalapril treatment normalized not only glomerular synthesis and content but also various fractions of heparan sulfate in diabetic rats. Diabetic rats excreted increased quantities of heparan sulfate and albumin than nondiabetic rats. Enalapril therapy prevented both these increases in diabetic rats. These data suggest that enalapril treatment improves albuminuria through preservation of glomerular heparan sulfate and prevention of its urinary loss in diabetic rats.  相似文献   

4.
Activation of protein kinase C (PKC) is implicated as an important mechanism by which diabetes causes vascular complications. We have recently shown that a PKC beta inhibitor ameliorates not only early diabetes-induced glomerular dysfunction such as glomerular hyperfiltration and albuminuria, but also overexpression of glomerular mRNA for transforming growth factor beta1 (TGF-beta1) and extracellular matrix (ECM) proteins in streptozotocin-induced diabetic rats, a model for type 1 diabetes. In this study, we examined the long-term effects of a PKC beta inhibitor on glomerular histology as well as on biochemical and functional abnormalities in glomeruli of db/db mice, a model for type 2 diabetes. Administration of a PKC beta inhibitor reduced urinary albumin excretion rates and inhibited glomerular PKC activation in diabetic db/db mice. Administration of a PKC beta inhibitor also prevented the mesangial expansion observed in diabetic db/db mice, possibly through attenuation of glomerular expression of TGF-beta and ECM proteins such as fibronectin and type IV collagen. These findings provide the first in vivo evidence that the long-term inhibition of PKC activation in the renal glomeruli can ameliorate glomerular pathologies in diabetic state, and thus suggest that a PKC beta inhibitor might be an useful therapeutic strategy for the treatment of diabetic nephropathy.  相似文献   

5.
Abstract

We investigated the renoprotective effects of imidapril hydrochloride ((-)-(4?S)-3-[(2?S)-2-[[(1?S)-1-ethoxycarbonyl-3-phenylpropyl] amino] propionyl]-1-methyl-2-oxoimidazolidine-4-carboxylic acid hydrochloride, imidapril), an angiotensin-converting enzyme inhibitor, in a diabetic animal model. We used BKS.Cg-+Leprdb/+Leprdb (db/db) mice, a genetic animal model of obese type 2 diabetes. Diabetic db/db mice suffered from glomerular hyperfiltration, albuminuria and hypoalbuminemia. Oral administration of 5?mg/kg/day of imidapril for 3 weeks suppressed renal hyperfiltration, reduced albuminuria and normalized hypoalbuminemia. Imidapril did not influence body weights, blood pressure or blood glucose concentrations in db/db mice. Urinary excretion of heparan sulfate (HS) in non-treated 11-week-old db/db mice was significantly lower than that in age-matched non-diabetic db/+m mice. HS is a component of HS proteoglycans, which are present in glomerular basement membranes and glycocalyx of cell surfaces. Reduced urinary HS excretion indicated glomerular HS loss in db/db mice. Imidapril increased urinary excretion of HS to concentrations observed in db/+m mice, indicating that imidapril prevented the loss of renal HS. These results suggest that imidapril ameliorates renal hyperfiltration and loss of renal contents of HS. Improvement of filtration function and maintenance of HS, which is an important structural component of glomeruli, may contribute to renoprotective effects of imidapril.  相似文献   

6.
We studied the non-obese diabetic (NOD) mice model because it develops autoimmune diabetes that resembles human type 1 diabetes. In diabetic mice, urinary albumin excretion (UAE) was ten-fold increased at an “early stage” of diabetes, and twenty-fold increased at a “later stage” (21 and 40 days, respectively after diabetes diagnosis) as compared to non-obese resistant controls. In NOD Diabetic mice, glomerular enlargement, increased glomerular filtration rate (GFR) and increased blood pressure were observed in the early stage. In the late stage, NOD Diabetic mice developed mesangial expansion and reduced podocyte number. Circulating and urine ACE2 activity were markedly increased both, early and late in Diabetic mice. Insulin administration prevented albuminuria, markedly reduced GFR, blood pressure, and glomerular enlargement in the early stage; and prevented mesangial expansion and the reduced podocyte number in the late stage of diabetes. The increase in serum and urine ACE2 activity was normalized by insulin administration at the early and late stages of diabetes in Diabetic mice. We conclude that the Diabetic mice develops features of early kidney disease, including albuminuria and a marked increase in GFR. ACE2 activity is increased starting at an early stage in both serum and urine. Moreover, these alterations can be completely prevented by the chronic administration of insulin.  相似文献   

7.
Chronic kidney disease (CKD) is a major complication of metabolic disorders such as diabetes mellitus, obesity, and hypertension. Comorbidity of these diseases is the factor exacerbating CKD progression. Statins are commonly used in patients with metabolic disorders to decrease the risk of cardiovascular complications. Sarpogrelate, a selective antagonist of 5-hydroxytryptamine (5-HT) 2A receptor, inhibits platelet aggregation and is used to improve peripheral circulation in diabetic patients. Here, we investigated the effects of sarpogrelate and rosuvastatin on CKD in mice that were subjected to a high fat diet (HFD) for 22 weeks and a single low dose of streptozotocin (STZ, 40 mg/kg). When mice were administrated sarpogrelate (50 mg/kg, p.o.) for 13 weeks, albuminuria and urinary cystatin C excretion were normalized and histopathological changes such as glomerular mesangial expansion, tubular damage, and accumulations in lipid droplets and collagen were significantly improved. Sarpogrelate treatment repressed the HFD/STZ-induced CD31 and vascular endothelial growth factor receptor-2 expressions, indicating the attenuation of glomerular endothelial proliferation. Additionally, sarpogrelate inhibited interstitial fibrosis by suppressing the increases in transforming growth factor-β1 (TGF-β1) and plasminogen activator inhibitor-1 (PAI-1). All of these functional and histological improvements were also seen in rosuvastatin (20 mg/kg) group and, notably, the combinatorial treatment with sarpogrelate and rosuvastatin showed additive beneficial effects on histopathological changes by HFD/STZ. Moreover, sarpogrelate reduced circulating levels of PAI-1 that were elevated in the HFD/STZ group. As supportive in vitro evidence, sarpogrelate incubation blocked TGF-β1/5-HT-inducible PAI-1 expression in murine glomerular mesangial cells. Taken together, sarpogrelate and rosuvastatin may be advantageous to control the progression of CKD in patients with comorbid metabolic disorders, and particularly, the use of sarpogrelate as adjunctive therapy with statins may provide additional benefits on CKD.  相似文献   

8.
Melatonin and taurine reduce early glomerulopathy in diabetic rats   总被引:23,自引:0,他引:23  
Oxidative stress occurs in diabetic patients and experimental models of diabetes. We examined whether two antioxidants, melatonin and taurine, can ameliorate diabetic nephropathy. Enhanced expression of glomerular TGF-beta1 and fibronectin mRNAs and proteinuria were employed as indices of diabetic nephropathy. Experimental diabetes was induced by intravenous injection of streptozotocin 50 mg/kg. Two days after streptozotocin, diabetic rats were assigned to one of the following groups: i) untreated; ii) melatonin supplement by 0.02% in drinking water; or iii) taurine supplement by 1% in drinking water. Four weeks after streptozotocin, diabetic rats (n = 6: plasma glucose 516+/-12 mg/dl) exhibited 6.1 fold increase in urinary protein excretion, 1.4 fold increase in glomerular TGF-beta1 mRNA, 1.7 fold increase in glomerular fibronectin mRNA, 2.2 fold increase in plasma lipid peroxides (LPO), and 44 fold increase in urinary LPO excretion above the values in control rats (n = 6: plasma glucose 188+/-14 mg/dl). Chronic administration of melatonin (n = 6) and taurine (n = 6) prevented increases in glomerular TGF-beta1 and fibronectin mRNAs and proteinuria without having effect on blood glucose. Both treatments reduced lipid peroxidation by nearly 50%. The present data demonstrate beneficial effects of melatonin and taurine on early changes in diabetic kidney and suggest that diabetic nephropathy associated with hyperglycemia is largely mediated by oxidative stress.  相似文献   

9.
Here we address the assumption that the massive intact albuminuria accompanying mutations of structural components of the slit diaphragm is due to changes in glomerular permeability. The increase in intact albumin excretion rate in Cd2ap knockout mice by >100-fold was not accompanied by equivalent changes in urine flow rate, glomerular filtration rate or increases in dextran plasma clearance rate, which demonstrates that changes in glomerular permeability alone could not account for the increase in intact albumin excretion. The albuminuria could be accounted for by inhibition of the tubule degradation pathway associated with degrading filtered albumin. There are remarkable similarities between these results and all types of podocytopathies in acquired and toxin-induced renal disease, and nephrotic states seen in mice with podocyte mutations.  相似文献   

10.
Effect of retinoic acid in experimental diabetic nephropathy   总被引:21,自引:0,他引:21  
  相似文献   

11.
The mechanisms responsible for hyperfiltration in diabetes mellitus (DM) as well as for the initiation and progression of diabetic nephropathy are not fully elucidated. Enhanced prostaglandin E2 (PGE2) production has been invoked in the former and thromboxane (TXB2) and hyperlipidemia in the latter. Fish oil (FO)-enriched diets can favorably alter eicosanoid synthesis and serum lipid profiles. We therefore examined the effects of a FO-enriched diet on glomerular filtration (GFR), proteinuria, glomerular eicosanoid production, and serum lipids in rats with streptozotocin-induced DM (STZ-DM). Groups of 5-8 rats with STZ-DM were maintained on low insulin and then pair-fed with isocaloric diets enriched with either FO (20% w/w) or beef tallow (BT; 20% w/w). GFR was determined in the same animals at onset of diet and after 8 and 20 weeks on the respective diets by [14C]inulin clearance using implanted osmotic minipumps each time. Significant hyperfiltration was present initially and GFR did not change on either diet for 20 weeks, in spite of a significant and greater than 50% decrease in all prostaglandins (PGE2, TXB2, PGF2 alpha, 6-keto, PGF1 alpha) produced by glomeruli isolated from DM/FO as compared to DM/BT or control rats. FO diet completely corrected the hypertriglyceridemia of diabetes and significantly reduced the mild and early proteinuria of DM. The decrease in proteinuria and the correction of hyperlipidemia of DM by a FO-enriched diet may be beneficial in the long term not only for the development of diabetic glomerulopathy, but also for the accelerated atherosclerosis of DM.  相似文献   

12.
Local inflammation is thought to contribute to the progression of diabetic nephropathy. The vitamin D receptor (VDR) activator paricalcitol has an antiproteinuric effect in human diabetic nephropathy at high doses. We have explored potential anti-inflammatory effects of VDR activator doses that do not modulate proteinuria in an experimental model of diabetic nephropathy to gain insights into potential benefits of VDR activators in those patients whose proteinuria is not decreased by this therapy. The effect of calcitriol and paricalcitol on renal function, albuminuria, and renal inflammation was explored in a rat experimental model of diabetes induced by streptozotocin. Modulation of the expression of mediators of inflammation by these drugs was explored in cultured podocytes. At the doses used, neither calcitriol nor paricalcitol significantly modified renal function or reduced albuminuria in experimental diabetes. However, both drugs reduced the total kidney mRNA expression of IL-6, monocyte chemoattractant protein (MCP)-1, and IL-18. Immunohistochemistry showed that calcitriol and paricalcitol reduced MCP-1 and IL-6 in podocytes and tubular cells as well as glomerular infiltration by macrophages, glomerular cell NF-κB activation, apoptosis, and extracellular matrix deposition. In cultured podocytes, paricalcitol and calcitriol at concentrations in the physiological and clinically significant range prevented the increase in MCP-1, IL-6, renin, and fibronectin mRNA expression and the secretion of MCP-1 to the culture media induced by high glucose. In conclusion, in experimental diabetic nephropathy VDR activation has local renal anti-inflammatory effects that can be observed even when proteinuria is not decreased. This may be ascribed to decreased inflammatory responses of intrinsic renal cells, including podocytes, to high glucose.  相似文献   

13.
AimsIdentifying the mechanisms that underlie progression from endothelial damage to podocyte damage, which leads to massive proteinuria, is an urgent issue that must be clarified to improve renal outcome in diabetic kidney disease (DKD). We aimed to examine the role of dynamin-related protein 1 (Drp1)-mediated regulation of mitochondrial fission in podocytes in the pathogenesis of massive proteinuria in DKD.MethodsDiabetes- or albuminuria-associated changes in mitochondrial morphology in podocytes were examined by electron microscopy. The effects of albumin and other diabetes-related stimuli, including high glucose (HG), on mitochondrial morphology were examined in cultured podocytes. The role of Drp1 in podocyte damage was examined using diabetic podocyte-specific Drp1-deficient mice treated with neuraminidase, which removes endothelial glycocalyx.ResultsNeuraminidase-induced removal of glomerular endothelial glycocalyx in nondiabetic mice led to microalbuminuria without podocyte damage, accompanied by reduced Drp1 expression and mitochondrial elongation in podocytes. In contrast, streptozotocin-induced diabetes significantly exacerbated neuraminidase-induced podocyte damage and albuminuria, and was accompanied by increased Drp1 expression and enhanced mitochondrial fission in podocytes. Cell culture experiments showed that albumin stimulation decreased Drp1 expression and elongated mitochondria, although HG inhibited albumin-associated changes in mitochondrial dynamics, resulting in apoptosis. Podocyte-specific Drp1-deficiency in mice prevented diabetes-related exacerbation of podocyte damage and neuraminidase-induced development of albuminuria. Endothelial dysfunction-induced albumin exposure is cytotoxic to podocytes. Inhibition of mitochondrial fission in podocytes is a cytoprotective mechanism against albumin stimulation, which is impaired under diabetic condition. Inhibition of mitochondrial fission in podocytes may represent a new therapeutic strategy for massive proteinuria in DKD.  相似文献   

14.
Nephrin, the key molecule of the glomerular slit diaphragm, is expressed on the surface of podocytes and is critical in preventing albuminuria. In diabetes, hyperglycemia leads to the loss of surface expression of nephrin and causes albuminuria. Here, we report a mechanism that can explain this phenomenon: hyperglycemia directly enhances the rate of nephrin endocytosis via regulation of the β-arrestin2-nephrin interaction by PKCα. We identified PKCα and protein interacting with c kinase-1 (PICK1) as nephrin-binding proteins. Hyperglycemia induced up-regulation of PKCα and led to the formation of a complex of nephrin, PKCα, PICK1, and β-arrestin2 in vitro and in vivo. Binding of β-arrestin2 to the nephrin intracellular domain depended on phosphorylation of nephrin threonine residues 1120 and 1125 by PKCα. Further, cellular knockdown of PKCα and/or PICK1 attenuated the nephrin-β-arrestin2 interaction and abrogated the amplifying effect of high blood glucose on nephrin endocytosis. In C57BL/6 mice, hyperglycemia over 24 h caused a significant increase in urinary albumin excretion, supporting the concept of the rapid impact of hyperglycemia on glomerular permselectivity. In summary, we have provided a molecular model of hyperglycemia-induced nephrin endocytosis and subsequent proteinuria and highlighted PKCα and PICK1 as promising therapeutic targets for diabetic nephropathy.  相似文献   

15.
The main manifestations of nephrotic syndrome include proteinuria, hypoalbuminemia, edema, hyperlipidemia and lipiduria. Common causes of nephrotic syndrome are diabetic nephropathy, minimal change disease (MCD), focal and segmental glomerulosclerosis (FSGS) and membranous nephropathy. Among the primary glomerular diseases, MCD is usually sensitive to glucocorticoid treatment, whereas the other diseases show variable responses. Despite the identification of key structural proteins in the glomerular capillary loop which may contribute to defects in ultrafiltration, many of the disease mechanisms of nephrotic syndrome remain unresolved. In this study, we show that the glomerular expression of angiopoietin-like-4 (Angptl4), a secreted glycoprotein, is glucocorticoid sensitive and is highly upregulated in the serum and in podocytes in experimental models of MCD and in the human disease. Podocyte-specific transgenic overexpression of Angptl4 (NPHS2-Angptl4) in rats induced nephrotic-range, and selective, proteinuria (over 500-fold increase in albuminuria), loss of glomerular basement membrane (GBM) charge and foot process effacement, whereas transgenic expression specifically in the adipose tissue (aP2-Angptl4) resulted in increased circulating Angptl4, but no proteinuria. Angptl4(-/-) mice that were injected with lipopolysaccharide (LPS) or nephritogenic antisera developed markedly less proteinuria than did control mice. Angptl4 secreted from podocytes in some forms of nephrotic syndrome lacks normal sialylation. When we fed the sialic acid precursor N-acetyl-D-mannosamine (ManNAc) to NPHS2-Angptl4 transgenic rats it increased the sialylation of Angptl4 and decreased albuminuria by more than 40%. These results suggest that podocyte-secreted Angptl4 has a key role in nephrotic syndrome.  相似文献   

16.
Enzymuria and specific proteinuria were examined over a period of 19 days in 4 groups of 5 rats: a control group, a nondiabetic polyuric group, a group of streptozotocin-induced diabetic rats treated with insulin as of the 10th day after the injection of the drug, and a similar group of untreated diabetic rats. Increased urinary excretion of beta-N-acetyl-D-glucosaminidase, lactate dehydrogenase, and alanine aminopeptidase was observed shortly after the induction of diabetes. It was partly or totally reversible following insulin treatment. Nondiabetic polyuria had a slight effect on the excretion of alanine aminopeptidase only. The urinary excretion of beta 2-microglobulin also rapidly increased after the onset of diabetes to a level approximately 50 times the control values. This effect was largely reversible with insulin treatment and was absent in the nondiabetic polyuric group. A small but significant 3-fold increase in albumin excretion was also noted but was not affected by insulin treatment. We conclude that streptozotocin-induced diabetes causes an early tubular dysfunction that is unrelated to polyuria and is reversible upon insulin treatment. This tubular dysfunction is best revealed by the urinary excretion of the low molecular weight protein beta 2-microglobulin. Our results suggest that it would be of interest to further examine the usefulness of sensitive markers of tubular dysfunction, especially low molecular weight proteinuria, in the detection of early stages of diabetic nephropathy.  相似文献   

17.
Under specific conditions non-steroidal anti-inflammatory drugs (NSAIDs) may be used to lower therapy-resistant proteinuria. The potentially beneficial anti-proteinuric, tubulo-protective, and anti-inflammatory effects of NSAIDs may be offset by an increased risk of (renal) side effects. We investigated the effect of indomethacin on urinary markers of glomerular and tubular damage and renal inflammation. We performed a post-hoc analysis of a prospective open-label crossover study in chronic kidney disease patients (n?=?12) with mild renal function impairment and stable residual proteinuria of 4.7±4.1 g/d. After a wash-out period of six wks without any RAAS blocking agents or other therapy to lower proteinuria (untreated proteinuria (UP)), patients subsequently received indomethacin 75 mg BID for 4 wks (NSAID). Healthy subjects (n?=?10) screened for kidney donation served as controls. Urine and plasma levels of total IgG, IgG4, KIM-1, beta-2-microglobulin, H-FABP, MCP-1 and NGAL were determined using ELISA. Following NSAID treatment, 24 h -urinary excretion of glomerular and proximal tubular damage markers was reduced in comparison with the period without anti-proteinuric treatment (total IgG: UP 131[38-513] vs NSAID 38[17-218] mg/24 h, p<0.01; IgG4: 50[16-68] vs 10[1-38] mg/24 h, p<0.001; beta-2-microglobulin: 200[55-404] vs 50[28-110] ug/24 h, p?=?0.03; KIM-1: 9[5]-[14] vs 5[2]-[9] ug/24 h, p?=?0.01). Fractional excretions of these damage markers were also reduced by NSAID. The distal tubular marker H-FABP showed a trend to reduction following NSAID treatment. Surprisingly, NSAID treatment did not reduce urinary excretion of the inflammation markers MCP-1 and NGAL, but did reduce plasma MCP-1 levels, resulting in an increased fractional MCP-1 excretion. In conclusion, the anti-proteinuric effect of indomethacin is associated with reduced urinary excretion of glomerular and tubular damage markers, but not with reduced excretion of renal inflammation markers. Future studies should address whether the short term glomerulo- and tubulo-protective effects as observed outweigh the possible side-effects of NSAID treatment on the long term.  相似文献   

18.
We have investigated the effects of LPS, human rTNF (hrTNF) and human rIL-1 beta (hrIL-1 beta) pretreatment on the intensity of antibody-mediated injury in vivo by using a passive model of anti-glomerular basement membrane (GBM) antibody-mediated nephritis in rats. The experiments show that all three pretreatments exacerbate injury in this model whether judged by albuminuria or the prevalence of glomerular capillary thrombi. The effect on albuminuria was dose dependent with all three treatments. The lowest effective dose of LPS was 0.025 microgram while those for hrTNF and hrIL-1 beta were 0.4 microgram and 0.5 microgram, respectively. All three pretreatments also increased the prevalence of glomerular capillary thrombi which were rare in rats injected with anti-GBM antibodies without pretreatment. LPS pretreatment appeared to be more effective in causing glomerular capillary thrombi than hrTNF or hrIL-1 beta and this was reflected in the correlations between albuminuria and the proportion of glomeruli with capillary thrombi. This relation was linear for all three pretreatments but the slope was appreciably greater for rats pretreated with LPS (0.37) when compared with results from rats given either hrTNF (0.22) or hrIL-1 beta (0.29). Pretreatment of nephritic rats with both cytokines increased the slope to 0.42 demonstrating a synergistic effect. The synergism of hrTNF with hrIL-1 beta was also demonstrated by the effective doses needed to induce albuminuria which was evident in rats treated with 0.05 microgram of IL-1 beta and 0.4 microgram of TNF. Neither the cytokines nor LPS caused clinical, morphologic, or biochemical evidence of renal toxicity when given alone in the dose used here but they did cause a transient increase in the number of neutrophils marginated in glomerular capillaries. Pretreatment of rats with LPS or cytokines increased the glomerular neutrophil influx after anti-GBM antibodies by roughly sixfold. Our experiments show that TNF and IL-1 can increase the severity of glomerular injury in nephritis; they may be important in modulating glomerular injury clinically.  相似文献   

19.
Persistent proteinuria is strongly associated with increased mortality in insulin dependent diabetes, and risk of this condition can be predicted many years in advance by subclinical increases in albumin excretion rate (microalbuminuria). Eight normotensive insulin dependent diabetics with microalbuminuria who had overnight albumin excretion rates of between 15 and 200 micrograms/min underwent a three week randomised crossover study of their normal protein diet (median 92 (range 55-117) g/day) and a low protein diet (47 (38-57) g/day). Both diets were isoenergetic, and the low protein diet was supplemented with calcium and phosphate. Median overnight albumin excretion rate fell from 23.0 (15.0-170.1) micrograms/min during the normal diet to 15.4 (4.1-97.8) micrograms/min during the low protein diet. No consistent change was found in urinary excretion of beta 2 microglobulin during the two diets. The reduction in albumin excretion rate was accompanied by a significant fall in median glomerular filtration rate and fractional renal clearance of albumin. Kidney volume remained unchanged. There were no significant changes in glycaemic control or arterial blood pressure. In these few patients restriction of dietary protein had a beneficial effect on microalbuminuria, independent of changes in glucose concentrations and arterial blood pressure.  相似文献   

20.
N Gilboa  A M Magro  Y Han  U H Rudofsky 《Life sciences》1987,41(13):1629-1634
Fawn-hooded (FH) rats, primarily males, develop spontaneous low-renin hypertension associated with reduced urinary excretion of kallikrein as early as 2 months of age, followed by progressive glomerular sclerosis and proteinuria as early as 3 months of age. In the present study we determined the effects of early (5-7 weeks) or late (5 months) orchiectomy on the blood pressure and nephropathy of FH rats, compared to sham-operated (control) FH males. Early orchiectomy reduced significantly the progression of glomerular sclerosis and of proteinuria and ameliorated the hypertension but had no significant effect on excretion of urinary kallikrein. Late orchiectomy, in contrast, had no significant effect on the progression of glomerular sclerosis or proteinuria but did significantly reduce the blood pressure and marginally increase the excretion of urine kallikrein. These results suggest that (a) male sex hormones may play a role in the pathogenesis of hypertension and nephropathy in the FH rats and (b) renal disease in this strain progresses in spite of improvement in blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号