首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to beta(1)-adrenoreceptor (beta(1)-AR) signaling, beta(2)-AR stimulation in cardiomyocytes augments L-type Ca(2+) current in a cAMP-dependent protein kinase (PKA)-dependent manner but fails to phosphorylate phospholamban, indicating that the beta(2)-AR-induced cAMP/PKA signaling is highly localized. Here we show that inhibition of G(i) proteins with pertussis toxin (PTX) permits a full phospholamban phosphorylation and a de novo relaxant effect following beta(2)-AR stimulation, converting the localized beta(2)-AR signaling to a global signaling mode similar to that of beta(1)-AR. Thus, beta(2)-AR-mediated G(i) activation constricts the cAMP signaling to the sarcolemma. PTX treatment did not significantly affect the beta(2)-AR-stimulated PKA activation. Similar to G(i) inhibition, a protein phosphatase inhibitor, calyculin A (3 x 10(-8) M), selectively enhanced the beta(2)-AR but not beta(1)-AR-mediated contractile response. Furthermore, PTX and calyculin A treatment had a non-additive potentiating effect on the beta(2)-AR-mediated positive inotropic response. These results suggest that the interaction of the beta(2)-AR-coupled G(i) and G(s) signaling affects the local balance of protein kinase and phosphatase activities. Thus, the additional coupling of beta(2)-AR to G(i) proteins is a key factor causing the compartmentalization of beta(2)-AR-induced cAMP signaling.  相似文献   

2.
We have recently reported that arachidonic acid mediates beta(2)-adrenergic receptor (AR) stimulation of [Ca(2+)](i) cycling and cell contraction in embryonic chick ventricular cardiomyocytes (Pavoine, C., Magne, S., Sauvadet, A., and Pecker, F. (1999) J. Biol. Chem. 274, 628-637). In the present work, we demonstrate that beta(2)-AR agonists trigger arachidonic acid release via translocation and activation of cytosolic phospholipase A(2) (cPLA(2)) and increase caffeine-releasable Ca(2+) pools from Fura-2-loaded cells. We also show that beta(2)-AR agonists trigger a rapid and dose-dependent phosphorylation of both p38 and p42/44 MAPKs. Translocation and activation of cPLA(2), as well as Ca(2+) accumulation in sarcoplasmic reticulum stores sensitive to caffeine and amplification of [Ca(2+)](i) cycling in response to beta(2)-AR agonists, were blocked by inhibitors of the p38 or p42/44 MAPK pathway (SB203580 and PD98059, respectively), suggesting a role of both MAPK subtypes in beta(2)-AR stimulation. In contrast, beta(1)-AR stimulation of [Ca(2+)](i) cycling was rather limited by the MAPKs, clearly proving the divergence between beta(2)-AR and beta(1)-AR signaling systems. This study presents the first evidence for the coupling of beta(2)-AR to cardiac cPLA(2) and points out the key role of the MAPK pathway in the intracellular signaling elicited by positive inotropic beta(2)-AR agonists in heart.  相似文献   

3.
In atrial myocytes, an initial exposure to isoproterenol (ISO) acts via cAMP to mediate a subsequent acetylcholine (ACh)-induced activation of ATP-sensitive K(+) current (I(K,ATP)). In addition, beta-adrenergic receptor (beta-AR) stimulation activates nitric oxide (NO) release. The present study determined whether the conditioning effect of beta-AR stimulation acts via beta(1)- and/or beta(2)-ARs and whether it is mediated via NO signaling. 0.1 microM ISO plus ICI 118,551 (ISO-beta(1)-AR stimulation) or ISO plus atenolol (ISO-beta(2)-AR stimulation) both increased L-type Ca(2+) current (I(Ca,L)) markedly, but only ISO-beta(2)-AR stimulation mediated ACh-induced activation of I(K,ATP). 1 microM zinterol (beta(2)-AR agonist) also increased I(Ca,L) and mediated ACh-activated I(K,ATP). Inhibition of NO synthase (10 microM L-NIO), guanylate cyclase (10 microM ODQ), or cAMP-PKA (50 microM Rp-cAMPs) attenuated zinterol-induced stimulation of I(Ca,L) and abolished ACh-activated I(K,ATP). Spermine-NO (100 microM; an NO donor) mimicked beta(2)-AR stimulation, and its effects were abolished by Rp-cAMPs. Intracellular dialysis of 20 microM protein kinase inhibitory peptide (PKI) abolished zinterol-induced stimulation of I(Ca,L). Measurements of intracellular NO ([NO](i)) using the fluorescent indicator DAF-2 showed that ISO-beta(2)-AR stimulation or zinterol increased [NO](i). L-NIO (10 microM) blocked ISO- and zinterol-induced increases in [NO](i). ISO-beta(1)-AR stimulation failed to increase [NO](i). Inhibition of G(i)-protein by pertussis toxin significantly inhibited zinterol-mediated increases in [NO](i). Wortmannin (0.2 microM) or LY294002 (10 microM), inhibitors of phosphatidylinositol 3'-kinase (PI-3K), abolished the effects of zinterol to both mediate ACh-activated I(K,ATP) and stimulate [NO](i). We conclude that both beta(1)- and beta(2)-ARs stimulate cAMP. beta(2)-ARs act via two signaling pathways to stimulate cAMP, one of which is mediated via G(i)-protein and PI-3K coupled to NO-cGMP signaling. Only beta(2)-ARs acting exclusively via NO signaling mediate ACh-induced activation of I(K,ATP). NO signaling also contributes to beta(2)-AR stimulation of I(Ca,L). The differential effects of beta(1)- and beta(2)-ARs can be explained by the coupling of these two beta-ARs to different effector signaling pathways.  相似文献   

4.
The purpose of the present study was to examine the role of G(i2)alpha in Ca(2+) channel regulation using G(i2)alpha gene knockout mouse ventricular myocytes. The whole cell voltage-clamp technique was used to study the effects of the muscarinic agonist carbachol (CCh) and the beta-adrenergic agonist isoproterenol (Iso) on cardiac L-type Ca(2+) currents in both 129Sv wild-type (WT) and G(i2)alpha gene knockout (G(i2)alpha-/-) mice. Perfusion with CCh significantly inhibited the Ca(2+) current in WT cells, and this effect was reversed by adding atropine to the CCh-containing solution. In contrast, CCh did not affect Ca(2+) currents in G(i2)alpha-/- ventricular myocytes. Addition of CCh to Iso-containing solutions attenuated the Iso-stimulated Ca(2+) current in WT cardiomyocytes but not in G(i2)alpha-/- cells. These findings demonstrate that, whereas the Iso-G(s)alpha signal pathway is intact in G(i2)alpha gene knockout mouse hearts, these cells lack the inhibitory regulation of Ca(2+) channels by CCh. Therefore, G(i2)alpha is necessary for the muscarinic regulation of Ca(2+) channels in the mouse heart. Further studies are needed to delineate the possible interaction of G(i) and other cell signaling proteins and to clarify the level of interaction of G protein-coupled regulation of L-type Ca(2+) current in the heart.  相似文献   

5.
We investigated the roles of beta(1)- and beta(2)-receptors (beta-AR) in adrenergic enhancement of L-type Ca(2+) current (I(CaL)) in canine ventricular myocytes. Isoproterenol and l-norepinephrine produced a monophasic and a biphasic concentration-I(CaL) relationship (CR), respectively. alpha(1)-AR inhibition with prazosin and beta(2)-AR stimulation with zinterol or l-epinephrine shifted the CR of l-norepinephrine leftward. Zinterol (50 nM) and l-epinephrine (10 nM), but not prazosin, altered the biphasic CR of l-norepinephrine to a monophasic CR. Zinterol and l-epinephrine applied after l-norepinephrine had no effect on I(CaL). beta(2)-AR inhibition with ICI-118551 reduced the E(max) of isoproterenol and l-norepinephrine by 60% and abolished the augmentation of l-norepinephrine by zinterol and l-epinephrine. Carbachol (100 nM) modestly reduced the I(CaL) response to beta(1)-AR stimulation but abolished the enhancement via beta(2)-AR. Zinterol augmented the enhancement of I(CaL) by forskolin, IBMX, and theophylline, but not in the presence of CGP-20712A. We conclude that selective beta(2)-AR stimulation does not increase I(CaL) but enhances adenylyl cyclase activity when stimulated via beta(1)-AR and with forskolin. beta(2)-AR activity preconditions adenylyl cyclase for beta(1)-AR stimulation.  相似文献   

6.
We characterized the alpha(1B)-adrenoreceptor (alpha(1B)-AR)-mediated intracellular Ca(2+) signaling involving G alpha(h) (transglutaminase II, TGII) and phospholipase C (PLC)-delta 1 using DDT1-MF2 cell. Expression of wild-type TGII and a TGII mutant lacking transglutaminase activity resulted in significant increases in a rapid peak and a sustained level of intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to activation of the alpha(1B)-AR. Expression of a TGII mutant lacking the interaction with the receptor or PLC-delta 1 substantially reduced both the peak and sustained levels of [Ca(2+)](i). Expression of TGII mutants lacking the interaction with PLC-delta 1 resulted in a reduced capacitative Ca(2+) entry. Reduced expression of PLC-delta 1 displayed a transient elevation of [Ca(2+)](i) and a reduction in capacitative Ca(2+) entry. Expression of the C2-domain of PLC-delta 1, which contains the TGII interaction site, resulted in reduction of the alpha(1B)-AR-evoked peak increase in [Ca(2+)](i), while the sustained elevation in [Ca(2+)](i) and capacitative Ca(2+) entry remained unchanged. These findings demonstrate that stimulation of PLC-delta 1 via coupling of the alpha(1B)-AR with TGII evokes both Ca(2+) release and capacitative Ca(2+) entry and that capacitative Ca(2+) entry is mediated by the interaction of TGII with PLC-delta 1.  相似文献   

7.
The aim of this study was to evaluate the role of voltage-operated Ca(2+) channels in the initiation and conduction of vasoconstrictor responses to local micropipette electrical stimulation of rat mesenteric arterioles (28 +/- 1 microm, n = 79) in vivo. Local and conducted (600 microm upstream from the pipette) vasoconstriction was not blocked by TTX (1 micromol/l, n = 5), nifedipine, or nimodipine (10 micromol/l, n = 9). Increasing the K(+) concentration of the superfusate to 75 mmol/l did not evoke vasoconstriction, but this depolarizing stimulus reversibly abolished vasoconstrictor responses to current stimulation (n = 7). Addition of the T-type Ca(2+) antagonist mibefradil (10 micromol/l, n = 6) to the superfusate reversibly blocked local and conducted vasoconstriction to current stimulation. With the use of RT-PCR techniques, it was demonstrated that rat mesenteric arterioles <40 microm do not express mRNA for L-type Ca(2+) channels (alpha(1C)-subunit), whereas mRNA coding for T-type subunits was found (alpha(1G)- and alpha(1H)-subunits). The data indicate that L-type Ca(2+) channels are absent from rat mesenteric arterioles (<40 microm). Rather, the vasoconstrictor responses appear to rely on other types of voltage-gated, dihydropyridine-insensitive Ca(2+) channels, possibly of the T-type.  相似文献   

8.
Selective stimulation of beta(2)-adrenergic receptors (ARs) in newborn rabbit ventricular myocardium invokes a positive inotropic effect that is lost during postnatal maturation. The underlying mechanisms for this age-related stimulatory response remain unresolved. We examined the effects of beta(2)-AR stimulation on L-type Ca(2+) current (I(Ca,L)) during postnatal development. I(Ca,L) was measured (37 degrees C; either Ca(2+) or Ba(2+) as the charge carrier) using the whole-cell patch-clamp technique in newborn (1 to 5 days old) and adult rabbit ventricular myocytes. Ca(2+) transients were measured concomitantly by dialyzing the cell with indo-1. Activation of beta(2)-ARs (with either 100 nM zinterol or 1 microM isoproterenol in the presence of the beta(1)-AR antagonist, CGP20712A) stimulated I(Ca,L) twofold in newborns but not in adults. The beta(2)-AR-mediated increase in Ca(2+) transient amplitude in newborns was due exclusively to the augmentation of I(Ca,L). Zinterol increased the rate of inactivation of I(Ca,L) and increased the Ca(2+) flux integral. The beta(2)-AR inverse agonist, ICI-118551 (500 nM), but not the beta(1)-AR antagonist, CGP20712A (500 nM), blocked the response to zinterol. Unexpectedly, the PKA blockers, H-89 (10 microM), PKI 6-22 amide (10 microM), and Rp-cAMP (100 microM), all failed to prevent the response to zinterol but completely blocked responses to selective beta(1)-AR stimulation of I(Ca,L) in newborns. Our results demonstrate that in addition to the conventional beta(1)-AR/cAMP/PKA pathway, newborn rabbit myocardium exhibits a novel beta(2)-AR-mediated, PKA-insensitive pathway that stimulates I(Ca,L). This striking developmental difference plays a major role in the age-related differences in inotropic responses to beta(2)-AR agonists.  相似文献   

9.
G protein-activated inwardly rectifying K(+) (GIRK) channels, expressed in atrial myocytes, various neurons, and endocrine cells, represent the paradigmatic target of beta gamma subunits released from activated heterotrimeric G proteins. These channels contribute to physiological slowing of cardiac frequency and synaptic inhibition. They are activated by beta gamma dimers released upon stimulation of receptors coupled to pertussis toxin-sensitive G proteins (G(i/o)), whereas beta gamma released from G(s) do not converge on the channel subunits. This is in conflict with the finding that dimeric combinations of various beta and gamma subunits can activate GIRK channels with little specificity. In the present study, we have overexpressed the major subtypes of cardiac beta-adrenergic receptors (beta(1)-AR and beta(2)-AR) in atrial myocytes by transient transfection. Whereas in native cells beta-adrenergic stimulation with isoproterenol failed to induce measurable GIRK current, robust currents were recorded from myocytes overexpressing either beta(1)-AR or beta(2)-AR. Whereas the beta(2)-AR-induced current showed the same sensitivity to pertussis toxin as the current evoked by the endogenous G(i/o)-coupled muscarinic M(2) receptor, isoproterenol-activated currents were insensitive to pertussis toxin treatment in beta(1)-AR-overexpressing myocytes. In contrast to a recent publication (Leaney, J. L., Milligan, G., and Tinker, A. (2000) J. Biol. Chem. 275, 921-929), sizable GIRK currents could also be activated by isoproterenol when the signaling pathway was reconstituted by transient transfection in two different standard cell lines (Chinese hamster ovary and HEK293). These results demonstrate that specificity of receptor-G protein signaling can be disrupted by overexpression of receptors. Moreover, the alpha subunit of heterotrimeric G proteins does not confer specificity to G beta gamma-mediated signaling.  相似文献   

10.
Voltage-gated T-type Ca(2+) channel Ca(v)3.2 (α(1H)) subunit, responsible for T-type Ca(2+) current, is expressed in different tissues and participates in Ca(2+) entry, hormonal secretion, pacemaker activity, and arrhythmia. The precise subcellular localization and regulation of Ca(v)3.2 channels in native cells is unknown. Caveolae containing scaffolding protein caveolin-3 (Cav-3) localize many ion channels, signaling proteins and provide temporal and spatial regulation of intracellular Ca(2+) in different cells. We examined the localization and regulation of the Ca(v)3.2 channels in cardiomyocytes. Immunogold labeling and electron microscopy analysis demonstrated co-localization of the Ca(v)3.2 channel and Cav-3 relative to caveolae in ventricular myocytes. Co-immunoprecipitation from neonatal ventricular myocytes or transiently transfected HEK293 cells demonstrated that Ca(v)3.1 and Ca(v)3.2 channels co-immunoprecipitate with Cav-3. GST pulldown analysis confirmed that the N terminus region of Cav-3 closely interacts with Ca(v)3.2 channels. Whole cell patch clamp analysis demonstrated that co-expression of Cav-3 significantly decreased the peak Ca(v)3.2 current density in HEK293 cells, whereas co-expression of Cav-3 did not alter peak Ca(v)3.1 current density. In neonatal mouse ventricular myocytes, overexpression of Cav-3 inhibited the peak T-type calcium current (I(Ca,T)) and adenovirus (AdCa(v)3.2)-mediated increase in peak Ca(v)3.2 current, but did not affect the L-type current. The protein kinase A-dependent stimulation of I(Ca,T) by 8-Br-cAMP (membrane permeable cAMP analog) was abolished by siRNA directed against Cav-3. Our findings on functional modulation of the Ca(v)3.2 channels by Cav-3 is important for understanding the compartmentalized regulation of Ca(2+) signaling during normal and pathological processes.  相似文献   

11.
We have previously demonstrated that formation of a complex between L-type calcium (Ca(2+)) channel alpha(1C) (Ca(V)1.2) and beta subunits was necessary to target the channels to the plasma membrane when expressed in tsA201 cells. In the present study, we identified a region in the C terminus of the alpha(1C) subunit that was required for membrane targeting. Using a series of C-terminal deletion mutants of the alpha(1C) subunit, a domain consisting of amino acid residues 1623-1666 ("targeting domain") in the C terminus of the alpha(1C) subunit has been identified to be important for correct targeting of L-type Ca(2+) channel complexes to the plasma membrane. Although cells expressing the wild-type alpha(1C) and beta(2a) subunits exhibited punctate clusters of channel complexes along the plasma membrane with little intracellular staining, co-expression of deletion mutants of the alpha(1C) subunit that lack the targeting domain with the beta(2a) subunit resulted in an intracellular localization of the channels. In addition, three other regions in the C terminus of the alpha(1C) subunit that were downstream of residues 1623-1666 were found to contribute to membrane targeting of the L-type channels. Deletion of these domains in the alpha(1C) subunit resulted in a reduction of plasma membrane-localized channels, and a concomitant increase in channels localized intracellularly. Taken together, these results have demonstrated that a targeting domain in the C terminus of the alpha(1C) subunit was required for proper plasma membrane localization of the L-type Ca(2+) channels.  相似文献   

12.
Muallem S  Wilkie TM 《Cell calcium》1999,26(5):173-180
Polarized cells signal in a polarized manner. This is exemplified in the patterns of [Ca2+]i waves and [Ca2+]i oscillations evoked by stimulation of G protein-coupled receptors in these cells. Organization of Ca(2+)-signaling complexes in cellular microdomains, with the aid of scaffolding proteins, is likely to have a major role in shaping G protein-coupled [Ca2+]i signal pathways. In epithelial cells, these domains coincide with sites of [Ca2+]i-wave initiation and local [Ca2+]i oscillations. Cellular microdomains enriched with Ca(2+)-signaling proteins have been found in several cell types. Microdomains organize communication between Ca(2+)-signaling proteins in the plasma membrane and internal Ca2+ stores in the endoplasmic reticulum through the interaction between the IP3 receptors in the endoplasmic reticulum and Ca(2+)-influx channels in the plasma membrane. Ca2+ signaling appears to be controlled within the receptor complex by the regulators of G protein-signaling (RGS) proteins. Three domains in RGS4 and related RGS proteins contribute important regulatory features. The RGS domain accelerates GTP hydrolysis on the G alpha subunit to uncouple receptor stimulation from IP3 production; the C-terminus may mediate interaction with accessory proteins in the complex; and the N-terminus acts in a receptor-selective manner to confer regulatory specificity. Hence, RGS proteins have both catalytic and scaffolding function in Ca2+ signaling. Organization of Ca(2+)-signaling proteins into complexes within microdomains is likely to play a prominent role in the localized control of [Ca2+]i and in [Ca2+]i oscillations.  相似文献   

13.
The cardiac slow delayed rectifier potassium channel (IKs), comprised of (KCNQ1) and beta (KCNE1) subunits, is regulated by sympathetic nervous stimulation, with activation of beta-adrenergic receptors PKA phosphorylating IKs channels. We examined the effects of 2-adrenergic receptors (beta2-AR) on IKs in cardiac ventricular myocytes from transgenic mice expressing fusion proteins of IKs subunits and hbeta2-ARs. KCNQ1 and beta2-ARs were localized to the same subcellular regions, sharing intimate localization within nanometers of each other. In IKs/B2-AR myocytes, IKs density was increased, and activation shifted in the hyperpolarizing direction; IKs was not further modulated by exposure to isoproterenol, and KCNQ1 was found to be PKA-phosphorylated. Conversely, beta2-AR overexpression did not affect L-type calcium channel current (ICaL) under basal conditions with ICaL remaining responsive to cAMP. These data indicate intimate association of KCNQ1 and beta2-ARs and that beta2-AR signaling can modulate the function of IKs channels under conditions of increased beta2-AR expression, even in the absence of exogenous beta-AR agonist.  相似文献   

14.
In contrast to the fibroblast growth factor receptor 1 (FGFR1), little is known about intracellular signaling of FGFR2. The signaling cascade of FGFR2 was studied using the perforated patch configuration of the patch-clamp technique in cultured rat retinal pigment epithelial (RPE) cells that express both FGFR1 and FGFR2. Interaction of signaling proteins was studied using immunoprecipitation techniques with membrane proteins from RPE cells and freshly isolated rat brain. When Ba(2+) currents through L-type channels were studied, extracellular application of bFGF (10 ng/ml) led to a shift of the steady-state activation to more negative values. In 50% of cells, an additional increase in maximal current amplitude was observed. This effect was blocked by the tyrosine kinase inhibitor lavendustin A (10(-5) M) but was not influenced by the FGFR1 blocker SU5402 (2 x 10(-5) M) or by the blocker for src-kinase herbimycin A (10(-5) M). Immunoprecipitation of FGFR2 led to coprecipitation of alpha 1D Ca(2+) channel subunits and precipitation of alpha 1D subunits led to coprecipitation of FGFR2. Immunoprecipitation of FGFR1 did not result in the coprecipitation with alpha 1D Ca(2+) channel subunits. The coprecipitation results were comparable when using brain tissue and RPE cells. The alpha 1D subunit-specific band were stained with antiphosphotyrosine antibodies. We conclude that FGFR2 acts via a different signaling cascade than FGFR1. This cascade involves an src-kinase-independent, close functional interaction of FGFR2 and the alpha subunit of neuroendocrine L-type channels.  相似文献   

15.
In endothelial cells, local Ca(2+) release from superficial endoplasmic reticulum (ER) activates BK(Ca) channels. The resulting hyperpolarization promotes capacitative Ca(2+) entry (CCE), which, unlike BK(Ca) channels, is inhibited by high Ca(2+). To understand how the coordinated activation of plasma membrane ion channels with opposite Ca(2+) sensitivity is orchestrated, the individual contribution of mitochondria and ER in regulation of subplasmalemmal Ca(2+) concentration ([Ca(2+)](pm)) was investigated. For organelle visualization, cells were transfected with DsRed and yellow cameleon targeted to mitochondria and ER. The patch pipette was placed far from any organelle (L1), close to ER (L3), or mitochondria (L2) and activity of BK(Ca) channels was used to estimate local [Ca(2+)](pm). Under standard patch conditions (130 mm K(+) in the bath), histamine increased [Ca(2+)](pm) at L1 and L3 to approximately 1.6 microm, whereas close to mitochondria [Ca(2+)](pm) remained unchanged. If mitochondria moved apart from the pipette or in the presence of carbonyl cyanide-4-trifluoromethoxyphenylhyrazone, [Ca(2+)](pm) at L2 increased in response to histamine. Under standard patch conditions Ca(2+) entry was negligible due to cell depolarization. Using a physiological patch approach (5.6 mm K(+) in the bath), changes in [Ca(2+)](pm) to histamine could be monitored without cell depolarization and, thus, in conditions where Ca(2+) entry occurred. Here, histamine induced an initial transient Ca(2+) elevation to > or =3.5 microm followed by a long lasting plateau at approximately 1.2 microm in L1 and L3, whereas mitochondria kept neighboring [Ca(2+)](pm) low during stimulation. Thus, superficial mitochondria and ER generate local domains of low and high Ca(2+) allowing simultaneous activation of BK(Ca) and CCE, despite their opposite Ca(2+) sensitivity.  相似文献   

16.
Activation of G(q)-protein-coupled receptors, including the alpha(1A)-adrenoceptor (alpha(1A)-AR), causes a sustained Ca(2+) influx via receptor-operated Ca(2+) (ROC) channels, following the transient release of intracellular Ca(2+). Transient receptor potential canonical (TRPC) channel is one of the candidate proteins constituting the ROC channels, but the precise mechanism linking receptor activation to increased influx of Ca(2+) via TRPCs is not yet fully understood. We identified Snapin as a protein interacting with the C terminus of the alpha(1A)-AR. In receptor-expressing PC12 cells, co-transfection of Snapin augmented alpha(1A)-AR-stimulated sustained increases in intracellular Ca(2+) ([Ca(2+)](i)) via ROC channels. By altering the Snapin binding C-terminal domain of the alpha(1A)-AR or by reducing cellular Snapin with short interfering RNA, the sustained increase in [Ca(2+)](i) in Snapin-alpha(1A)-AR co-expressing PC12 cells was attenuated. Snapin co-immunoprecipitated with TRPC6 and alpha(1A)-AR, and these interactions were augmented upon alpha(1A)-AR activation, increasing the recruitment of TRPC6 to the cell surface. Our data suggest a new receptor-operated signaling mechanism where Snapin links the alpha(1A)-AR to TRPC6, augmenting Ca(2+) influx via ROC channels.  相似文献   

17.
Activation of protein kinase A (PKA) through the beta-adrenergic receptor pathway is crucial for the positive regulation of cardiac L-type currents; however it is still unclear which phosphorylation events cause the robust regulation of channel function. In order to study whether or not the recently identified PKA phosphorylation sites on the beta(2) subunit are of functional significance, we coexpressed wild-type (WT) or mutant beta(2) subunits in tsA-201 cells together with an alpha(1C) subunit, alpha(1C)Delta1905, that lacked the C-terminal 265 amino acids, including the only identified PKA site at Ser-1928. This truncated alpha(1C) subunit was similar to the truncated alpha(1C) subunit isolated from cardiac tissue not only in size ( approximately 190 kDa), but also with respect to its failure to serve as a PKA substrate. In cells transfected with the WT beta(2) subunit, voltage-activated Ba(2+) currents were significantly increased when purified PKA was included in the patch pipette. Furthermore, mutations of Ser-478 and Ser-479 to Ala, but not Ser-459 to Ala, on the beta(2) subunit, completely abolished the PKA-induced increase of currents. The data indicate that the PKA-mediated stimulation of cardiac L-type Ca(2+) currents may be at least partially caused by phosphorylation of the beta(2) subunit at Ser-478 and Ser-479.  相似文献   

18.
Single-molecule imaging of l-type Ca(2+) channels in live cells   总被引:3,自引:0,他引:3       下载免费PDF全文
L-type Ca(2+) channels are an important means by which a cell regulates the Ca(2+) influx into the cytosol on electrical stimulation. Their structure and dynamics in the plasma membrane, including their molecular mobility and aggregation, is of key interest for the in-depth understanding of their function. Construction of a fluorescent variant by fusion of the yellow-fluorescent protein to the ion channel and expression in a human cell line allowed us to address its dynamic embedding in the membrane at the level of individual channels in vivo. We report on the observation of individual fluorescence-labeled human cardiac L-type Ca(2+) channels using wide-field fluorescence microscopy in living cells. Our fluorescence and electrophysiological data indicate that L-type Ca(2+) channels tend to form larger aggregates which are mobile in the plasma membrane.  相似文献   

19.
20.
We elucidated the interaction of small-conductance Ca(2+)-activated K(+) (SK(Ca)) channels and L-type Ca(2+) channels in muscarinic receptor-mediated control of catecholamine secretion in the isolated perfused rat adrenal gland. The muscarinic agonist methacholine (10-300 microM) produced concentration-dependent increases in adrenal output of epinephrine and norepinephrine. The SK(Ca) channel blocker apamin (1 microM) enhanced the methacholine-induced catecholamine responses. The facilitatory effect of apamin on the methacholine-induced catecholamine responses was not observed during treatment with the L-type Ca(2+) channel blocker nifedipine (3 microM) or Ca(2+)-free solution. Nifedipine did not affect the methacholine-induced catecholamine responses, but it inhibited the responses during treatment with apamin. The L-type Ca(2+) channel activator Bay k 8644 (1 microM) enhanced the methacholine-induced catecholamine responses, whereas the enhancement of the methacholine-induced epinephrine and norepinephrine responses were prevented and attenuated by apamin, respectively. These results suggest that SK(Ca) channels are activated by muscarinic receptor stimulation, which inhibits the opening of L-type Ca(2+) channels and thereby attenuates adrenal catecholamine secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号