首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It has been shown previously that the DNA deoxyribophosphodiesterase (dRpase) activity of Escherichia coli excises 2-deoxyribose 5-phosphate moieties at apurinic/apyrimidinic (AP) sites in DNA following cleavage of the DNA at the AP site by an AP endonuclease such as endonuclease IV of E coli. A second class of enzymes that cleave DNA at AP sites by a beta-elimination mechanism, AP lyases, leave a different sugar-phosphate product remaining at the AP site, which has been identified as the compound trans-4-hydroxy-2-pentenal 5-phosphate. It is shown that dRpase removes this unsaturated sugar-phosphate group following cleavage of a poly(dA-dT) substrate containing AP sites by the action of the AP lyase endonuclease III of E. coli. The Km for the removal of trans-4-hydroxy-2-pentenal 5-phosphate is 0.06 microM; the Km for the removal of 2-deoxyribose 5-phosphate is 0.17 microM. It was verified that the sugar-phosphate product removed by dRpase from the endonuclease III-cleaved substrate was trans-4-hydroxy-2-pentenal 5-phosphate by conversion of the product to the compound cyclopentane-1,2-dione. The dRpase activity is unique in its ability to remove sugar-phosphate products after cleavage by both AP endonucleases and AP lyases.  相似文献   

2.
The E. coli single-stranded binding protein (SSB) has been demonstrated in vitro to be involved in a number of replicative, DNA renaturation, and protective functions. It was shown previously that SSB can interact with exonuclease I to stimulate the hydrolysis of single-stranded DNA. We demonstrate here that E. coli SSB can also enhance the DNA deoxyribophosphodiesterase (dRpase) activity of exonuclease I by stimulating the release of 2-deoxyribose-5-phosphate from a DNA substrate containing AP endonuclease-incised AP sites, and the release of 4-hydroxy-2-pentenal-5-phosphate from a DNA substrate containing AP lyase-incised AP sites. E. coli SSB and exonuclease I form a protein complex as demonstrated by Superose 12 gel filtration chromatography. These results suggest that SSB may have an important role in the DNA base excision repair pathway.  相似文献   

3.
The oligonucleotide [5'-32P]pdT8d(-)dTn, containing an apurinic/apyrimidinic (AP) site [d(-)], yields three radioactive products when incubated at alkaline pH: two of them, forming a doublet approximately at the level of pdT8dA when analysed by polyacrylamide-gel electrophoresis, are the result of the beta-elimination reaction, whereas the third is pdT8p resulting from beta delta-elimination. The incubation of [5'-32P]pdT8d(-)dTn, hybridized with poly(dA), with E. coli endonuclease III yields two radioactive products which have the same electrophoretic behaviour as the doublet obtained by alkaline beta-elimination. The oligonucleotide pdT8d(-) is degraded by the 3'-5' exonuclease activity of T4 DNA polymerase as well as pdT8dA, showing that a base-free deoxyribose at the 3' end is not an obstacle for this activity. The radioactive products from [5'-32P]pdT8d(-)dTn cleaved by alkaline beta-elimination or by E. coli endonuclease III are not degraded by the 3'-5' exonuclease activity of T4 DNA polymerase. When DNA containing AP sites labelled with 32P 5' to the base-free deoxyribose labelled with 3H in the 1' and 2' positions is degraded by E. coli endonuclease VI (exonuclease III) and snake venom phosphodiesterase, the two radionuclides are found exclusively in deoxyribose 5-phosphate and the 3H/32P ratio in this sugar phosphate is the same as in the substrate DNA. When DNA containing these doubly-labelled AP sites is degraded by alkaline treatment or with Lys-Trp-Lys, followed by E. coli endonuclease VI (exonuclease III), some 3H is found in a volatile compound (probably 3H2O) whereas the 3H/32P ratio is decreased in the resulting sugar phosphate which has a chromatographic behaviour different from that of deoxyribose 5-phosphate. Treatment of the DNA containing doubly-labelled AP sites with E. coli endonuclease III, then with E. coli endonuclease VI (exonuclease III), also results in the loss of 3H and the formation of a sugar phosphate with a lower 3H/32P ratio that behaves chromatographically as the beta-elimination product digested with E. coli endonuclease VI (exonuclease III). From these data, we conclude that E. coli endonuclease III cleaves the phosphodiester bond 3' to the AP site, but that the cleavage is not a hydrolysis leaving a base-free deoxyribose at the 3' end as it has been so far assumed. The cleavage might be the result of a beta-elimination analogous to the one produced by an alkaline pH or Lys-Trp-Lys. Thus it would seem that E. coli 'endonuclease III' is, after all, not an endonuclease.  相似文献   

4.
Escherichia coli endonuclease IV hydrolyses the C(3')-O-P bond 5' to a 3'-terminal base-free deoxyribose. It also hydrolyses the C(3')-O-P bond 5' to a 3'-terminal base-free 2',3'-unsaturated sugar produced by nicking 3' to an AP (apurinic or apyrimidinic) site by beta-elimination; this explains why the unproductive end produced by beta-elimination is converted by the enzyme into a 3'-OH end able to prime DNA synthesis. The action of E. coli endonuclease IV on an internal AP site is more complex: in a first step the C(3')-O-P bond 5' to the AP site is hydrolysed, but in a second step the 5'-terminal base-free deoxyribose 5'-phosphate is lost. This loss is due to a spontaneous beta-elimination reaction in which the enzyme plays no role. The extreme lability of the C(3')-O-P bond 3' to a 5'-terminal AP site contrasts with the relative stability of the same bond 3' to an internal AP site; in the absence of beta-elimination catalysts, at 37 degrees C the half-life of the former is about 2 h and that of the latter 200 h. The extreme lability of a 5'-terminal AP site means that, after nicking 5' to an AP site with an AP endonuclease, in principle no 5'----3' exonuclease is needed to excise the AP site: it falls off spontaneously. We have repaired DNA containing AP sites with an AP endonuclease (E. coli endonuclease IV or the chromatin AP endonuclease from rat liver), a DNA polymerase devoid of 5'----3' exonuclease activity (Klenow polymerase or rat liver DNA polymerase beta) and a DNA ligase. Catalysts of beta-elimination, such as spermine, can drastically shorten the already brief half-life of a 5'-terminal AP site; it is what very probably happens in the chromatin of eukaryotic cells. E. coli endonuclease IV also probably participates in the repair of strand breaks produced by ionizing radiations: as E. coli endonuclease VI/exonuclease III, it is a 3'-phosphoglycollatase and also a 3'-phosphatase. The 3'-phosphatase activity of E. coli endonuclease VI/exonuclease III and E. coli endonuclease IV can also be useful when the AP site has been excised by a beta delta-elimination reaction.  相似文献   

5.
Cunniffe SM  Lomax ME  O'Neill P 《DNA Repair》2007,6(12):1839-1849
Ionizing radiation induces clustered DNA damaged sites, defined as two or more lesions formed within one or two helical turns of the DNA through passage of a single radiation track. It is now established that clustered DNA damage sites are found in cells and present a challenge to the repair machinery of the cell but to date, most studies have investigated the effects of bi-stranded lesions. A subset of clustered DNA damaged sites exist in which two or more lesions are present in tandem on the same DNA strand. In this study synthetic oligonucleotides containing an AP site 1, 3 or 5 bases 5' or 3' to 8-oxo-7,8-dihydroguanine (8-oxoG) on the same DNA strand were synthesized as a model of a tandem clustered damaged sites. It was found that 8-oxoG retards the incision of the AP site by exonuclease III (Xth) and formamidopyrimidine DNA glycosylase (Fpg). In addition the rejoining of the AP site by xrs5 nuclear extracts is impaired by the presence of 8-oxoG. The mutation frequency arising from 8-oxoG within a tandem clustered site was determined in both wild type and mutant E. coli backgrounds. In wild-type, nth, fpg and mutY null E. coli, the mutation frequency is slightly elevated when an AP site is in tandem to 8-oxoG, compared with when 8-oxoG is present as a single lesion. Interestingly, in the double mutant mutY/fpg null E. coli, the mutation frequency of 8-oxoG is reduced when an AP site is present in tandem compared with when 8-oxoG is present as a single lesion. This study demonstrates that tandem lesions can present a challenge to the repair machinery of the cell.  相似文献   

6.
In this study we demonstrate that the different substrate recognition properties of bacterial and human AP endonucleases might be used to quantify and localize apurinic (AP) sites formed in DNA in vivo. By using a model oligonucleotide containing a single AP site modified with methoxyamine (MX), we show that endonuclease III and IV of E. coli are able to cleave the alkoxyamine-adducted site whereas a partially purified HeLa AP endonuclease and crude cell-free extracts from HeLa cells are inhibited by this modification. In addition MX-modified AP sites in a DNA template retain their ability to block DNA synthesis in vitro. Since MX can efficiently react with AP sites formed in mammalian cells in vivo we propose that the MX modified abasic sites thus formed can be quantitated and localized at the level of the individual gene by subsequent site specific cleavage by either E. coli endonuclease III or IV in vitro.  相似文献   

7.
DNA deoxyribophosphodiesterase (dRpase) of E. coli catalyzes the release of deoxyribose-phosphate moieties following the cleavage of DNA at an apurinic/apyrimidinic (AP) site by either an AP endonuclease or AP lyase. Exonuclease I is a single-strand specific DNA nuclease which affects the expression of recombination and repair pathways in E. coli. We show here that a major dRpase activity in E. coli is associated with the exonuclease I protein. Highly purified exonuclease I isolated from an over-producing stain contains high levels of dRpase activity; it catalyzes the release of deoxyribose-5-phosphate from an AP site incised with endonuclease IV of E. coli and the release of 4-hydroxy-2-pentenal-5-phosphate from an AP site incised by the AP lyase activity of endonuclease III of E. coli. A strain containing a deletion of the sbcB gene showed little dRpase activity; the activity could be restored by transformation of the strain with a plasmid containing the sbcB gene. The dRpase activity isolated from an overproducing stain was increased 70-fold as compared to a normal sbcB+ strain (AB3027). These results suggest that the dRpase activity may be important in pathways for both DNA repair and recombination.  相似文献   

8.
[5'-32P]pdT8d(-)dT7, containing an AP (apurinic/apyrimidinic) site in the ninth position, and [d(-)-1',2'-3H, 5'-32P]DNA, containing AP sites labelled with 3H in the 1' and 2' positions of the base-free deoxyribose [d(-)] and with 32P 5' to this deoxyribose, were used to investigate the yields of the beta-elimination and delta-elimination reactions catalysed by spermine, and also the yield of hydrolysis, by the 3'-phosphatase activity of T4 polynucleotide kinase, of the 3'-phosphate resulting from the beta delta-elimination. Phage-phi X174 RF (replicative form)-I DNA containing AP (apurinic) sites has been repaired in five steps: beta-elimination, delta-elimination, hydrolysis of 3'-phosphate, DNA polymerization and ligation. Spermine, in one experiment, and Escherichia coli formamidopyrimidine: DNA glycosylase, in another experiment, were used to catalyse the first and second steps (beta-elimination and delta-elimination). These repair pathways, involving a delta-elimination step, may be operational not only in E. coli repairing its DNA containing a formamido-pyrimidine lesion, but also in mammalian cells repairing their nuclear DNA containing AP sites.  相似文献   

9.
Homogeneous Fpg protein of Escherichia coli has DNA glycosylase activity which excises some purine bases with damaged imidazole rings, and an activity excising deoxyribose (dR) from DNA at abasic (AP) sites leaving a gap bordered by 5'- and 3'-phosphoryl groups. In addition to these two reported activities, we show that the Fpg protein also catalyzes the excision of 5'-terminal deoxyribose phosphate (dRp) from DNA, which is the principal product formed by the incision of AP endonucleases at abasic sites. Moreover, the rate of the Fpg protein catalysis for the 2,6-diamino-4-hydroxy-5-formamidopyrimidine-DNA glycosylase activity is slower than the activities excising dR from abasic sites and dRp from abasic sites preincised by endonucleases. The product released by the Fpg protein in the excision of 5'-terminal dRp from an abasic site preincised by an AP endonuclease is a single base-free unsaturated dRp, suggesting that the excision results from beta-elimination. The release of 5'-terminal dRp by crude extracts of E. coli from wild type and fpg-mutant strains shows that the Fpg protein is one of the major EDTA-resistant activities catalyzing this reaction.  相似文献   

10.
We have developed simple and sensitive assays that distinguish the main classes of apurinic/apyrimidinic (AP) endonucleases: Class I enzymes that cleave on the 3' side of AP sites by beta-elimination, and Class II enzymes that cleave by hydrolysis on the 5' side. The distinction of the two types depends on the use of a synthetic DNA polymer that contains AP sites with 5'-[32P]phosphate residues. Using this approach, we now show directly that Escherichia coli endonuclease IV and human AP endonuclease are Class II enzymes, as inferred previously on the basis of indirect assays. The assay method does not exhibit significant interference by nonspecific nucleases or primary amines, which allows the ready determination of different AP endonuclease activities in crude cell extracts. In this way, we show that virtually all of the Class II AP endonuclease activity in E. coli can be accounted for by two enzymes: exonuclease III and endonuclease IV. In the yeast Saccharomyces cerevisiae, the Class II AP endonuclease activity is totally dependent on a single enzyme, the Apn1 protein, but there are probably multiple Class I enzymes. The versatility and ease of our approach should be useful for characterizing this important class of DNA repair enzymes in diverse systems.  相似文献   

11.
The extent and location of DNA repair synthesis in a double-stranded oligonucleotide containing a single dUMP residue have been determined. Gently prepared Escherichia coli and mammalian cell extracts were employed for excision repair in vitro. The size of the resynthesized patch was estimated by restriction enzyme analysis of the repaired oligonucleotide. Following enzymatic digestion and denaturing gel electrophoresis, the extent of incorporation of radioactively labeled nucleotides in the vicinity of the lesion was determined by autoradiography. Cell extracts of E. coli and of human cell lines were shown to carry out repair mainly by replacing a single nucleotide. No significant repair replication on the 5' side of the lesion was observed. The data indicate that, after cleavage of the dUMP residue by uracil-DNA glycosylase and incision of the resultant apurinic-apyrimidinic site by an apurinic-apyrimidinic endonuclease activity, the excision step is catalyzed usually by a DNA deoxyribophosphodiesterase rather than by an exonuclease. Gap-filling and ligation complete the repair reaction. Experiments with enzyme inhibitors in mammalian cell extracts suggest that the repair replication step is catalyzed by DNA polymerase beta.  相似文献   

12.
1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.  相似文献   

13.
To discover the physiological role of the Bacillus subtilis ExoA protein, which is similar in amino acid sequence to Escherichia coli exonuclease III, an exoA::Cm disruption was constructed in the chromosomal DNA of B. subtilis. There was no clear difference in tolerance to hydrogen peroxide and alkylating agents between the disruptant and the wild type strain. An expression plasmid of the ExoA in E. coli was constructed by inserting the exoA gene into the expression vector pKP1500. The purified ExoA was used to clarify enzymatic characterizations using synthetic DNA oligomers as substrates. A DNA oligomer containing a 1', 2'-dideoxyribose residue as an AP site, a DNA-RNA chimera oligomer, and a 3' end 32P-labeled oligomer were synthesized. It has been shown that the ExoA has AP endonuclease, 3'-5' exonuclease, ribonuclease H, and 3'-phosphomonoesterase activities. Thus, it has been confirmed that ExoA is a multifunctional DNA-repair enzyme in B. subtilis that is very similar to E. coli exonuclease III except that ExoA has lower 3'-5' exonuclease activity than that of E. coli exonuclease III.  相似文献   

14.
The effect of apurinic/apyrimidinic (AP) sites in DNA on RNA and protein synthesis was studied in vitro using T7 coliphage DNA. Initiation of RNA synthesis by Escherichia coli RNA polymerase was synchronized and heparin was used to prevent reinitiation. When the T7 DNA contained AP sites, the rate of RNA synthesis was decreased but it remained higher than the values calculated on the assumption that an AP site in the transcribed strand is a complete block to the enzyme progression. Moreover, after the time taken by an unimpeded enzyme to go from promoter to terminator, the rate of RNA synthesis remained elevated and the number of complete RNA molecules (7000 nucleotides) continued to increase for some time. These results suggest that, if the E. coli RNA polymerase is stopped by an AP site, most often, after a pause, the enzyme resumes elongation of the RNA chain which is continuous over the AP site. Sometimes however, RNA synthesis is definitively interrupted during the pause; the probability of interruption has been estimated to be 0.3 in our experimental conditions. When a nick is placed 5' to the AP site by an AP endonuclease, the results are similar: most often, the RNA chain is synthesized without interruption past the nick in the template strand. The pause of the E. coli RNA polymerase at this combined lesion appears to be shorter than when the AP site is intact. To investigate whether a nucleotide is placed in the RNA chain in front of the AP site in the template strand by E. coli RNA polymerase, RNA synthesis was taken to completion before using this RNA for protein synthesis and measuring the activity of gene-1 product, T7 RNA polymerase. The result suggests that, after pausing, the E. coli RNA polymerase places a nucleotide in the RNA chain when passing over an AP site. The mechanism of the delayed lethality of T7 coliphages treated with monofunctional alkylating agents, which is due to the appearance of AP sites, is discussed.  相似文献   

15.
Endonuclease IV gene, the only putative AP endonuclease of C. pneumoniae genome, was cloned into pET28a. Recombinant C. pneumoniae endonuclease I V (CpEndoIV) was expressed in E. coli and purified to homogeneity. CpEndoIV has endonuclease activity against apurinic/apyrimidinic sites (AP sites) of double-stranded (ds) oligonucleotides. AP endonuclease activity of CpEndoIV was promoted by divalent metal ions Mg2+ and Zn2+, and inhibited by EDTA. The natural (A, T, C and G) and modified (U, I and 8-oxo-G (GO)) bases opposite AP site had little effect on the cleavage efficiency of AP site of ds oligonucleotides by CpEndoIV. However, the CpEndoIV-dependent cleavage of AP site opposite modified base GO was strongly inhibited by Chlamydia DNA glycosylase MutY. Interestingly, the AP site in single-stranded (ss) oligonucleotides was also the effective substrate of CpEndoIV. Similar to E. coli endonuclease IV, AP endonuclease activity of CpEndoIV was also heat-stable to some extent, with a half time of 5 min at 60 degrees C.  相似文献   

16.
A Price  T Lindahl 《Biochemistry》1991,30(35):8631-8637
Activities that catalyze or promote the release of 5'-terminal deoxyribose phosphate residues from DNA abasic sites previously incised by an AP endonuclease have been identified in soluble extracts of several human cell lines and calf thymus. Such excision of base-free sugar phosphate residues from apurinic/apyrimidinic sites is expected to be obligatory prior to repair by gap filling and ligation. The most efficient excision function is due to a DNA deoxyribophosphodiesterase similar to the protein found in Escherichia coli. The human enzyme has been partially purified and freed from detectable exonuclease activity. This DNA deoxyribophosphodiesterase is a Mg(2+)-requiring hydrolytic enzyme with an apparent molecular mass of approximately 47 kDa and is located in the cell nucleus. By comparison, the major nuclear 5'----3' exonuclease, DNase IV, is unable to catalyze the release of 5'-terminal deoxyribose phosphate residues as free sugar phosphates but can liberate them at a slow rate as part of small oligonucleotides. Nonenzymatic removal of 5'-terminal deoxyribose phosphate from DNA by beta-elimination promoted by polyamines and basic proteins is a very slow mechanism of release compared to enzymatic hydrolysis. We conclude that a DNA deoxyribophosphodiesterase acts at an intermediate stage between an AP endonuclease and a DNA polymerase during DNA repair at apurinic/apyrimidinc sites in mammalian cells, but several alternative routes also exist for the excision of deoxyribose phosphate residues.  相似文献   

17.
AP endonuclease (APE), with dual activities as an endonuclease and a 3' exonuclease, is a central player in repair of oxidized and alkylated bases in the genome via the base excision repair (BER) pathway. APE acts as an endonuclease in repairing AP sites generated spontaneously or after base excision during BER. It also removes the 3' blocking groups in DNA generated directly by ROS or after AP lyase reaction. In contrast to E. coli and lower eukaryotes which express two distinct APEs of Xth and Nfo types, mammalian genomes encode only one APE, APE1, which is of the Xth type. However, while the APEs together are dispensable in the bacteria and simple eukaryotes, APE1 is essential for mammalian cells. We have shown that apoptosis of mouse embryo fibroblasts triggered by APE1 inactivation can be prevented by ectopic expression of repair competent but not repair-defective APE1. The mitochondrial APE (mtAPE) is an N-terminal truncation product of APE1. A significant fraction of APE1 is cytosolic, and oxidative stress induces its nuclear and mitochondrial translocation. Such age-dependent increase in APE activity in the nucleus and mitochondria is consistent with the hypothesis that aging is associated with chronic oxidative stress.  相似文献   

18.
The Escherichia coli Fpg protein is a DNA glycosylase/AP lyase. It removes, in DNA, oxidized purine residues, including the highly mutagenic C8-oxo-guanine (8-oxoG). The catalytic mechanism is believed to involve the formation of a transient Schiff base intermediate formed between DNA containing an oxidized residue and the N-terminal proline of the Fpg protein. The importance and the role of this proline upon the various catalytic activities of the Fpg protein was examined by targeted mutagenesis, resulting in the construction of three mutant Fpg proteins: Pro-2 --> Gly (FpgP2G), Pro-2 --> Thr (FpgP2T), and Pro-2 --> Glu (FpgP2E). The formamidopyrimidine DNA glycosylase activities of FpgP2G and FpgP2T were comparable and accounted for 10% of the wild-type activity. FpgP2G and FpgP2T had barely detectable 8-oxoG-DNA glycosylase activity and produced minute Schiff base complex with 8-oxoG/C DNA. FpgP2G and FpgP2T mutants did not cleave a DNA containing preformed AP site but readily produced Schiff base complex with this substrate. FpgP2E was completely inactive in all the assays. The binding constants of the different mutants when challenged with a duplex DNA containing a tetrahydrofuran residue were comparable. The mutant Fpg proteins barely or did not complement in vivo the spontaneous transitions G/C --> T/A in E. coli BH990 (fpg mutY) cells. These results show the mandatory role of N-terminal proline in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo as well as in its AP lyase activity upon preformed AP site but less in the 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine-DNA glycosylase activity.  相似文献   

19.
Sung JS  Mosbaugh DW 《Biochemistry》2000,39(33):10224-10235
Escherichia coli double-strand uracil-DNA glycosylase (Dug) was purified to apparent homogeneity as both a native and recombinant protein. The molecular weight of recombinant Dug was 18 670, as determined by matrix-assisted laser desorption-ionization mass spectrometry. Dug was active on duplex oligonucleotides (34-mers) that contained site-specific U.G, U.A, ethenoC.G, and ethenoC.A targets; however, activity was not detected on DNA containing a T.G mispair or single-stranded DNA containing either a site-specific uracil or ethenoC residue. One of the distinctive characteristics of Dug was that the purified enzyme excised a near stoichiometric amount of uracil from U.G-containing oligonucleotide substrate. Electrophoretic mobility shift assays revealed that the lack of turnover was the result of strong binding by Dug to the reaction product apyrimidinic-site (AP) DNA. Addition of E. coli endonuclease IV stimulated Dug activity by enhancing the rate and extent of uracil excision by promoting dissociation of Dug from the AP. G-containing 34-mer. Catalytically active endonuclease IV was apparently required to mediate Dug turnover, since the addition of 5 mM EDTA mitigated the effect. Further support for this interpretation came from the observations that Dug preferentially bound 34-mer containing an AP.G target, while binding was not observed on a substrate incised 5' to the AP-site. We also investigated whether Dug could initiate a uracil-mediated base excision repair pathway in E. coli NR8052 cell extracts using M13mp2op14 DNA (form I) containing a site-specific U.G mispair. Analysis of reaction products revealed a time dependent appearance of repaired form I DNA; addition of purified Dug to the cell extract stimulated the rate of repair.  相似文献   

20.
AP site structural determinants for Fpg specific recognition.   总被引:4,自引:0,他引:4       下载免费PDF全文
The binding of Escherichia coli and Lactococcus lactis Fapy-DNA glyosylase (Fpg) proteins to DNA containing either cyclic or non-cyclic abasic (AP) site analogs was investigated by electrophoretic mobility shift assay (EMSA) and by footprinting experiments. We showed that the reduced AP site is the best substrate analog for the E.coli and L.lactis enzymes ( K Dapp = 0.26 and 0.5 nM, respectively) as compared with the other analogs tested in this study ( K Dapp >2.8 nM). The 1,3-propanediol (Pr) residue-containing DNA seems to be the minimal AP site structure allowing a Fpg specific DNA binding, since the ethyleneglycol residue is not specifically bound by these enzymes. The newly described cyclopentanol residue is better recognized than tetrahydrofuran (for the E.coli Fpg, K Dapp = 2.9 and 25 nM, respectively). These results suggest that the hemiacetal form of the AP site is negatively discriminated by the Fpg protein suggesting a hydrogen bond between the C4'-hydroxyl group of the sugar and a Fpg residue. High-resolution hydroxyl radical footprinting using a duplex containing Pr shows that Fpg binds to six nucleotides on the strand containing the AP site and only the base opposite the lesion on the undamaged complementary strand. This comparative study provides new information about the molecular mechanism involved in the Fpg AP lyase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号