首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Polysphondylium pallidum is a cellular slime mold in which, unlike in Dictyostelium discoideum, cAMP is not the chemotactic agent. The occurrence of a cAMP-dependent protein kinase in D. discoideum was demonstrated earlier and we suggested that it may mediate the intracellular effects of cAMP on the development of the organism, particularly since an increase in the amount of the enzyme during development was noted. In D. discoideum cAMP plays a dual role insofar as it serves both as chemotactic agent and as second messenger; it was of interest therefore, to determine whether a cAMP-dependent protein kinase occurred in P. pallidum. We found a cAMP-dependent protein kinase in P. pallidum using Kemptide as substrate. The regulatory subunit of the enzyme has an apparent molecular weight of 41,000 and seems to be similar in its properties with that isolated earlier from D. discoideum. The cAMP-dependent protein kinase catalytic subunits from the two species are also similar. Furthermore, there is a developmentally regulated, parallel, two- to threefold increase in the two subunits of the cAMP-dependent protein kinase in P. pallidum. The increase occurs before aggregates are formed. These findings are compatible with a role of the intracellular cAMP and of the cAMP-dependent protein kinase in the development of P. pallidum.  相似文献   

2.
The distribution of the catalytic and regulatory subunits of the cAMP-dependent protein kinase between cytoplasm and nucleus was determined during the development of Dictyostelium discoideum. In vegetative amoebae approximately 2% of the subunits were in the nucleus. During development there was an approximately 5-fold increase in total soluble cAMP-dependent protein kinase and a 15- to 30-fold increase of enzyme in the nuclear fraction. There was a reverse translocation from nucleus to cytoplasm, when Tipped Aggregates were disrupted and the resultant amoebae incubated in single-cell suspension. The addition of cAMP to these single-cell suspensions brought about the reentry of the subunits into the nucleus. The findings are discussed in relation to the potential role of the cAMP-dependent protein kinase in the regulation of mRNA and protein synthesis.  相似文献   

3.
It has been known for 20 years that during cellular differentiation of Dictyostelium discoideum, glycogen is degraded to provide the glucose precursors that are required for the synthesis of the end-products of development. Because this pathway provided a distinct developmentally regulated event, a number of laboratories have investigated the regulation of the first step in glycogen degradation, glycogen phosphorylase. Of particular interest was the possible regulation of this enzyme by cAMP. Cyclic AMP is know to act as a signal in this organism for both chemotaxis and cell differentiation. The phosphorylase activity was found to increase during development and, therefore, it has been used in many studies as a marker for late stage development. However, only one form of the phosphorylase was found, and therefore it was concluded that cAMP was not involved in regulation of this key step in the developmental pathway. Here we report the discovery of a second form of the enzyme. This form is completely dependent on AMP for activity and is found only in the undifferentiated stage. This second form contains several of the properties of the nonphosphorylated enzyme that occurs in systems that are regulated by cAMP. This result and the recent discovery of a cAMP-dependent protein kinase has rekindled the possibility that at least one of the effects of cAMP in this organism occurs via a cAMP-dependent cascade of phosphorylation; that is, the activation of glycogen phosphorylase and subsequent production of the precursors for the end-products of development.  相似文献   

4.
Extracellular molecules regulate gene expression in eucaryotes. Exogenous cyclic AMP (cAMP) affects the expression of a large number of developmentally regulated genes in Dictyostelium discoideum. Here, we determine the specificity of the receptor(s) which mediates gene expression by using analogs of cAMP. The order of potency with which these analogs affect the expression of specific genes is consistent with the specificity of their binding to a cell surface receptor and is distinct from their affinity for intracellular cAMP-dependent protein kinase. Dose-response curves with cAMP and adenosine 3',5'-monophosphorothioate, a nonhydrolyzable analog, revealed that the requirement for high concentrations of exogenous cAMP for regulating gene expression is due to the rapid degradation of cAMP by phosphodiesterase. The addition of low concentrations of cAMP (100 nM) or analogs in pulses also regulates gene expression. Both the genes that are positively regulated by exogenous cAMP and the discoidin gene, which is negatively regulated, respond to cAMP analogs to the same degree. Genes expressed in prespore or prestalk cells are also similarly regulated. These data suggest that the effects are mediated through the same receptor. The specificity of this receptor is indistinguishable from that of the well-characterized cell surface cAMP receptor.  相似文献   

5.
cAMP is an important effector of the development of Dictyostelium discoideum amoebae and could exert its effects on gene expression through the cytosolic cAMP-dependent protein kinase (cAK). Antibodies, specific for the regulatory subunit (R) of the cAK, were used to investigate the developmental regulation of the corresponding mRNA (R-mRNA) by in vitro translation and immunoprecipitation. Under such conditions, a single polypeptide of the same mol. wt. as R (42 kd) is detected, showing that the protein is not synthesized as a large precursor. The level of the R-mRNA, which is low in vegetative cells, increases 10- to 20-fold during the first hours of development. Its expression is stimulated by the treatment of AX3 cells with cAMP either added to a concentration of 1 mM or given as 0.1 microM pulses every 5 min, whereas such treatments have little or no effect in cells of strain AX2. The R-mRNA remains highly expressed (0.01-0.03% of translatable mRNA) throughout post-aggregative development; it is not affected by mechanical disaggregation of the multicellular organism. The parallel developmental time courses of the translatable R-mRNA and the R protein produced in vivo suggest that the expression of this polypeptide is regulated at the level of mRNA synthesis.  相似文献   

6.
The results of a series of experiments are interpreted to indicate that protein synthesis in reticulocyte lysates is not affected by the reticulocyte cAMP-dependent protein kinase. The catalytic subunit of this enzyme was isolated to apparent homogeneity. Also, the protein inhibitor of this protein kinase was isolated from muscle. Neither physiological concentrations of cAMP nor any of these protein components had a detectable effect on protein synthesis in reticulocyte lysates in the presence or absence of exogenous heme. Phosphorylation of the smallest subunit of eukaryotic initiation factor 2 or the 90,000 to 100,000-dalton peptide associated with eukaryotic initiation factor 2 kinase activity were not affected by the activity of the cAMP-dependent protein kinase under conditions in which exogenous heme has a pronounced effect on these reactions.  相似文献   

7.
The uridine diphosphoglucose pyrophosphorylase (UDPGP1) gene of Dictyostelium discoideum is an excellent marker to study the pathways that control the expression of genes during development. We have previously shown that the UDPGP1 gene is regulated by exogenous cAMP acting on cell-surface cAMP receptors. Various steps in the signal transduction pathway between receptor stimulation and the induction of the gene can now be studied. Induction does not require the synthesis of intracellular cAMP, but does require new protein synthesis. By deletion and transformation with altered genes, two cis-acting sequences that are required for UDPGP1 expression have been identified. A GC-rich palindromic sequence located between -410 and -374 is essential for induction of the gene by extracellular cAMP, but not for its basal expression. A sequence element located between -374 and -337 is required for any basal expression of this gene. When the polarity of the palindromic sequence was reversed such that it resembled the H2K enhancer element, the gene could still be induced by exogenous cAMP. Two DNA binding activities were detected in gel mobility shift assays using a fragment containing both of the regulatory sequence elements of UDPGP1 gene. Transformation with a vector that resulted in the synthesis of anti-sense UDPGP1 RNA led to almost total elimination of the enzyme antigen and no detectable enzyme activity. However, these transformants developed normally, indicating that either UDPGP is not required for development or residual synthesis of UDPGP may be sufficient for normal development.  相似文献   

8.
9.
Addition of adenosine 3':5'-monophosphate (cAMP) to high speed supernatant preparations obtained from rat brain caused a 3- to 4-fold increase in tyrosine 3-monooxygenase (tyrosine hydroxylase) activity. The tyrosine 3-monooxygenase remained in an activated state upon removal of the cAMP by passing the enzyme through a Sephadex G-25 column. Substances which inhibit cAMP-dependent protein kinase, namely, EDTA, ADP, and adenosine, and protein kinase modulator, each antagonized the activation of tyrosine 3-monooxygenase produced by cAMP. Furthermore, addition of partially purified brain cAMP-dependent protein kinase caused a several-fold increase in tyrosin 3-monooxygenase activity. The activation of tyrosine 3-monooxygenase by added cAMP and protein kinase required the presence of ATP and Mg-2+. These data suggests that the cAMP activation of tyrosine 3-monooxygenase may be mediated by a cAMP-dependent protein kinase.  相似文献   

10.
One of the developmentally induced gene products that is essential for chemotaxis of Dictyostelium amoebae is a cyclic nucleotide phosphodiesterase. The enzyme can be secreted or exist in a membrane bound form. This enzyme is missing in the mutant HPX235 which, as a consequence, does not aggregate unless exogenous cAMP phosphodiesterase is supplied. We have introduced multiple copies of the cloned phosphodiesterase gene into mutant amoebae and restored aggregation. The formation of anatomically correct fruiting bodies, which does not occur when exogenous enzyme is added, is also restored by transformation with the gene. The construct that we have used gives rise only to secreted phosphodiesterase and therefore the membrane bound form of the enzyme is not absolutely required for normal aggregation and morphogenesis.  相似文献   

11.
cAMP-dependent protein kinase from Dictyostelium discoideum   总被引:1,自引:0,他引:1  
The cAMP-dependent protein kinase (cAK) from Dictyostelium discoideum is an enzyme composed of one catalytic and one regulatory subunit. Upon binding of cAMP, the holoenzyme dissociates to liberate free active catalytic subunits. The cAK is developmentally regulated, ranging from very little activity in vegetative cells to maximal expression in postaggregative cells. Although there is no immunological cross-reaction between the subunits of cAKs from Dictyostelium and from other organisms, they share several biochemical properties. A complete cDNA for the regulatory subunit has been cloned and sequenced. Only one copy of the gene for the regulatory subunit is present per haploid genome. On the basis of the comparison of the structure of the cAK from Dictyostelium with its counterparts in yeast and higher eukaryotes, we propose a model for the evolution of cyclic-nucleotide-binding proteins.  相似文献   

12.
The activity of beta-glucosidase (EC 3.2.1.21) in extracts of Dictyostelium discoideum was investigated. The specific activity increased early in development, declined during pseudoplasmodium formation, and increased again during sorocarp formation. The beta-glucosidase which was present in growing amoebae and during the first stages of multicellular development was electrophoretically distinct from the enzyme which accumulated during the final stages of morphogenesis. Ribonucleic acid synthesis and protein synthesis during development were required for the accumulation of the later isozyme. Analysis of beta-glucosidase activity in a number of morphological mutants suggests that the enzyme which accumulates late in morphogenesis is developmentally controlled.  相似文献   

13.
The cAMP-dependent protein kinase from various tissues was more thermally sensitive when activated by cAMP than the non-activated enzyme. For example, when the activity ratio (the activity of protein kinase assayed -cAMP/+cAMP) was 0.40, 80% and 76% of total hepatic cAMP dependent protein kinase activity was recoverable after incubations at 45 degrees C for 15 and 30 minutes, respectively. However, when the activity ratio was elevated to about 0.80 - 0.90 by increasing cAMP levels in vivo or adding exogenous cAMP to soluble liver extracts, the total protein kinase activity recoverable after incubations at 45 degrees C for 15 minutes was 34-44% and 19-22%, respectively. This observation was used to estimate the degree of activation of the enzyme in vivo and in vitro, since the loss of enzyme activity at 45 degrees C was directly related to the degree of activation of the enzyme in tissue extracts. The regulatory-catalytic form of cAMP-dependent protein kinase was thermally resistant at 45 degrees C unless activated by incubation with exogenous cAMP, histones or NaCl, while the catalytic form of the enzyme was highly thermally sensitive at this same temperature. These data describe a new property of the cAMP-dependent protein kinase and suggest an alternative method which measure the degree of activation of the enzyme.  相似文献   

14.
During the developmental cycle of Dictyostelium discoideum cyclic AMP functions as both a chemotactic signal for aggregation and a regulatory molecule during later events of differentiation. Morphological and biochemical data suggest that cAMP may direct cells during morphogenesis and differentiation. We utilized microtechniques to determine the stage- and cell-specific levels of the cAMP-dependent protein kinase, the probable intracellular cAMP receptor. Kinase activity was low and non-cAMP-dependent in amoebae and early aggregates but increased and became cAMP-dependent in aggregates after the formation of tight cell contacts. Maximum kinase activity and cAMP dependency occurred during the slug and culmination stages. The only differential distribution of the kinase within a single stage occurred during culmination when the activity in the stalks was approximately one-fourth of that in the prespore mass. Preliminary evidence indicates that this difference is not due to an inhibitor. In all other stages tested cAMP-dependent protein kinase activity was equal in prespore and prestalk cells.  相似文献   

15.
When amoebae of Dictyostelium discoideum, suspended in buffer, were treated with 100 nM pulses of cAMP, the extracellular cAMP phosphodiesterase (ePD) activity increased dramatically and the synthesis of the phosphodiesterase inhibitor (PDI) was repressed. In addition, the time of appearance on the cell surface of contact sites A, membrane-bound cAMP phosphodiesterase, and cAMP binding sites was accelerated by 3–4 hr and the concentration of intracellular cAMP increased ?20-fold. When the concentration of the cAMP pulse was reduced to 1 nM, the effect of the pulses on membrane differentiation and on the cAMP pool was virtually the same, while the effect on the ePD-PDI system was reduced. When cAMP was added to the suspension continuously, the nucleotide had no effect on membrane differentiation and failed to stimulate the intracellular cAMP pool, however, the ePD-PDI system was regulated normally. When the developmental mutant, HC112, was treated with cAMP pulses, membrane differentiation and the level of the cAMP pool were unaffected, while the ePD-PDI system responded to the exogenous cAMP. In another mutant, HC53, membrane differentiation was stimulated by cAMP pulses and this response was accompanied by a sharp increase in the concentration of the cAMP pool. These results suggest that the ePD-PDI system and membrane differentiation are regulated independently by exogenous cAMP and that regulation of the ePD-PDI system does not require activation of the adenylyl cyclase.  相似文献   

16.
17.
18.
A simple assay has been developed to measure cGMP-specific phosphodiesterase (cGPD) activity in crude soluble extracts of amoebae of Dictyostelium discoideum. When amoebae of different wild-type strains were starved on buffered agar, all strains exhibited an 8- to 12-fold increase in cGMP-specific hydrolyzing activity during development, with the major increase occurring at aggregation. cGMP-specific activity was found in both prestalk and prespore cells. To determine if the elevated cGMP-specific hydrolyzing activity observed during late development was associated with the same enzyme present in vegetative cells, cGMP-specific activities were partially purified from cells at different developmental stages and characterized. Activity in vegetative cells was fractionated by gel filtration into three components with molecular weights of approximately 172,000, 115,000 and 56,000. In contrast, cells starved 4 hr in suspension or 18 hr on agar possessed only the 172,000 or 115,000 Mr forms, respectively. The low-molecular-weight enzyme differed from the two larger forms in kinetic properties and in sensitivity to sulfhydryl reagents. Nevertheless, the three activities probably represent different forms of the same enzyme because mutants defective at the stmF locus lacked appreciable cGMP-specific hydrolyzing activity throughout development. These results indicate that D. discoideum produces a single cGPD which is strongly developmentally regulated. These findings further suggest that intracellular cGMP might be involved in regulating postaggregative as well as preaggregative development.  相似文献   

19.
The isolated glycogen particle provides a means to examine the regulation of glycogen metabolism with the components organized in a functional cellular complex. With this system, we have studied the control of phosphorylase kinase activation by Ca2+ and cAMP. Contrary to a previous report (Heilmeyer, L. M. G., Jr., Meyer, F., Haschke, R. H., and Fisher, E. H. (1980) J. Biol. Chem. 245, 6649-6656), phosphorylase kinase became activated during incubation of the glycogen particle with MgATP2- and Ca2+. Part of this activation could be attributed to the action of the cAMP-dependent protein kinase; however, it was not possible to quantitatively correlate activation with phosphorylation in the presence of Ca2+ and Mg2+ due to a large, but uncertain, contribution of synergistic activation caused by these ions. This latter activation had properties similar to those described by King and Carlson (King, M. M., and Carlson, G. M. (1980) Arch. Biochem. Biophys. 209, 517-523) with the purified enzyme, and its occurrence also explains why phosphorylase kinase activation in the glycogen particle was not observed previously. The cAMP-dependent activation of phosphorylase kinase in the glycogen particle has been characterized. It occurred in a similar manner when either the cAMP-dependent protein kinase or cAMP was added, thus indicating that the phosphorylation sites of phosphorylase kinase complexed in the glycogen particle were accessible to endogenous or exogenous enzyme. In the glycogen particle, both the alpha and beta subunits were phosphorylated by the cAMP-dependent protein kinase, but the alpha subunit dephosphorylation appeared to be preferentially regulated by Ca2+. The activity of phosphorylase kinase in the glycogen particle is regulated by the phosphorylation of both the alpha and beta subunits.  相似文献   

20.
Activation of cAMP-dependent protein kinase II by static and dynamic steady-state cAMP levels was studied by reconstituting an in vitro model system composed of hormone-sensitive adenylate cyclase, cyclic nucleotide phosphodiesterase, and cAMP-dependent protein kinase II. The rates of cAMP synthesis were regulated by incubating isolated membranes from AtT20 cells with various concentrations of forskolin. In the presence of 3-methylisobutylxanthine, the rate of protein kinase activation was proportional to the rate at which cAMP was synthesized, and there was a direct relationship between the degree of activation and the level of cAMP produced. The activation profiles of protein kinase generated in the presence of exogenous cAMP or cAMP produced by activation of adenylate cyclase in the absence of cAMP degradation were indistinguishable. Dynamic steady-state levels of cAMP were achieved by incubating the membranes with forskolin in the presence of purified cyclic nucleotide phosphodiesterase. Under these conditions, the apparent activation constant of protein kinase II for cAMP was reduced by 65-75%. This increased sensitivity to activation by cAMP was seen when phosphotransferase activity was measured directly in reaction mixtures containing membranes, protein kinase, and histone H2B or when regulatory and catalytic subunits were first separated by immunoprecipitation of holoenzyme and regulatory subunits with specific anti-serum. Our results are consistent with the hypothesis that rapid cAMP turnover may function as a mechanism for amplifying hormonal signals which use the cAMP-dependent protein kinase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号