首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformational changes of human apolipoprotein (apo) B-100 which accompany the conversion of plasma very low density lipoproteins (VLDL) to low density lipoproteins (LDL) were investigated by studying the accessibility of apoB-100 in LDL and VLDL to limited proteolysis with cathepsin D, an aspartyl proteinase involved in intracellular protein degradation. We characterized the proteolytic products of apoB-100 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by NH2-terminal sequence analysis to locate cleavage sites. The results identified at least 10 cleavage products generated from apoB-100 and showed differential accessibility of cleavage sites for cathepsin D in apoB-100 between LDL and VLDL. We identified a specific peptide region (residues 2660-2710), which is preferentially accessible to limited proteolysis by cathepsin D but inaccessible to limited proteolysis by 12 other enzymes tested. Within this peptide region, cathepsin D cleaved apoB-100 of LDL and VLDL preferentially at different sites, separated by 33-36 amino acids (2665-2666 or 2668-2669 (LDL) and 2701-2702 (VLDL]. In addition, we identified a cleavage site, located at residues 3272-3273, specific for cathepsin D, which is contained within the COOH-terminal enzyme-accessible peptide region (residues 3180-3280), which we have demonstrated using 12 endoproteases with various specificities. The previously identified NH2-terminal region (residues 1280-1320) appears to be resistant to limited cleavage by cathepsin D. However, a new site was revealed only approximately 66 kDA from the NH2 terminus. We conclude that differential accessibility and the shift of the novel scission site for cathepsin D by 33-36 amino acids indicate significant differences in local conformation at these sites in apoB-100 as VLDL are converted to LDL.  相似文献   

2.
The structural domains of human apolipoprotein B-100 in low density lipoproteins (LDL) and the conformational changes of B-100 that accompany the conversion of very low density lipoproteins (VLDL) to LDL were investigated by limited proteolysis with 12 endoproteases of various specificities, and their cleavage sites were determined. In B-100 of LDL, we identified two peptide regions that are highly susceptible to proteolytic cleavage. One region encompassed about 40 amino acids (residues 1280-1320, designated as the NH2-terminal region) and the other about 100 amino acids (residues 3180-3280, designated as the COOH-terminal region). IN LDL, the cleavage sites in both susceptible regions of B-100 were readily accessible to limited proteolysis; but in VLDL, only sites in the COOH-terminal region were readily accessible. Moreover, B-100 in VLDL appeared less degraded than B-100 in LDL by all enzymes used. Reduction of disulfide bonds of B-100 in both LDL and VLDL before digestion by Staphylococcus aureus V8 protease and clostripain exposed additional cleavage sites and increased the rate of B-100 degradation, suggesting that disulfide bonds probably exert conformational constraints. These results indicate the presence of three principal structural domains in B-100 of LDL that are relatively resistant to limited proteolysis. These three domains are connected by the two susceptible peptide regions. Our results also demonstrate differential accessibility of cleavage sites in B-100 of LDL and VLDL to limited proteolysis. This differential accessibility suggests that substantial changes in the conformation or environment of B-100 accompany the conversion of VLDL to LDL.  相似文献   

3.
During atherogenesis, low density lipoprotein (LDL) particles in the arterial intima become modified and fuse to form extracellular lipid droplets. Proteolytic modification of apolipoprotein (apo) B-100 may be one mechanism of droplet formation from LDL. Here we studied whether the newly described acid protease cathepsin F can generate LDL-derived lipid droplets in vitro. Treatment of LDL particles with human recombinant cathepsin F led to extensive degradation of apoB-100, which, as determined by rate zonal flotation, electron microscopy, and NMR spectroscopy, triggered both aggregation and fusion of the LDL particles. Two other acid cysteine proteases, cathepsins S and K, which have been shown to be present in the arterial intima, were also capable of degrading apoB-100, albeit less efficiently. Cathepsin F treatment resulted also in enhanced retention of LDL to human arterial proteoglycans in vitro. Cultured monocyte-derived macrophages were found to secrete active cathepsin F. In addition, similarly with cathepsins S and K, cathepsin F was found to be localized mainly within the macrophage-rich areas of the human coronary atherosclerotic plaques. These results suggest that proteolytic modification of LDL by cathepsin F may be one mechanism leading to the extracellular accumulation of LDL-derived lipid droplets within the proteoglycan-rich extracellular matrix of the arterial intima during atherogenesis.  相似文献   

4.
PURPOSE OF REVIEW: Binding of apolipoprotein B-100-containing lipoproteins (VLDL, IDL, and LDL) to proteoglycans and modifications of the lipoproteins, whether bound or unbound, are key processes in atherogenesis. The complex interplay between binding and modification has been studied at neutral pH conditions. It has been demonstrated that during atherogenesis the extracellular pH of the lesions decreases. We summarize findings suggesting that lipoprotein binding and modification are enhanced at acidic pH. RECENT FINDINGS: Many enzymes found in the arterial intima, such as secretory sphingomyelinase and cathepsins, are able to hydrolyze lipoproteins in vitro. These enzymes function optimally at slightly acidic pH (pH 5.5-6.5), and are likely to act on lipoproteins optimally in the acidic plaque areas. Also, the ability of human aortic proteoglycans to bind native VLDL, IDL, and LDL is dramatically increased at acidic pH; this binding can be further increased if these apolipoprotein B-100-containing particles are hydrolytically modified. SUMMARY: Recent in-vitro findings suggest that in areas of atherosclerotic arterial intima where the extracellular pH is decreased, binding of apolipoprotein B-100-containing lipoproteins to proteoglycans and modification of the lipoproteins by acidic enzymes are enhanced. The pH-induced amplification of these processes will lead to enhanced extracellular accumulation of lipoproteins and accelerated progression of the disease.  相似文献   

5.
Loading of antigenic peptide fragments on major histocompatibility complex class II molecules is essential for generation of CD4(+) T cell responses and occurs after cathepsin-mediated degradation of the invariant chain chaperone molecule. Cathepsins are expressed differentially in antigen presenting cells, and mice deficient in cathepsin S or cathepsin L exhibit severely impaired antigen presentation in peripheral lymphoid organs and the thymus, respectively. To determine whether these defects are due solely to the block in invariant chain cleavage, we used cathepsin-deficient B cells to examine the role of cathepsins S and B in the degradation of other molecules important in the class II presentation pathway. Our data indicate that neither cathepsin S nor B is critical for H-2M degradation or processing of precursor gamma-interferon-inducible lysosomal thiol reductase (GILT) to a mature thiol reductase, but suggest a role for cathepsin S in the turnover of mature GILT and in regulating levels of mature cathepsin L protein in B cells. Despite the presence of mature cathepsin L protein, no enzyme activity could be detected in B cells or dendritic cells. These experiments suggest a novel mechanism by which these functionally important enzymes may be regulated.  相似文献   

6.
Cathepsin K is a potent extracellular matrix-degrading protease that requires interactions with soluble glycosaminolycans for its collagenolytic activity in bone and cartilage. The major sources of glycosaminoglycans in cartilage are aggrecan aggregates. Therefore, we investigated whether cathepsin K activity is capable to hydrolyze aggrecan into fragments allowing the formation of glycosaminoglycan-cathepsin K complexes and determined the cleavage site specificity of cathepsin K toward the cartilage-resident link protein and aggrecan. The cleavage site specificity was compared with those of cathepsins S and L. All three cathepsins released glycosaminoglycans from native bovine cartilage at lysosomal pH and to a lesser degree at neutral extracellular pH. Cathepsin-predigested aggrecan complexes and cartilage provided suitable glycosaminoglycan fragments that allowed the formation of collagenolytically active cathepsin K complexes. A detailed analysis of the degradation of aggrecan aggregates revealed two cathepsin K cleavage sites in the link protein and several sites in aggrecan, including one site within the interglobular domain E1. In summary, these results demonstrate that cathepsin K is capable to degrade aggrecan complexes at specific cleavage sites and that cathepsin K activity alone is sufficient to self-provide the glycosaminoglycan fragments required for the formation of its collagenolytically active complex.  相似文献   

7.
Increasing evidence suggests that lysosomal proteases are actively involved in apoptosis. Using HeLa cells as the model system, we show that selective lysosome disruption with L-leucyl-L-leucine methyl ester results in apoptosis, characterized by translocation of lysosomal proteases into the cytosol and by the cleavage of a proapoptotic Bcl-2-family member Bid. Apoptosis and Bid cleavage, but not translocation of lysosomal proteases to the cytosol, could be prevented by 15 microM L-trans-epoxysuccinyl(OEt)-Leu-3-methylbutylamide, an inhibitor of papain-like cysteine proteases. Incubation of cells with 15 microM N-benzoyloxycarbonyl-VAD-fluoromethyl ketone prevented apoptosis but not Bid cleavage, suggesting that cathepsin-mediated apoptosis in this system is caspase-dependent. In vitro experiments performed at neutral pH showed that papain-like cathepsins B, H, L, S, and K cleave Bid predominantly at Arg(65) or Arg(71). No Bid cleavage was observed with cathepsins C and X or the aspartic protease cathepsin D. Incubation of full-length Bid treated with cathepsins B, H, L, and S resulted in rapid cytochrome c release from isolated mitochondria. Thus, Bid may be an important mediator of apoptosis induced by lysosomal disruption.  相似文献   

8.
As a model for defining the role of lysosomal cathepsins in apoptosis, we characterized the action of the lysosomotropic agent LeuLeuOMe using distinct cellular models. LeuLeuOMe induces lysosomal membrane permeabilization, resulting in release of lysosomal cathepsins that cleave the proapoptotic Bcl-2 family member Bid and degrade the antiapoptotic member Bcl-2, Bcl-xL, or Mcl-1. The papain-like cysteine protease inhibitor E-64d largely prevented apoptosis, Bid cleavage, and Bcl-2/Bcl-xL/Mcl-1 degradation. The pancaspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone failed to prevent Bid cleavage and degradation of anti-apoptotic Bcl-2 homologues but substantially decreased cell death, suggesting that cathepsin-mediated apoptosis in these cellular models mostly follows a caspase-dependent pathway. Moreover, in vitro experiments showed that one or more of the cysteine cathepsins B, L, S, K, and H could cleave Bcl-2, Bcl-xL, Mcl-1, Bak, and BimEL, whereas no Bax cleavage was observed. On the basis of inhibitor studies, we demonstrate that lysosomal disruption triggered by LeuLeuOMe occurs before mitochondrial damage. We propose that degradation of anti-apoptotic Bcl-2 family members by lysosomal cathepsins synergizes with cathepsin-mediated activation of Bid to trigger a mitochondrial pathway to apoptosis. Moreover, XIAP (X-chromosome-linked inhibitor of apoptosis) was also found to be a target of cysteine cathepsins, suggesting that cathepsins can mediate caspase-dependent apoptosis also downstream of mitochondria.  相似文献   

9.
E Kominami  T Ueno  D Muno  N Katunuma 《FEBS letters》1991,287(1-2):189-192
A selective inhibitor of cathepsin B, a derivative of E-64 (compound CA-074), and pepstatin-asialofetuin, a potent inhibitor of cathepsin D, were used for an in vivo study of the selective role of these proteinases in lysosomal proteolysis. Administration of compound CA-074 or pepstatinasialofetuin to rats caused only a slight shift of the lysosomal density and no increase in sequestered enzymes in the autolysosomal fraction, although cathepsin B or D activity in the liver was markedly inhibited. These treatments also had little effect on the inhibition of the degradation of endocytosed FITC-labeled asialofetuin. In contrast, leupeptin treatment caused marked inhibition of lysosomal degradation of endogenous and exogenous proteins. These results suggest a small contribution of cathepsins B and D to the initiation of lysosomal proteolysis.  相似文献   

10.
The study was focused on the relationship of Fasciola hepatica-secreted proteinases and human IgG subclasses. Each IgG was incubated at different pH values and lengths of time with either the adult parasite excretion-secretion products or the purified cysteinyl proteinases cathepsin L1 and cathepsin L2. The Ig fragments produced were isolated and characterized by Western blot analysis, and the specific cleavage sites were determined by amino acid sequence analysis. Parasite excretion-secretion products and both cathepsins L produced similar degradation patterns and cleaved all human IgG subclasses at the hinge region, yielding at pH 7.3 and 37 degrees C Fab and Fc fragments in the case of IgG1 and IgG3 or Fab(2) and Fc in IgG2 and IgG4. While IgG1 and IgG3 were readily degraded by E/S products either in the presence or in the absence of reducing agents, IgG2 and IgG4 were resistant to proteolysis and were only digested in the presence of 0.1 M dithiothreitol. The cathepsins L needed the presence of dithiothreitol to digest IgG1, IgG2, and IgG4 whereas IgG3 was identically cleaved under both reducing and nonreducing conditions. The main cleavage sites produced by E/S products, CL1, or CL2 were located at the positions peptide bonds: His237-Thr238, Glu237-Cys239, Gly233-Asp234, and Ser241-Cys242 for gamma1, gamma2, gamma3, or gamma4, respectively. The enzymes gave additional splitting sites on the middle hinge of IgG3 to produce shorter Fc fragments and also produce Fd degradation of the IgG4. No cleavage specificity differences were found between CL1 and CL2, but they differed in the kinetics of IgG3 degradation. By lowering the pH, only the E/S products produced concomitant destruction of the Fc while preserving the Fab portion. Under all the conditions assayed the enzymes produced an Fc'-like fragment of 14-15 kDa corresponding to the whole CH3 domain of the immunoglobulin. Contrary to the extensive degradation produced by cathepsins on digested proteins, its actions on IgG subclasses were specific and restricted; thus, all the fragments produced could be potentially involved in the mechanisms used by the parasite to evade the host immune response.  相似文献   

11.
LDL particles that enter the arterial intima become exposed to proteolytic and lipolytic modifications. The extracellular hydrolases potentially involved in LDL modification include proteolytic enzymes, such as chymase, cathepsin S, and plasmin, and phospholipolytic enzymes, such as secretory phospholipases A2 (sPLA2-IIa and sPLA2-V) and secretory acid sphingomyelinase (sSMase). Here, LDL was first proteolyzed and then subjected to lipolysis, after which the effects of combined proteolysis and lipolysis on LDL fusion and on binding to human aortic proteoglycans (PG) were studied. Chymase and cathepsin S led to more extensive proteolysis and release of peptide fragments from LDL than did plasmin. sPLA2-IIa was not able to hydrolyze unmodified LDL, and even preproteolysis of LDL particles failed to enhance lipolysis by this enzyme. However, preproteolysis with chymase and cathepsin S accelerated lipolysis by sPLA2-V and sSMase, which resulted in enhanced fusion and proteoglycan binding of the preproteolyzed LDL particles. Taken together, the results revealed that proteolysis sensitizes the LDL particles to hydrolysis by sPLA2-V and sSMase. By promoting fusion and binding of LDL to human aortic proteoglycans, the combination of proteolysis and phospholipolysis of LDL particles potentially enhances extracellular accumulation of LDL-derived lipids during atherogenesis.  相似文献   

12.
BackgroundSkin ageing is associated with structure-functional changes in the extracellular matrix, which is in part caused by proteolytic degradation. Since cysteine cathepsins are major matrix protein-degrading proteases, we investigated the age-dependent expression of elastolytic cathepsins K, S, and V in human skin, their in vitro impact on the integrity of the elastic fibre network, their cleavage specificities, and the release of bioactive peptides.MethodsCathepsin-mediated degradation of human skin elastin samples was assessed from young to very old human donors using immunohistochemical and biochemical assays, scanning electron microscopy, and mass spectrometry.ResultsElastin samples derived from patients between 10 and 86 years of age were analysed and showed an age-dependent deterioration of the fibre structure from a dense network of thinner fibrils into a beaded and porous mesh. Reduced levels of cathepsins K, S, and V were observed in aged skin with a predominant epidermal expression. Cathepsin V was the most potent elastase followed by cathepsin K and S. Biomechanical analysis of degraded elastin fibres corroborated the destructive activity of cathepsins. Mass spectrometric determination of the cleavage sites in elastin revealed that all three cathepsins predominantly cleaved in hydrophobic domains. The degradation of elastin was efficiently inhibited by an ectosteric inhibitor. Furthermore, the degradation of elastin fibres resulted in the release of bioactive peptides, which have previously been associated with various pathologies.ConclusionCathepsins are powerful elastin-degrading enzymes and capable of generating a multitude of elastokines. They may represent a viable target for intervention strategies to reduce skin ageing.  相似文献   

13.
Role of thiols in degradation of proteins by cathepsins.   总被引:2,自引:1,他引:1       下载免费PDF全文
The effects of thiols on the breakdown of 125I-labelled insulin, albumin and formaldehyde-treated albumin by highly purified rat liver cathepsins B, D, H and L at pH 4.0 and 5.5 were studied. At both pH values degradation was strongly activated by the thiols cysteamine, cysteine, dithiothreitol, glutathione and 2-mercaptoethanol, and its rate increased with increasing thiol concentration. Preincubation of the protein substrates with 5 mM-glutathione did not affect concentration. Preincubation of the protein substrates with 5 mM-glutathione did not affect the rate of degradation by cathepsin D or L, and determination of free thiol groups after incubation of the proteins in the presence of glutathione but without cathepsin showed that their disulphide bonds were stable under the incubation conditions. Sephadex G-75 chromatography of the acid-soluble products of insulin digestion by cathepsin D or L suggested that thiols can reduce disulphide bonds in proteins after limited proteolysis. The resultant opening-up of the protein structure would lead to further proteolysis, so that the two processes (proteolysis and reduction) may act synergistically. By using the osmotic protection method it was shown that, at a physiological pH, cysteamine, and its oxidized form cystamine, can cross the lysosome membrane and thus may well be the physiological hydrogen donor for the reduction of disulphides in lysosomes. The results are discussed in relation to the lysosomal storage disease cystinosis.  相似文献   

14.
Cathepsins are lysosomal enzymes that were shown to release the antiangiogenic fragments 16K prolactin (PRL), endostatin, and angiostatin by processing precursors at acidic pH in vitro. However, the physiological relevance of these findings is questionable because the neutral pH of physiological fluids is not compatible with the acidic conditions required for the proteolytic activity of these enzymes. Here we show that cathepsin D secreted from various tissues is able to process PRL into 16K PRL outside the cell. To specifically target extracellular proteolysis, we used tissues from PRL receptor-deficient mice, which are unable to internalize PRL. As assessed by the use of specific inhibitors of proton extruders, we show that the proteolytic activity of cathepsin D requires local acid secretion driven by Na(+)/H(+) exchangers and H(+)/ATPase. Although it is usually assumed that cathepsin-mediated generation of antiangiogenic peptides occurs in the moderately acidic pericellular milieu found in malignant tumors, we propose a new mechanism explaining the extracellular activity of this acidic protease under physiological pH. Our data support the concept that secreted lysosomal enzymes could be involved in the maintenance of angiogenesis dormancy via the generation of active antiangiogenic peptides in nonpathological contexts.  相似文献   

15.
Some peculiarities of prolactin hydrolysis by rat mammary gland lysosomal proteinases were studied. It was demonstrated that at pH 3.0-3.7 the initial steps of prolactin hydrolysis are under control of cathepsin D. Cysteine cathepsins are responsible for the deep degradation of the peptides formed. The molecular mass of rat mammary gland cathepsin D as determined by chromatography on Sephadex G-100 is about 45 kDa. Using affinity chromatography on hemoglobin-Sepharose 4B, cathepsin D was purified 300--320-fold. The purified enzyme rapidly hydrolyzes low concentrations of prolactin down to peptides with Mr less than 1 kDa. At substrate--enzyme concentration ratios above 3:1, the limited proteolysis of prolactin occurred. At early steps of prolactin hydrolysis the formation of two peptides (Mr approximately 10 kDa) takes place. Deeper degradation of sheep prolactin led to the formation of four peptides with molecular masses of 6630, 3020, 1880 and 1040 Da (data from SDS-PAGE electrophoresis). An analysis of structural peculiarities of prolactin from different animal species revealed that this hormone is protected from the damaging effect of exopeptidases.  相似文献   

16.
The catabolic degradation of hemoglobin and of its complex with haptoglobin by lysosomal enzymes from rat liver was studied with special emphasis on the action of cathepsins D and E. The digestion of free hemoglobin can be mainly attributed to the action of cathepsin D [EC 3.4.23.5], while the digestion of the complex in the pH rand 2-3 is due more to the action of cathepsin E than that of cathepsin D. The enzymic activities of both cathepsins were strongly inhibited by pepstatin, and 4M urea inactivated cathepsin E. Measurements of the peroxidase activity and optical rotatory dispersion of the hemoglobin-haptoglobin complex showed that the complex suffered rapid denaturation below pH 2.9.  相似文献   

17.
Endocytosed proteins in hepatocytes are transported to lysosomes for degradation. Metabolites accumulating in these organelles are released into bile by exocytosis, a process that seems to be regulated by the bile salt taurocholate (TC). In this study we examined if TC is also involved in the control of the lysosomal degradation of endocytosed proteins. We used [(14)C]sucrose-labeled horseradish peroxidase ([(14)C]S-HRP), a probe suitable to evaluate lysosomal proteolysis. TC-infused rats as well as isolated rat hepatocytes exposed to TC showed a significant inhibition in the lysosomal degradation of [(14)C]S-HRP (approximately 30%), with no change in either the uptake or the amount of protein reaching lysosomes. Under these conditions, the in vitro assay of lysosomal cathepsins B, L, H, and D revealed no change in their activities, suggesting that a reversible inhibition (lysosomal alkalinization?) was taking place in hepatocytes. Nevertheless, lysosomal pH measured using fluorescein isothiocyanate-dextran was shown not to be altered by TC. In addition, TC was unable to inhibit proteolysis in [(14)C]S-HRP loaded lysosomes or interfere in cathepsin assays. The results suggest that TC inhibits the lysosomal degradation of endocytosed proteins in hepatocytes and that the mechanism does not involve an effect of the bile salt per se or a rise in lysosomal pH.  相似文献   

18.
In murine fibroblasts, efficient proteolysis of reovirus outer capsid protein sigma3 during cell entry by virions requires the acid-dependent lysosomal cysteine protease cathepsin L. The importance of cathepsin L for infection of other cell types is unknown. Here we report that the acid-independent lysosomal cysteine protease cathepsin S mediates outer capsid processing in macrophage-like P388D cells. P388D cells supported infection by virions of strain Lang, but not strain c43. Genetic studies revealed that this difference is determined by S4, the viral gene segment that encodes sigma3. c43-derived subvirion particles that lack sigma3 replicated normally in P388D cells, suggesting that the difference in infectivity of Lang and c43 virions is at the level of sigma3 processing. Infection of P388D cells with Lang virions was inhibited by the broad spectrum cysteine protease inhibitor trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane but not by NH(4)Cl, which raises the endocytic pH and thereby inhibits acid-dependent proteases such as cathepsins L and B. Outer capsid processing and infection of P388D cells with Lang virions were also inhibited by a cathepsin S-specific inhibitor. Furthermore, in the presence of NH(4)Cl, cell lines engineered to express cathepsin S supported infection by Lang, but not c43, virions. Our results thus indicate that differences in susceptibility to cathepsin S-mediated sigma3 processing are responsible for strain differences in reovirus infection of macrophage-like P388D cells and other cathepsin S-expressing cells. Additionally, our data suggest that the acid dependence of reovirus infections of most other cell types may reflect the low pH requirement for the activities of most other lysosomal proteases rather, than some other acid-dependent aspect of cell entry.  相似文献   

19.
Cutaneous aging translates drastic structural and functional alterations in the extracellular matrix (ECM). Multiple mechanisms are involved, including changes in protease levels. We investigated the age-related protein expression and activity of cysteine cathepsins and the expression of two endogenous protein inhibitors in young and aged Caucasian women skin epidermis. Immunofluorescence studies indicate that the expression of cathepsins K, S and V, as well as cystatins A and M/E within keratinocytes is reduced in photoprotected skin of aged women. Furthermore, the overall endopeptidase activity of cysteine cathepsins in epidermis lysates decreased with age. Albeit dermal elastic fiber and laminin expression is reduced in aged skin, staining of nidogen-1, a key protein in BM assembly that is sensitive to proteolysis by cysteine, metallo- and serine proteases, has a similar pattern in both young and aged skin. Since cathepsins contribute to the hydrolysis and turnover of ECM/basement membrane components, the abnormal protein degradation and deposition during aging process may be related in part to a decline of lysosomal/endosomal cathepsin K, S and V activity.  相似文献   

20.
The aim of this study was to provide evidence on the modulation of lysosomal enzymes in terms of both gene expression and enzymatic activity during follicle maturation. For this purpose three lysosomal enzymes, cathepsins B, D, and L, were studied in relation to yolk formation and degradation, during the main phases of ovarian follicle growth in the pelagophil species, the sea bream Sparus aurata. Specific attention was focused on the gene expression quantification method, on the assay of enzymatic activities, and on the relationship between the proteolytic cleavage of yolk proteins (YPs), cathepsin gene expression and cathepsin activities. For the gene expression study, the cathepsins B-like and L-like mRNAs were isolated and partially or fully characterized, respectively; the sequences were used as design specific primers for the quantification of cathepsin gene expression by real-time PCR, in follicles at different stages of maturation. The enzymatic assays for cathepsins B, D, and L were optimized in terms of specificity, sensitivity and reliability, using specific substrates and inhibitors. In ovulated eggs, the lipovitellin I (LV I) was degraded and the changes in electrophoretic pattern were preceded by an increase in the activity of a cysteine proteinase, cathepsin L, and its mRNA. Cathepsin B did not appear to be involved in YP changes during the final maturation stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号