首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lung tissue resistance and pulmonary hysteresis   总被引:1,自引:0,他引:1  
  相似文献   

3.
Cardiotrophin-1 (CT-1) is known to promote survival but also to induce an elongated morphology of isolated cardiac myocytes, leading to the hypothesis that CT-1, which is chronically augmented in human heart failure, might induce eccentric cardiac hypertrophy and contractile failure. To address this, we used heart tissues reconstituted from neonatal rat cardiac myocytes (engineered heart tissue, EHT) as multicellular in vitro test systems. CT-1 dose-dependently affected contractile function in EHTs. After treatment with 0.1 nM CT-1 (corresponds to plasma levels in humans) for 10 days, twitch tension significantly decreased to 0.30 +/- 0.04 mN (n = 15) vs. 0.45 +/- 0.04 mN (n = 16) in controls. Furthermore, positive inotropic effects of cumulative concentrations of Ca2+ and isoprenaline were significantly diminished. Maximum isoprenaline-induced increase in twitch tension amounted to 0.27 +/- 0.04 mN (n = 15) vs. 0.47 +/- 0.06 mN (n = 16) in controls (P < 0.001). When EHTs were treated for only 5 days, qualitatively similar results were obtained but changes were less pronounced. Immunostaining of whole mount EHT preparations revealed that after CT-1 treatment, the number of nonmyocytes significantly increased by 98% (1 nM, 10 days), and myocytes did not form compact, longitudinally oriented muscle bundles. Interestingly, expression of the Ca2+-handling protein calsequestrin was markedly reduced (69 +/- 7% of control) by treatment with CT-1 (0.1 nM, 10 days). In summary, long-term exposure to CT-1 induces contractile dysfunction in EHTs. Structural changes due to impaired differentiation and/or remodeling of heart tissue may play an important role.  相似文献   

4.
Previous studies have shown that lung challenge with smooth muscle agonists increases tissue viscance (Vti), which is the pressure drop between the alveolus and the pleura divided by the flow. Passive inflation also increases Vti. The purpose of the present study was to measure the changes in Vti during positive end-expiratory pressure- (PEEP) induced changes in lung volume and with a concentration-response curve to methacholine (MCh) in rabbits and to compare the effects of induced constriction vs. passive lung inflation on tissue mechanics. Measurements were made in 10 anesthetized open-chest mechanically ventilated New Zealand male rabbits exposed first to increasing levels of PEEP (3-12 cmH2O) and then to increasing concentrations of MCh aerosol (0.5-128 mg/ml). Lung elastance (EL), lung resistance (RL), and Vti were determined by adjusting the equation of motion to tracheal and alveolar pressures during tidal ventilation. Our results show that under baseline conditions, Vti accounted for a major proportion of RL; during both passive lung inflation and MCh challenge this proportion increased progressively. For the same level of change in EL, however, the increase in Vti was larger during MCh challenge than during passive inflation; i.e., the relationship between energy storage and energy dissipation or hysteresivity was dramatically altered. These results are consistent with a MCh-induced change in the intrinsic rheological properties of lung tissues unrelated to lung volume change per se. Lung tissue constriction is one possible explanation.  相似文献   

5.
6.
During the first few weeks of resistance training, maximal voluntary contraction (MVC) force increases at a faster rate than can be accounted for by increases in protein synthesis. This early increase in MVC force has been attributed to neural mechanisms but the sources have not been identified. The purpose of this study was to measure changes in cortical excitability with transcranial magnetic stimulation during 4 weeks of resistance training of the tibialis anterior muscle. Ten individuals performed 6 sets of 10 MVCs 3 times per week for 4 weeks and ten participated as a control group. There were no changes in any parameters tested in the control group over the 4 weeks. In the training group, TA muscle strength increased significantly by 10% at week 2 and by 18% at week 4. As hypothesized, cortical excitability during resistance training also increased. The amplitude of the TA surface EMG motor evoked potential elicited by TMS during a low-level contraction increased by 32% after training with no change in the M-wave. These data indicate that there may be an increase in cortical excitability during the first few weeks of resistance training of the TA muscle.  相似文献   

7.
Apical constriction is a cell shape change that promotes epithelial bending. Activation of nonmuscle myosin II (Myo-II) by kinases such as Rho-associated kinase (Rok) is important to generate contractile force during apical constriction. Cycles of Myo-II assembly and disassembly, or pulses, are associated with apical constriction during Drosophila melanogaster gastrulation. It is not understood whether Myo-II phosphoregulation organizes contractile pulses or whether pulses are important for tissue morphogenesis. Here, we show that Myo-II pulses are associated with pulses of apical Rok. Mutants that mimic Myo-II light chain phosphorylation or depletion of myosin phosphatase inhibit Myo-II contractile pulses, disrupting both actomyosin coalescence into apical foci and cycles of Myo-II assembly/disassembly. Thus, coupling dynamic Myo-II phosphorylation to upstream signals organizes contractile Myo-II pulses in both space and time. Mutants that mimic Myo-II phosphorylation undergo continuous, rather than incremental, apical constriction. These mutants fail to maintain intercellular actomyosin network connections during tissue invagination, suggesting that Myo-II pulses are required for tissue integrity during morphogenesis.  相似文献   

8.
9.
《The Journal of cell biology》1983,97(6):1745-1752
Extracts of the soluble cytoplasmic proteins of the sea urchin egg form gels of different composition and properties depending on the temperature used to induce actin polymerization. At temperatures that inactivate myosin, a gel composed of actin, fascin, and a 220,000-mol- wt protein is formed. Fascin binds actin into highly organized units with a characteristic banding pattern, and these actin-fascin units are the structural core of the sea urchin microvilli formed after fertilization and of the urchin coelomocyte filopods. Under milder conditions a more complex myosin-containing gel is formed, which contracts to a small fraction of its original volume within an hour after formation. What has been called "structural" gel can be assembled by combining actin, fascin, and the 220,000-mol-wt protein in 50-100 mM KCl; the aim of the experiments reported here was to determine whether myosin could be included during assembly, thereby interconverting structural and contractile gel. This approach is limited by the aggregation of sea urchin myosin at the low salt concentrations utilized in gel assembly. A method has been devised for the sequential combination of these components under controlled KCl and ATP concentrations that allows the formation of a gel containing dispersed myosin at a final concentration of 60-100 mM KCl. These gels are stable at low (approximately 10 micron) ATP concentrations, but contract to a small volume in the presence of higher (approximately 100 micron) ATP. Contraction can be controlled by forming a stable gel at low ATP and then overlaying it with a solution containing sufficient ATP to induce contraction. This system may provide a useful model for the study of the interrelations between cytoplasmic structure and motility.  相似文献   

10.
11.
12.
Little is known about the structural properties of plantar soft-tissue areas other than the heel; nor is it known whether the structural properties vary depending on location. Furthermore, although the quasi-linear viscoelastic (QLV) theory has been used to model many soft-tissue types, it has not been employed to model the plantar soft tissue. The structural properties of the plantar soft tissue were quantified via stress relaxation experiments at seven regions (subcalcaneal, five submetatarsal, and subhallucal) across eight cadaveric feet. The cadaveric feet were 36.9 +/- 17.4 (mean +/- S.D.) years of age, all free from vascular diseases and orthopedics disorders. All tests were performed at a constant environmental temperature of 35 degrees C. Stress relaxation experiments were performed; different loads were employed for different areas based on normative gait data. A modification of the relaxation spectrum employed within the QLV theory allowed for the inclusion of frequency-sensitive relaxation properties in addition to nonlinear elastic behavior. The tissue demonstrated frequency-dependent damping properties that made the QLV theory ill suited to model the relaxation. There was a significant difference between the elastic structural properties (A) of the subcalcaneal tissue and all other areas (p = 0.004), and a trend (p = 0.067) for the fifth submetatarsal to have less viscous damping (c1) than the subhallucal, or first, second, or third submetatarsal areas. Thus, the data demonstrate that the structural properties of the foot can vary across regions, but careful consideration must be given to the applied loads and the manner in which the loads were applied.  相似文献   

13.
Pulmonary disease is a worldwide public health problem that reduces the life quality and increases the need for hospital admissions as well as the risk of premature death. A common problem is the significant shortage of lungs for transplantation as well as patients must also take immunosuppressive drugs for the rest of their lives to keep the immune system from attacking transplanted organs. Recently, a new strategy has been proposed in the cellular engineering of lung tissue as decellularization approaches. The main components for the lung tissue engineering are: (1) A suitable biological or synthetic three-dimensional (3D) scaffold, (2) source of stem cells or cells, (3) growth factors required to drive cell differentiation and proliferation, and (4) bioreactor, a system that supports a 3D composite biologically active. Although a number of synthetic as well biological 3D scaffold suggested for lung tissue engineering, the current favorite scaffold is decellularized extracellular matrix scaffold. There are a large number of commercial and academic made bioreactors, the favor has been, the one easy to sterilize, physiologically stimuli and support active cell growth as well as clinically translational. The challenges would be to develop a functional lung will depend on the endothelialized microvascular network and alveolar–capillary surface area to exchange gas. A critical review of the each components of lung tissue engineering is presented, following an appraisal of the literature in the last 5 years. This is a multibillion dollar industry and consider unmet clinical need.  相似文献   

14.
The role of endogenous nitric oxide (NO) in modulating the excitatory response of distal airways to vagal stimulation is unknown. In decerebrate, ventilated, open-chest piglets aged 3-10 days, lung resistance (RL) was partitioned into tissue resistance (Rti) and airway resistance (Raw) by using alveolar capsules. Changes in RL, Rti, and Raw were evaluated during vagal stimulation at increasing frequency before and after NO synthase blockade with N(omega)-nitro-L-arginine methyl ester (L-NAME). Vagal stimulation increased RL by elevating both Rti and Raw. NO synthase blockade significantly increased baseline Rti, but not Raw, and significantly augmented the effects of vagal stimulation on both Rti and Raw. Vagal stimulation also resulted in a significant increase in cGMP levels in lung tissue before, but not after, L-NAME infusion. In seven additional piglets after RL was elevated by histamine infusion in the presence of cholinergic blockade with atropine, vagal stimulation failed to elicit any change in RL, Rti, or Raw. Therefore, endogenous NO not only plays a role in modulating baseline Rti, but it opposes the excitatory cholinergic effects on both the tissue and airway components of RL. We speculate that activation of the NO/cGMP pathway during cholinergic stimulation plays an important role in modulating peripheral as well as central contractile elements in the developing lung.  相似文献   

15.
Summary Rat ovarian perifollicular contractile tissue was examined at specified intervals prior to ovulation to determine the type, relative number, and length of cellular junctions. Rat ovaries were taken for electron-microscopic observation at 1500 h on the afternoon of proestrus (proestrus 0-h group), at 2000 h (proestrus 5 h group), at 0100 h (proestrus 10-h group) and at 1600 h on the afternoon of diestrus I. Close junctions, intermediate junctions, and gap junctions were counted and measured. The number of gap junctions 1,000 m of membrane and the number of intermediate junctions 1,000 m of membrane was significantly higher in the proestrus 10 h group as compared to the other groups. There was no difference in the number of close junctions during the periods studied. Also the length of all junctions was similar in all groups. These morphological findings are discussed in the context of a contractile role for perifollicular tissue in the ovulatory process.  相似文献   

16.
This study examined the effect of high- (75 Hz, 1 min) and low- (5 Hz, 1.5 min) frequency stimulation on contractile and biochemical properties of the diaphragm. Tension was reduced to 21 +/- 1 and 54 +/- 2% (SE) of the initial value after high- and low-frequency stimulation, respectively. After 0, 0.25, 1, and 2 min of recovery from high-frequency stimulation, 5 Hz elicited more force (expressed as % of initial tension) than 75-Hz stimulation. Time 0 recovery values were 21 +/- 1 and 78 +/- 6% of the initial force for 75- and 5-Hz stimulation, respectively. By 1 min of recovery, force elicited by 5-Hz stimulation had returned to the prefatigue value. In contrast, force production with 75-Hz stimulation did not full recover until 10-15 min. After fatigue produced by low-frequency stimulation, force production with 5-Hz stimulation was reduced to 54 +/- 2% of the initial tension, a value significantly lower than the 71 +/- 2% of initial force elicited by 75-Hz stimulation. Force production with 5-Hz stimulation increased rapidly in the first 15 s of recovery (54 +/- 2% at 0 and 70 +/- 2% at 15 s) and by 5 min was significantly greater than the force elicited by 75-Hz stimulation (100 +/- 3 vs. 93 +/- 1%). As before, force production at 75-Hz stimulation did not fully recover until 10-15 min. Both fatigue protocols produced a significant prolongation in isometric twitch contraction and one-half relaxation times. Creatine phosphate (CP) concentration was reduced and muscle lactate increased by both fatigue protocols.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
The fast- and slow-twitch muscles were tested with single pulses in the course of unfused tetanus formation. The tetanus decreased differences in contractile parameters of the test-twitch contractions and, after continuous stimulation, eliminated them altogether.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号