首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Theoretical analyses of selection on mutations affecting female responsiveness to male traits suggested that sexually antagonistic selection and traditional female choice are not exclusive alternatives. They can act simultaneously on the same female traits, and can either reinforce or act against each other. These analyses do not yield theoretical predictions regarding the relative frequency and importance of the two types of selection on female responsiveness, as the balance between them is affected by complex factors, including the frequency distribution of male traits, and the mechanisms of male action. Male–female interactions differ from many other evolutionary interactions involving potential evolutionary conflict, in that male and female genomes are irretrievably mixed in their offspring, thus increasing the possibility of indirect payoffs to one participant from the traits of its partner.  相似文献   

2.
The reproductive interests of males and females are not always aligned, leading to sexual conflict over parental investment, rate of reproduction and mate choice. Traits that increase the genetic interests of one sex often occur at the expense of the other, selecting for counter-adaptations leading to antagonistic coevolution. Reproductive conflict is not limited to intraspecific interactions; interspecific hybridization can produce pronounced sexual conflict between males and females of different species, but it is unclear whether such conflict can drive sexually antagonistic coevolution between reproductively isolated genomes. We tested for hybridization-driven sexually antagonistic adaptations in queens and males of the socially hybridogenetic ‘J’ lineages of Pogonomyrmex harvester ants, whose mating system promotes hybridization in queens but selects against it in males. We conducted no-choice mating assays to compare patterns of mating behaviour and sperm transfer between inter- and intra-lineage pairings. There was no evidence for mate discrimination on the basis of pair type, and the total quantity of sperm transferred did not differ between intra- and inter-lineage pairs; however, further dissection of the sperm transfer process into distinct mechanistic components revealed significant, and opposing, cryptic manipulation of copulatory investment by both sexes. Males of both lineages increased their rate of sperm transfer to high-fitness intra-lineage mates, with a stronger response in the rarer lineage for whom mating mistakes are the most likely. By contrast, the total duration of copulation for intra-lineage mating pairs was significantly shorter than for inter-lineage crosses, suggesting that queens respond to prevent excessive sperm loading by prematurely terminating copulation. These findings demonstrate that sexual conflict can lead to antagonistic coevolution in both intra-genomic and inter-genomic contexts. Indeed, the resolution of sexual conflict may be a key determinant of the long-term evolutionary potential of host-dependent reproductive strategies, counteracting the inherent instabilities arising from such systems.  相似文献   

3.
    
Female rejections of males are crucial events in sexual selection by female choice and sexually antagonistic coevolution, but there are few detailed studies of the process of rejection. Female struggles when mounted by males are often assumed to function to dislodge the male. But this study, in which female receptivity was manipulated by using females of different ages, showed that this “dislodgement” males. Mounts in Archisepsis diversiformis often failed, but males were nevertheless seldom thrown off; instead, they almost always dismounted while the female was quiet. Males also showed signs of being in control of dismounts, as they dismounted more quickly if the female had recently been mounted by another male. Predictions from two other hypotheses for the function of female resistance behaviour also either failed or were not consistently supported: (1) females resist in order to filter males with respect to their ability to hold on to the female or outlast her resistance, or to court while mounted (“male endurance/female exhaustion” hypothesis); (2) females resist in order to sense the male's grip on her wings and thus filter males with respect to their species-specific clamps or to elicit other male courtship (“male screening” hypothesis). Several predictions of a further possibility, that (3) females resist in order to communicate their lack of receptivity to the male, and to induce him to leave (“communication” hypothesis), hypothesis is incorrect in a group (sepsid flies) in which energetic female shaking behaviour was previously interpreted as female attempts to dislodge were confirmed. Although one type of data did not fit easily with the communication hypothesis, overall it was the most likely explanation for female shaking behaviour. Our results call into question conclusions from previous studies regarding male-female conflict in this and other groups, and suggest testable alternative hypotheses. A survey of behaviour in other flies (which are presumably indicative of other animals in this respect) indicates that female “resistance” behaviour probably has a variety of functions. In sum, facile interpretations of a forceful resistance function should not be accepted without careful analyses.  相似文献   

4.
Sexual conflict has recently been proposed as a driving force behind the rapid diversification of genitalia among sexually reproducing organisms. In traumatically inseminating insects, males stab females in the side of the body with needle‐like genitalia, ejaculating into their body cavity. Such mating is costly to females and has led to the evolution of cost‐reducing ‘paragenitalia’ in some species. Whereas some consider this evidence of sexually antagonistic coevolution, others remain unconvinced. Variation in the reproductive morphology of both sexes – particularly males – is alleged to be negligible, contradicting the expectations of a coevolutionary arms race. Here, we use a phylogeny of the traumatically inseminating plant bug genus Coridromius to show that external female paragenitalia have evolved multiply across the genus and are correlated with changes in male genital shape. This pattern is characteristic of an evolutionary arms race driven by sexual conflict.  相似文献   

5.
  总被引:2,自引:0,他引:2  
Abstract Arnqvist (2004) raises some concerns with several of the points made by Pizzari and Snook (2003) on the study of sexually antagonistic coevolution (SAC) generated by sexual conflict, arguing that: (1) sexual conflict cannot be expressed in terms of average male and female fitness; (2) our criticism of current experimental approaches, particularly interpopulation crosses, is unjustified; and (3) the alternative experimental approach we proposed is problematic. Here we discuss and respond to these criticisms by: (1) clarifying that we can distinguish between SAC and mutualistic sexual coevolution by measuring changes in the average fitness of the reproducing subsamples of males and females of a population across generations, (2) maintaining that testing SAC using interpopulation crosses is undermined by the lack of a priori knowledge of what traits mediate SAC across isolated populations, and (3) reinforcing the advantages of our experimental approach to distinguish between sexually mutualistic and antagonistic selection.  相似文献   

6.
The two kinds of sex chromosomes in the heterogametic parent are transmitted to offspring with different sexes, causing opposite-sex siblings to be completely unrelated for genes located on these chromosomes. Just as the nest-parasitic cuckoo chick is selected to harm its unrelated nest-mates in order to garner more shared resources, sibling competition causes the sex chromosomes to be selected to harm siblings that do not carry them. Here we quantify and contrast this selection on the X and Y, or Z and W, sex chromosomes. We also develop a hypothesis for how this selection can contribute to the decay of the non-recombining sex chromosome.  相似文献   

7.
Because autosomal genes in sexually reproducing organisms spend on average half their time in each sex, and because the traits that they influence encounter different selection pressures in males and females, the evolutionary responses of one sex are constrained by processes occurring in the other sex. Although intralocus sexual conflict can restrict sexes from reaching their phenotypic optima, no direct evidence currently supports its operation in humans. Here, we show that the pattern of multivariate selection acting on human height, weight, blood pressure and glucose, total cholesterol, and age at first birth differs significantly between males and females, and that the angles between male and female linear (77.8 ± 20.5°) and nonlinear (99.1 ± 25.9°) selection gradients were closer to orthogonal than zero, confirming the presence of sexually antagonistic selection. We also found evidence for intralocus sexual conflict demonstrated by significant changes in the predicted male and female responses to selection of individual traits when cross-sex genetic covariances were included and a significant reduction in the angle between male- and female-predicted responses when cross-sex covariances were included (16.9 ± 15.7°), compared with when they were excluded (87.9 ± 31.6°). We conclude that intralocus sexual conflict constrains the joint evolutionary responses of the two sexes in a contemporary human population.  相似文献   

8.
    
Many reproductive traits that have evolved under sexual conflict may be influenced by both sexes. Investigation of the genetic architecture of such traits can yield important insight into their evolution, but this entails that the heritable component of variation is estimated for males and females—as an interacting phenotype. We address the lack of research in this area through an investigation of egg production and copula duration in the fruit fly, Drosophila melanogaster. Despite egg production rate being determined by both sexes, which may cause sexual conflict, an assessment of this trait as an interacting phenotype is lacking. It is currently unclear whether copula duration is determined by males and/or females. We found significant female, but not male, genetic variance for egg production rate that may indicate reduced potential for ongoing sexually antagonistic coevolution. In contrast, copula duration was determined by significant genetic variance in both sexes. We also identified genetic variation in egg retention among virgin females. Although previously identified in wild populations, it is unclear why this should be present in a laboratory stock. This study provides a novel insight into the shared genetic architecture of reproductive traits that are the subject of sexual conflict.  相似文献   

9.
Intralocus sexual conflict occurs when a trait encoded by the same genetic locus in the two sexes has different optima in males and females. Such conflict is widespread across taxa, however, the shared phenotypic traits that mediate the conflict are largely unknown. We examined whether the sex hormone, testosterone (T), that controls sexual differentiation, contributes to sexually antagonistic fitness variation in the bank vole, Myodes glareolus. We compared (opposite-sex) sibling reproductive fitness in the bank vole after creating divergent selection lines for T. This study shows that selection for T was differentially associated with son versus daughter reproductive success, causing a negative correlation in fitness between full siblings. Our results demonstrate the presence of intralocus sexual conflict for fitness in this small mammal and that sexually antagonistic selection is acting on T. We also found a negative correlation in fitness between parents and their opposite-sex progeny (e.g. father-daughter), highlighting a dilemma for females, as the indirect genetic benefits of selecting reproductively successful males (high T) are lost with daughters. We discuss mechanisms that may mitigate this disparity between progeny quality.  相似文献   

10.
    
Male and female genital morphology varies widely across many taxa, and even among populations. Disentangling potential sources of selection on genital morphology is problematic because each sex is predicted to respond to adaptations in the other due to reproductive conflicts of interest. To test how variation in this sexual conflict trait relates to variation in genital morphology we used our previously developed artificial selection lines for high and low repeated mating rates. We selected for high and low repeated mating rates using monogamous pairings to eliminate contemporaneous female choice and male–male competition. Male and female genital shape responded rapidly to selection on repeated mating rate. High and low mating rate lines diverged from control lines after only 10 generations of selection. We also detected significant patterns of male and female genital shape coevolution among selection regimes. We argue that because our selection lines differ in sexual conflict, these results support the hypothesis that sexually antagonistic coevolution can drive the rapid divergence of genital morphology. The greatest divergence in morphology corresponded with lines in which the resolution of sexual conflict over mating rate was biased in favor of male interests.  相似文献   

11.
    
Genital coevolution is a pervasive phenomenon as changes in one sex tend to impose fitness consequences on the other, generating sexual conflict. Sexual conflict is often thought to cause stronger selection on males due to the Darwin–Bateman's anisogamy paradigm. However, recent studies have demonstrated that female genitalia may be equally elaborated and perform diverse extra‐copulatory functions. These characteristics suggest that female genitals can also be primary targets of selection, especially where natural selection acts on female‐exclusive functions such as oviposition. Here, we test this hypothesis in a statistical phylogenetic framework across the whole beetle (Coleoptera) phylogeny, investigating whether coevolution of specific genital traits may be triggered by changes in females. We focus on traits of the proctiger, which composes part of the male terminalia and the female ovipositor. Our results present a comprehensive case of male–female genital coevolution and provide solid statistical evidence for a female‐initiated coevolutionary process where the vast majority of evolutionary transitions in males have occurred only after changes in females. We corroborate the hypothesis that female traits may change independently and elicit counter‐adaptations in males. Furthermore, by showing a consistent pattern across the phylogeny of the most diverse group of animals, our results suggest that this female‐driven dynamics may persist through long time scales.  相似文献   

12.
    
In most species with internal fertilization, male genitalia evolve faster than other morphological structures. This holds true for genital titillators, which are used exclusively during mating in several bushcricket subfamilies. Several theories have been proposed for the sexual selection forces driving the evolution of internal genitalia, especially sperm competition, sexually antagonistic coevolution (SAC), and cryptic female choice (CFC). However, it is unclear whether the evolution of genitalia can be described with a single hypothesis or a combination of them. The study of species‐specific genitalia action could contribute to the controversial debate about the underlying selective evolutionary forces. We studied female mating behaviors in response to experimentally modified titillators in a phylogenetically nested set of four bushcricket species: Roeseliana roeselii, Pholidoptera littoralis littoralis, Tettigonia viridissima (of the subfamily Tettigoniinae), and Letana inflata (Phaneropterinae). Bushcricket titillators have several potential functions; they stimulate females and suppress female resistance, ensure proper ampulla or spermatophore attachment, and facilitate male fixation. In R. roeselii, titillators stimulate females to accept copulations, supporting sexual selection by CFC. Conversely, titillator modification had no observable effect on the female's behavior in T. viridissima. The titillators of Ph. l. littoralis mechanically support the mating position and the spermatophore transfer, pointing to sexual selection by SAC. Mixed support was found in L. inflata, where manipulation resulted in increased female resistance (evidence for CFC) and mating failures by reduced spermatophore transfer success (evidence for SAC). Sexual selection is highly species‐specific with a mosaic support for either cryptic female choice or sexually antagonistic coevolution or a combination of both in the four species.  相似文献   

13.
We contrast some recent uses of the concept of male-female conflict, with the type of conflict that is inherent in traditional Darwinian female choice. Females in apparent conflict situations with males may suffer reduced lifetime reproduction, but nevertheless benefit because they obtain sons with superior manipulative abilities. Female defences against male manipulations may not be 'imperfect' because of inability to keep pace with male evolution, but in order to screen males and favour those that are especially good manipulators. We examine the consequences of these ideas, and of the difficulties of obtaining biologically realistic measures of female costs, for some recent theoretical and empirical presentations of male-female conflict ideas, and find that male-female conflict in the new sense is less certain than has been commonly supposed. Disentangling previous sexual selection ideas and the new conflict of interest models will probably often be difficult, because the two types of payoffs are not mutually exclusive.  相似文献   

14.
    
The correlated evolution of genitalia between sexes has been demonstrated in many taxa. However, it remains unclear whether female rather than male genitalia can play a key role in the correlated evolution of male and female genitalia. We conducted an extensive cross‐population analysis of the divergence patterns of genital structures, weights of whole genital organs, and the bodies of both sexes, and male genital length in a group of xystodesmid millipedes showing diverse genital morphologies. We demonstrate that the correlated evolution of male and female genitalia toward exaggerated states has occurred in the millipedes, which have evolved novel traits in both males (forceps‐like gonopods) and females (retractable bellows). Enlargement and elongation of forceps‐like gonopods may be advantageous in sperm competition, whereas enlargement and elongation of the bellows may facilitate acceptance/rejection of insemination for ensuring the female's fitness. These male and female genital parts have affected the correlated evolution in the opposite sex, resulting in diversification and exaggeration of genital morphology. Our study suggests that evolutionary novel traits in not only males but also in females could play an important role in the correlated evolution of genitalia between the sexes.  相似文献   

15.
Coevolution between the sexes is often considered to be male-driven: the male genome is constantly scanned by selection for traits that increase relative male fertilization success. Whenever these traits are harmful to females, the female genome is scanned for resistance traits. The resulting antagonistic coevolution between the sexes is analogous to Red Queen dynamics, where adaptation and counteradaptation keep each other in check. However, the underlying assumption that male trait evolution precedes female trait counteradaptation has received few empirical tests. Using the gonochoristic nematode Caenorhabditis remanei, we now show that 20 generations of relaxed versus increased sexual selection pressure lead to female, but not to male, trait evolution, questioning the generality of a male-driven process.  相似文献   

16.
    
Jumping spiders in the genus Habronattus use complex multimodal signals during courtship displays. In the present study, we describe multimodal displays from the Habronattus coecatus clade, comprising a diverse group of 23 described species. Habronattus coecatus group displays are made up of sex‐specific ornamentation and temporally coordinated combinations of motion displays and vibratory songs. Vibratory songs are complex, consisting of up to 20 elements organized in functional groupings (motifs) that change as courtship progresses. This temporal structuring of displays is analogous to a musical composition. Vibratory elements are associated with movement displays involving coloured and patterned ornaments on the male body. We describe general patterns of multimodal displays for 11 species including one, Habronattus borealis, which appears to have lost complex display behaviour. Habronattus coecatus group courtship is one of the most complex communication systems yet described in arthropods and this group may reveal important factors driving the evolution of complex signals. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 522–547.  相似文献   

17.
18.
Recent work on sexual selection and sexual conflict has explored the influence of indirect effects on the evolution of female mating behaviour. It has been suggested that the importance of these effects has been underestimated and that the influence of indirect effects may actually be of relatively greater significance than direct effects. Additionally, it has also been suggested that all indirect effects, both good genes and sexy son, are qualitatively equivalent. Here a counterpoint to these suggestions is offered. We argue two main points: (1) it is unlikely that indirect effects will commonly outweigh direct effects, and (2) that there are important differences between good genes and sexy son indirect effects that must be recognized. We suggest that acknowledgement of these distinctions will lead to increased understanding of processes operating in both sexual conflict and sexual selection.  相似文献   

19.
Mating systems have a profound influence on the probability of conflict occurring between the sexes. Promiscuity is predicted to generate sexual conflict, thereby driving the evolution of male traits that harm females, whereas monogamy is expected to foster reproductive cooperation, thus rendering such traits redundant. We tested these predictions using experimentally evolved Drosophila pseudoobscura subject to different mating systems. Female survival was not influenced by the mating system treatment of her partner. However, females continuously housed with males evolving under elevated opportunities for female promiscuity produced fewer total progeny, but a relatively greater number of progeny early in their lives, than females housed with males evolving under obligate monogamy. We also found that promiscuous males courted females more frequently than monogamous males. Variation in male courtship frequency and progeny production patterns among treatments reinforces the critical importance of mating system variation for sexual conflict, during both pre‐ and post‐copulatory interactions.  相似文献   

20.
Sexual conflict has been predicted to drive reproductive isolation by generating arbitrary but rapid coevolutionary changes in reproductive traits among allopatric populations. A testable prediction of this proposal is that allopatric populations experiencing different levels of sexual conflict should exhibit different levels of reproductive isolation. We tested this prediction using experimentally evolved populations of the promiscuous Drosophila pseudoobscura. We manipulated sexual conflict by enforcing either monogamy, maintaining natural levels of promiscuity, or elevating promiscuity. Within each treatment, we carried out sympatric and allopatric crosses using replicated populations and examined pre-zygotic (number of mating pairs, mating speed and copulation duration) and post-zygotic (hybrid inviability and sterility) indicators of reproductive isolation. After 50 generations of selection, none of the measures conformed to predictions of sexual conflict driving reproductive isolation. Our results cannot be explained by lack of genetic variation or weak selection and suggest that sexual conflict may not be a widespread engine of speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号