首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Extracts prepared from fresh or dried skins of 32 European amphibian species were submitted to chemical (colour reactions) and biological screening to determine the occurrence and contents of biogenic amines and peptides active on smooth muscle preparations and blood pressure. 2. Only indolealkylamines were detectable in the skins. They were represented by tryptamine, 5-hydroxytryptamine, and its N-methylated, cyclized and sulphoconjugated derivatives. 3. The peptide families identified in the extracts were as follows: bombesins (bombesin and alytesin), bradykinins (bradykinin, bradykinin 1-8, bradykinin 1-7), chemotactic peptides (RECP I, II and III), bombinins and TRH. Bombesins, bombinins and TRH (thyrotropin-releasing hormone) were isolated from skin extracts of discoglossid frogs; chemotactic peptides and again TRH from extracts of ranid frogs. 4. Further research will certainly lengthen the list of active peptides in the skin of European amphibians, as is the case with Australian, American and African amphibians.  相似文献   

2.
Extracts prepared from the dried skins of approximately one hundred amphibian species from Australia and Papua New Guinea were subjected to biological screening in order to determine the nature and amounts of peptides active on smooth muscle preparations and systemic blood pressure present in these extracts. The most frequently and abundantly occurring peptides were those of the caerulein, bombesin and tachykinin peptide families represented, respectively, by caerulein; litorin, Glu(OMe)2-litorin and Glu(OEt)2-litorin; uperolein and Lys5-Thr6-physalaemin. Bradykinin-like peptides seem to have a rather diffuse distribution, in the species examined, but so far no peptide of this family has been isolated and sequenced. The only angiotensin-like peptide ever found in amphibian skin, crinia angiotensin II, has been isolated from skin extracts of a few species, belonging to the genera Crinia, Geocrinia, Ranidella and Litoria. The array of peptides occurring in amphibians from Australia and Papua New Guinea is destined to increase, because several apparently novel peptides have been identified in skin extracts by bioassay and radioimmunoassay.  相似文献   

3.
Extracts prepared from dried or fresh skins of more than 200 American amphibian species were subjected to biological screening in order to determine occurrence and contents of peptides active on smooth muscle preparations, systemic blood pressure and, subordinately, external secretions, anterior pituitary and the central nervous system. The peptide families identified in skin extracts were as follows: caruleins (caerulein, phyllocaerulein), tachykinins (physalaemin, phyllomedusin), bombesins (phyllolitorin, [Leu8]phyllolitorin, rohdeilitorin), bradykinins (phyllokinin and others), sauvagine, dermorphins (dermorphin, [Hyp6]dermorphin), tryptophyllins (numerous peptides) and, finally, miscellaneous peptides. None of the above peptide families showed a widespread distribution, but all were restricted to particular amphibian genera or stocks. The hylid frogs of the Phyllomedusinae family occupy a unique position, as their skin displayed the greatest variety and abundance of active peptides ever found in any amphibian is destined to increase because numerous other peptide molecules await isolation, elucidation of structure and definition of possible biological activities.  相似文献   

4.
Five novel antimicrobial peptides (temporin-LK1, rugosin-LK1, rugosin-LK2, gaegurin-LK1, and gaegurin-LK2) are purified and characterized from Kuhl’s wart frog skin secretions, Limnonectes kuhlii. They share obvious similarity to temporin, rugosin, and gaegurin antimicrobial peptide family, respectively. Their amino acid sequences were determined by Edman degradation and mass spectrometry, and further confirmed by cDNA cloning. Nine cDNA sequences encoding precursors of these five purified antimicrobial peptides and other four hypothetical antimicrobial peptides were cloned from the skin cDNA library of L. kuhlii. The deduced precursors are composed of a predicted signal peptide, an acidic spacer peptide, and a mature antimicrobial peptide. Most of them showed strong antimicrobial activities against Gram-positive and Gram-negative bacteria and fungi. The current work identified and characterized three families of antimicrobial peptides from L. kuhlii skins and confirmed that the genus of Limnonectes amphibians share similar antimicrobial peptide families with the genus of Rana amphibians. In addition, a unique antimicrobial peptide (temporin-LK1) with 17 residues including four phenylalanines, which is significantly different from other temporins (16 residues, one or two phenylalanines), was identified in this work. Such unique structure might provide novel template or leading structure to design antimicrobial agents.  相似文献   

5.
The skin secretions of female and male Litoria splendida have been monitored monthly over a three-year period using HPLC and electrospray mass spectrometry. Two minor peptides are present only in the skin secretion of the male. The first of these is the female-attracting aquatic male sex pheromone that we have named splendipherin, a 25 amino acid peptide (GLVSSIGKALGGLLADVVKSKGQPA-OH). This pheromone constitutes about 1% of the total skin peptides during the breeding season (January to March), dropping to about 0.1% during the period June to November. Splendipherin attracts the female in water at a concentration of 10-11-10-9 M, and is species specific. The second peptide is a wide-spectrum antibiotic of the caerin 1 group, a 25 residue peptide (GLLSVLGSVAKHVLPHVVPVIAEKL-NH2) named caerin 1.10. The neuropeptides of L. splendida are also seasonally variable, the change identical for both the female and male. During the period October to March, the sole neuropeptide present in skin secretions is caerulein [pEQDY(SO3)TGWMDF-NH2]; this is active on smooth muscle and is also an analgaesic. During the southern winter (June to September), more than half of the caerulein is hydrolysed to [pEQDYTGWMDF-NH2], a peptide that shows no smooth muscle activity. In place of caerulein, a new peptide, Phe8 caerulein [pEQDY(SO3)TGWFDF-NH2], becomes a major component of the skin secretion. Perhaps this seasonal change is involved in thermoregulation, that is, with the initiation and maintenance of the inactive (hibernation) phase of the animal.  相似文献   

6.
We studied the relative molar potencies of a newly synthetized cholecystokinin nonapeptide [Thr28,Nle31]CCK[25-33], natural porcine CCK33 and synthetic caerulein in conscious dogs with chronic gastric and pancreatic fistulas. Peptides were dissolved in albumin-containing solutions to prevent loss from solution. The three peptides were found to be equipotent on a molar basis in stimulating exocrine pancreatic secretion. As [Thr28,Nle31]CCK9 is a peptide less susceptible to oxidation than other forms of CCK, it is an interesting analog with many uses for medical and biological research.  相似文献   

7.
Skin secretions from the South African frog Xenopus laevis have been chromatographed by high performance liquid chromatography (HPLC), fractionated, and analyzed by fast atom bombardment-mass spectrometry (FAB-MS). The HPLC chromatograms showed the secretion to be a complex mixture with over 30 components at similar levels to the four peptides previously isolated from X. laevis skin, i.e. xenopsin, caerulein, thyrotropin-releasing hormone, and PGLa. FAB-MS analysis of the HPLC fractions gave numerous protonated molecular ions ranging from m/z 491 to 2662. Preliminary assignments of these components were made by comparing these experimental molecular weights to those predicted for regions within the xenopsin, caerulein, thyrotropin-releasing hormone, and PGLa precursors. These results suggested that many of these skin secretions were peptides originating from additional processing of the xenopsin, caerulein, and PGLa precursors, primarily involving cleavage at single arginine residues, and a novel cleavage at the NH2-terminal side of single lysines. These assignments were subsequently confirmed by Edman degradation, FAB-MS peptide sequencing, and amino acid analysis. All of these peptides contain one or more lysines and would be expected to have amphiphilic structures. As yet, nothing is known about their activity, although they resemble in composition the mast cell degranulating peptides melittin and the bombolitins. These precursor fragments were also found to have limited sequence homology to bombinin, a hemolytic amphibian peptide isolated from the European Bombina toad.  相似文献   

8.
The skins of amphibians secrete small antimicrobial peptides that fight infection and are being explored as potential alternatives to conventional antibiotics. In this study we combined mass spectrometry with cDNA sequencing to examine antimicrobial peptides in skin secretions from the Chinese frog Rana dybowskii. Thirteen peptides having precursor sequences that resemble known antimicrobial peptides from this genus were identified, ten of which were members of previously described peptide families based on their primary structures; i.e., brevinin-1, Japonicin-1, brevinin-2 and temporin. The other three peptides from R. dybowskii, which were named dybowskin-1CDYa, dybowskin-2 CDYa and dybowskin-2CDYb, had different amino acid compositions and little sequence similarity to known antimicrobial peptides. The carboxyl terminus of dybowskin-1CDY lacked amidation and is therefore clearly distinct from temporin peptides, whereas dybowskin-2CDYa and dybowskin-2CDYb consisted of 18 amino acids and were rich in Arg residues. Chemically synthesized peptides corresponding to mature dybowskin-1CDYa and dybowskin-2CDYa had strong antimicrobial activity and caused little hemolysis of human erythrocytes, suggesting they may serve as interesting templates for the development of novel antibiotics.  相似文献   

9.
Host defense peptides of 35 species of Australian frogs from the hylids Cyclorana and Litoria, and the myobatrachids Crinia, Limnodynastes and Uperoleia have been identified. The biological activities of the majority of these peptides have been determined and include hormones, neuropeptides, opioids, immunomodulators, membrane active peptides [including antimicrobial, anticancer, antiviral (enveloped viruses like HIV and Herpes) and antifungal peptides], neuronal nitric oxide synthase inhibitors, pheromones and individual peptides with other specific activities. The host defense peptide skin profile can be diagnostic at both the species and higher taxonomic levels; for example, species of Crinia, Litoria and Uperoleia each produce quite different types of peptides. Species of Cyclorana and Limnodynastes are more difficult to characterize by skin peptides alone: species of both genera produce similar peptides with no apparent activity. The skin peptide profiles of frogs from the genera Crinia, Litoria and Uperoleia may be used together with morphological and cognate methods, to differentiate between sub-species and even different population clusters of the same species. Nucleotide sequencing of cDNAs of precursors (pre-pro peptides) of bioactive peptides from the skin glands of various species of the genus Litoria show that the majority of these peptides originated from a single ancestor gene before the break away of Australia from Gondwana. The exceptions are the caerulein neuropeptides {e.g. caerulein [pEQDY(SO3H)TGWMDF(NH2)]} which have a different origin to that of other Litoria peptides. Disulfide containing peptides from skin glands of species of Crinia show a different evolutionary route to peptides from species of Litoria.  相似文献   

10.
Since gastrin and its related peptides are secreted by a minority population of widely dispersed cells in mamamalian tissues it has, in the past, been difficult to study the subcellular aspects of their secretion. From published reports (1, 2) it seemed possible that a satisfactory system for such studies might be provided by the skin of certain amphibians such as Xenopus laevis since in these tissues high concentrations of peptides such as caerulein exist, and there is some indication (3) that this, or a similar gastrin-like peptide, may be a dermal gland secretory product. We have therefore explored this possibility by studying the structure, secretory process, and secretory product of the most prominent non mucous type of gland in the skin of X. laevis. These studies clearly demonstrate that most, if not all, of the caerulein in which the skin is contained in secretion granules within the dermal glands and that its release can be specifically evoked by adrenergic stimulation. The release process by a holocrine mechanism expels all of the stored secretion onto the skin surface and thus for biosynthetic studies it should now be possible to synchronize the processes which lead to the replenishment of the peptide.  相似文献   

11.
Antimicrobial peptide diversity has been found in some amphibians. The diversity of antimicrobial peptides may have resulted from the diversity of microorganisms encountered by amphibians. Peptidomics and genomics analyses were used to study antimicrobial peptide diversity in the skin secretions of the torrent frog, Amolops jingdongensis. Thirty-one antimicrobial peptides belonging to nine groups were identified in the skin secretions of this frog. Among them, there are two novel antimicrobial groups (jingdongin-1 and -2) with unique structural motifs. The other seven groups belong to known antimicrobial peptide families, namely brevinin-1, brevinin-2, odorranain-F, esculentin-2, temporin, amolopin-3, and ranacyclin. Combined with previous reports, more than 13 antimicrobial peptide groups have been identified from the genus Amolops. Most of these antimicrobial peptide groups are also found in amphibians belonging to the genus Rana or Odorrana which suggests a possible evolutionary connection among Amolops, Rana, and Odorrana. Two novel antimicrobial groups (jingdongin-1 and -2) were synthesized and their antimicrobial activities were assayed. Some of them showed strong antimicrobial abilities against microorganisms including Gram-negative and -positive bacteria, and fungi. The extreme diversity of antimicrobial peptides in the Amolops amphibians was demonstrated. In addition, several novel peptide templates were provided for antimicrobial agent design.  相似文献   

12.
The 24 amino-acid residue antimicrobial peptide, brevinin-1 is synthesized in the skins of a wide range of species of Eurasian and North American frogs belonging to the genus Rana. All previously characterized brevinin-1 peptides contain the cyclic heptapeptide domain Cys18-(Xaa)4-Lys-Cys24 at the COOH-terminus of the molecule. Four structurally related peptides were isolated from an extract of the skin of the Ryukyu brown frog Rana okinavana. The amino acid sequences of the peptides [Phe-(Xaa)4-Ile-(Xaa)2-Leu-Ala-Lys-Gly-Leu-Pro-Ser-Leu-Ile-Xaa-Leu-Xaa-Lys-Lys.NH2] identified them as members of the brevinin-1 family that lacked the COOH-terminal cyclic domain but contained a C-terminally alpha-amidated residue. It is suggested, as one possibility, that the Cys18 in the brevinin-1 consensus sequence has been deleted and the Cys24 residue has mutated to a glycine that acts as substrate for peptidyl-glycine alpha-amidating monooxygenase. The peptides potently inhibited the growth of Escherichia coli and Staphylococcus aureus confirming that a cyclic domain is not necessary for antimicrobial activity. A fifth peptide (SFLNFFKGAA10KNLLAAGLDK20LKCKISGTQC30), that also displayed broad-spectrum antimicrobial activity, was isolated from the skin extract and showed structural similarity with members of the ranatuerin-2 family previously isolated from the skin of North American ranid frogs.  相似文献   

13.
14.
Japonicin-1 (FFPIGVFCKIFKTC) and japonicin-2 (FGLPMLSILPKALCILLKRKC), two peptides with differential growth-inhibitory activity against the Gram-negative bacterium, Escherichia coli and the Gram-positive bacterium Staphylococcus aureus, were isolated from an extract of the skin of the Japanese brown frog Rana japonica. Both peptides show little amino acid sequence similarity to previously characterized antimicrobial peptides isolated from the skins of Ranid frogs. Circular dichroism studies, however, demonstrate that japonicin-2 adopts an alpha-helical conformation in 50% trifluoroethanol in common with many other cationic antimicrobial peptides synthesized in amphibian skin. Peptides belonging to the brevinin-1, brevinin-2, and tigerinin families, previously identified in the skins of Asian Ranid frogs, were not detected but a temporin-related peptide (ILPLVGNLLNDLL.NH(2); temporin-1Ja), that atypically bears no net positive charge, was isolated from the extract. The minimum inhibitory concentrations (MICs) of the peptides against E. coli were japonicin-1, 30 microM; japonicin-2, 12 microM; and temporin-1Ja > 100 microM. The MICs against S. aureus were japonicin-1, > 100 microM; japonicin-2, 20 microM; and temporin-1Ja, > 100 microM.  相似文献   

15.
Amphibian tachykinin precursor   总被引:1,自引:0,他引:1  
The precursor of amphibian tachykinin has not been found although more than 30 tachykinins have been isolated from amphibians since 1964. In this report, two tachykinin-like peptides are identified from the skin secretions of the frog, Odorrana grahami. Their amino acid sequences are DDTEDLANKFIGLM-NH(2) (named tachykinin OG1) and DDASDRAKKFYGLM-NH(2) that is the same with ranamargarin found in Rana margaretae, respectively, with a conserved FXGLM-NH(2) C-terminal consensus motif. By cDNA cloning, their precursors were screened from the skin cDNA library of O. grahami. The precursors are composed of 61 amino acid (aa) residues including a signal peptide followed by an acidic spacer peptide and one copy of mature tachykinin-like peptide. Their overall structure is different from structures of other tachykinin precursors such as human protachykinin 1 precursor containing 143 aa including one copy of substance P (SP) and neurokinin A (NKA), and ascidian tachykinin 1 precursor containing 164 aa including two copies of tachykinin-like peptides. The current results demonstrate that the biosynthesis mode of tachykinins in amphibians is different from other animals.  相似文献   

16.
Liu X  Wang Y  Cheng L  Song Y  Lai R 《Peptides》2007,28(8):1540-1544
Many neuroendocrine peptides that are distributed in amphibian gastrointestinal tract and central nervous system are also found in amphibian skins, and these peptides are classified into skin-gut-brain triangle peptides, such as bombesins, gastrin-releasing peptides. Cholecystokinins (CCKs) are neuroendocrine peptides known for their production in the gastrointestinal tract and central nervous system of mammalians. Several CCKs have been identified from two amphibians, Rana catesbeiana and Xenopus laevis. These amphibian CCKs are found to be express in brain and in the gastrointestinal tract, but not in skin. In the current report, a cholecystokinin (CCK) isoform was identified from skin secretions of the frog, Rana nigrovittata. Its amino acid sequence is RVDGNSDQKAVIGAMLAKDLQTRKAGSSTGRYAVLPNR PVIDPTHRINDRDYMGWMDF, which is the same with that of CCK from R. catesbeiana. Four different cDNAs (GenBank accession nos. EF608063-6) encoding CCK precursors were cloned from the cDNA library of the skin of R. nigrovittata. The present data demonstrated that amphibian CCK could also be expressed in gastrointestinal tract, central nervous system and skin as other amphibian skin-gut-brain triangle peptides.  相似文献   

17.
Two neuropeptides have been isolated and identified from the secretions of the skin glands of the Stony Creek Frog Litoria lesueuri. The first of these, the known neuropeptide caerulein 1.1, is a common constituent of anuran skin secretions, and has the sequence pEQY(SO3)TGWMDF-NH2. This neuropeptide is smooth muscle active, an analgaesic more potent than morphine and is also thought to be a hormone. The second neuropeptide, a new peptide, has been named lesueurin and has the primary structure GLLDILKKVGKVA-NH2. Lesueurin shows no significant antibiotic or anticancer activity, but inhibits the formation of the ubiquitous chemical messenger nitric oxide from neuronal nitric oxide synthase (nNOS) at IC(50) (16.2 microm), and is the first amphibian peptide reported to show inhibition of nNOS. As a consequence of this activity, we have tested other peptides previously isolated from Australian amphibians for nNOS inhibition. There are three groups of peptides that inhibit nNOS (IC(50) at microm concentrations): these are (a) the citropin/aurein type peptides (of which lesueurin is a member), e.g. citropin 1.1 (GLFDVIKKVASVIGGL-NH(2)) (8.2 microm); (b) the frenatin type peptides, e.g. frenatin 3 (GLMSVLGHAVGNVLG GLFKPK-OH) (6.8 microm); and (c) the caerin 1 peptides, e.g. caerin 1.8 (GLFGVLGSIAKHLLPHVVPVIAEKL-NH(2)) (1.7 microm). From Lineweaver-Burk plots, the mechanism of inhibition is revealed as noncompetitive with respect to the nNOS substrate arginine. When the nNOS inhibition tests with the three peptides outlined above were carried out in the presence of increasing concentrations of Ca(2+) calmodulin, the inhibition dropped by approximately 50% in each case. In addition, these peptides also inhibit the activity of calcineurin, another enzyme that requires the presence of the regulatory protein Ca(2+) calmodulin. It is proposed that the amphibian peptides inhibit nNOS by interacting with Ca(2+)calmodulin, and as a consequence, blocks the attachment of this protein to the calmodulin domain of nNOS.  相似文献   

18.
Ali MF  Knoop FC  Vaudry H  Conlon JM 《Peptides》2003,24(7):955-961
Rana esculenta is a hybridogenetic hybrid between Rana ridibunda and Rana lessonae and so is best considered as a complex of interbreeding species rather than a discrete single species. In this study, antimicrobial peptides were isolated from a pooled extract of the skins of specimens of the R. esculenta complex collected in the wild. In addition to several peptides belonging to the brevinin and esculentin families that have been previously isolated from skin secretions of a single specimen of R. esculenta, three newly described members of the brevinin-2 family (brevinin-2Ei, brevinin-2Ej, and brevinin-2Ek) and one member of the temporin family (temporin-1Ec) were purified and characterized. In addition, three structurally related peptides with no sequence similarity with antimicrobial peptides isolated from other species of ranid frogs, that potently and selectively inhibit the growth of the Gram-positive bacterium Escherichia coli (minimal inhibitory concentration (MIC<5 microM)), were identified. These peptides show limited amino acid sequence similarity to the homologous exon gene products that encode the N-terminal flanking peptides of preprocaerulein, preproxenopsin, and preprolevitide and so have been termed caerulein precursor-related fragments (CPRF-Ea, CPRF-Eb, and CPRF-Ec). The data suggest that there may be considerable polymorphism among specimens from different populations of the R. esculenta complex. It is proposed that the distribution and amino acid sequences of skin antimicrobial peptides may be useful markers for taxonomic classification of particular sub-populations and for an understanding of phylogenetic interrelationships.  相似文献   

19.
Intensive studies have demonstrated that there are many antimicrobial peptides in amphibian skins. Three novel antimicrobial peptides were identified from the skin of the frog, Rana shuchinae. They are named shuchins 3–5. Their sequences were determined as KAYSMPRCKGGFRAVMCWL-NH2, KAYSTPRCKGLFRALMCWL-NH2, and KAYSMPRCKYLFRAVLCWL-NH2 by Edman degradation and mass spectrometry analysis, respectively. They are composed of 19 amino acids (aa) with unique sequences. BLAST search indicated that they showed no similarity to any known peptides or proteins. They are a novel family of antimicrobial peptide. These peptides showed antimicrobial activities against all of tested microorganisms including Gram-positive bacteria, Gram-negative bacteria and fungi. The cDNAs encoding precursors of these peptides were cloned from the skin cDNA library of R. shuchinae. The precursors are composed of 64 amino acid residues including predicted signal peptides, acidic spacer peptides, and mature antimicrobial peptides. The current work identified a novel antimicrobial peptide family.  相似文献   

20.
Yan X  Liu H  Yang X  Che Q  Liu R  Yang H  Liu X  You D  Wang A  Li J  Lai R 《Amino acids》2012,43(1):309-316
Amphibian skins act as the first line against noxious aggression by microorganisms, parasites, and predators. Anti-microorganism activity is an important task of amphibian skins. A large amount of gene-encoded antimicrobial peptides (AMPs) has been identified from amphibian skins. Only a few of small protease inhibitors have been found in amphibian skins. From skin secretions of 5 species (Odorrana livida, Hylarana nigrovittata, Limnonectes kuhlii, Odorrana grahami, and Amolops loloensis) of Ranidae frogs, 16 small serine protease inhibitor peptides have been purified and characterized. They have lengths of 17-20 amino acid residues (aa). All of them are encoded by precursors with length of 65-70 aa. These small peptides show strong trypsin-inhibitory abilities. Some of them can exert antimicrobial activities. They share the conserved GCWTKSXXPKPC fragment in their primary structures, suggesting they belong to the same families of peptide. Signal peptides of precursors encoding these serine protease inhibitors share obvious sequence similarity with those of precursors encoding AMPs from Ranidae frogs. The current results suggest that these small serine protease inhibitors are the common defensive compounds in frog skin of Ranidae as amphibian skin AMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号