共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper continues the investigation of a three-loop representation of the segmental muscle stretch reflex system introduced in a preceding communication. Frequency response characteristics were computed for open-loop conditions, control and disturbance signal inputs under a variety of conditions: (i) in parallel and in series peripheral arrangements of muscle compartments, (ii) various patterns of central connectivity, (iii) various recruitment levels of motor units, (iv) various overall reflex gains, (v) absence or presence of muscle spindle accleration sensitivity. These computations disclosed a number of mechanisms by which the nervous system might improve system stability and behaviour. These mechanisms are discussed with regard to physiological data. 相似文献
2.
3.
The purpose of the present study was to investigate the combined effects of muscle history, activation and stretching velocity on short latency stretch response (SLR). Stretches (70, 120 and 200 deg s-1) were elicited to both passive and active (10-25% MVC) triceps surae muscle with constant (ISO), lengthened (LEN) or shortened (SHO) muscle length. Under the passive SHO pre-condition both SLR amplitude and reflex torque (RT) decreased where as latency increased compared with the passive ISO pre-condition. Such observations were absent in active trials. Stretches applied to a lengthening passive muscle (LEN) resulted in smaller SLR amplitude and RT compared with passive ISO. In active muscle the stretch response increased with stretching velocity in ISO and SHO. However, in LEN there was large interindividual variability and no velocity dependent increase in SLR amplitude was observed. Smaller amplitude and longer latency of passive SLR in SHO could result from increased slack in the intrafusal fibres, which may be compensated by fusimotor activation during the active condition. The mechanism behind the smaller amplitude in passive LEN and the lack of velocity dependence in active LEN may be related to changes in motoneuron pool excitability or changes in the spindle sensitivity to stretch. 相似文献
4.
A. I. Kostyukov 《Neurophysiology》1989,21(5):413-419
Dynamic aspects of stretch and unloading reflexes were investigated in the hindlimb extensor muscles of decerebrate cats. A complex transformation of non-linear effects inherent in the dynamics of the deafferented muscle was seen to occur under reflex control without hysteris (underlying non-linear static qualities of the muscle) being suppressed. Hysteresis of stretch reflex is responsible for uncertainty in muscle length equilibrium level — a factor in the origin of the movement — as well as the close connection between muscle stiffness and coordinates of the point of change in movement direction. The functional significance of non-linear aspects of the stretch reflex system is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 5, pp. 589–597, September–October, 1989. 相似文献
5.
6.
U. Windhorst 《Biological cybernetics》1978,31(2):81-90
This paper presents theoretical considerations on the possibility of topographically ordered signal transmission in the control system of the muscle stretch reflex. It is investigated how correlations between Ia fibres from primary muscle spindle endings in conjunction with an appropriate connectivity of Ia fibres and motoneurones enable the stretch reflex system to trace local routes through the spinal cord. The complex data processing capabilities of the motoneuronal soma-dendritic membrane system are fully taken into account, and it is argued that correlations between inputs to this system may play an important role for signal transmission through the spinal cord. 相似文献
7.
Development of the monosynaptic stretch reflex circuit 总被引:5,自引:0,他引:5
8.
Nis Hjortskov J?rgen Skotte Christian Hye-Knudsen Nils Fallentin 《Journal of applied physiology》2005,98(4):1366-1370
Animal experiments suggest that an increase in sympathetic outflow can depress muscle spindle sensitivity and thus modulate the stretch reflex response. The results are, however, controversial, and human studies have failed to demonstrate a direct influence of the sympathetic nervous system on the sensitivity of muscle spindles. We studied the effect of increased sympathetic outflow on the short-latency stretch reflex in the soleus muscle evoked by tapping the Achilles tendon. Nine subjects performed three maneuvers causing a sustained activation of sympathetic outflow to the leg: 3 min of static handgrip exercise at 30% of maximal voluntary contraction, followed by 3 min of posthandgrip ischemia, and finally during a 3-min mental arithmetic task. Electromyography was measured from the soleus muscle with bipolar surface electrodes during the Achilles tendon tapping, and beat-to-beat changes in heart rate and mean arterial blood pressure were monitored continuously. Mean arterial pressure was significantly elevated during all three maneuvers, whereas heart rate was significantly elevated during static handgrip exercise and mental arithmetic but not during posthandgrip ischemia. The peak-to-peak amplitude of the short-latency stretch reflex was significantly increased during mental arithmetic (P < 0.05), static handgrip exercise (P < 0.001), and posthandgrip ischemia (P < 0.005). When expressed in percent change from rest, the mean peak-to-peak amplitude increased by 111 (SD 100)% during mental arithmetic, by 160 (SD 103)% during static handgrip exercise, and by 90 (SD 67)% during posthandgrip ischemia. The study clearly indicates a facilitation of the short-latency stretch reflex during increased sympathetic outflow. We note that the enhanced stretch reflex responses observed in relaxed muscles in the absence of skeletomotor activity support the idea that the sympathetic nervous system can exert a direct influence on the human muscle spindles. 相似文献
9.
Regulation of wrist stiffness by the stretch reflex 总被引:1,自引:0,他引:1
In restoring the angular position after a displacement, the role of the muscle stretch reflex was investigated by comparing the restored angular torques and angular positions in the wrist under ischaemic and non-ischaemic conditions in normal human subjects. The wrist compliance (COM), defined as the dynamic relation between the angular position and the angular torque of the joint, was calculated to quantify the changes in the restoration of a displacement after abolishing the stretch reflex by ischaemia. The elasticity from the COM-function was found to be single most important factor controlled by the stretch reflex. The elasticity that equals the static stiffness of the system increased by more than 100%, from 0.21 Nm degree-1 with abolished reflex to 0.45 Nm degree-1 with intact reflex. Our results have shown that the stretch reflex assists in the rapid return of the limb to its original position after a mechanical displacement. When the reflex was blocked by ischaemia, the perturbation displaced the limb further away from the initial position. 相似文献
10.
11.
12.
13.
The role of the stretch reflex in the gastrocnemius muscle during human locomotion at various speeds. 总被引:1,自引:0,他引:1
In the present study, the fascicle length (L(fa)) of the human medial gastrocnemius (MG) muscle was monitored to evaluate possible input from the short-latency stretch reflex (SLR) during the stance phase of running and to examine its timing at various running speeds. Eight subjects ran at 2.0, 3.5, 5.0, and 6.5 m/s. The L(fa) was measured with the high-speed ultrasound fascicle scanning together with kinematics and myoelectrical activities. The amplitudes and onset latency of SLR activities were determined. During ground contact, the sudden MG fascicle stretch occurred during the early contact at all running speeds. This was followed by the fascicle shortening. The timing of fascicle stretch depended on running speed and type of foot contact. In slower speed conditions (2.0, 3.5, 5 m/s), the MG fascicle stretch and the corresponding SLR activities occurred during the middle of the braking phase. In fast-speed running (6.5 m/s), however, the MG fascicle stretch occurred later compared with the lower speed. The corresponding SLR activities occurred significantly later at the end of the braking phase. In addition to the clear demonstration of the different timings of SLR in MG during ground contact of running, the results imply that the role of the MG SLR during the stance phase of running can be different between fast- and slow-speed running conditions. 相似文献
14.
15.
Minoru Shinohara Chet T Moritz Michael A Pascoe Roger M Enoka 《Journal of applied physiology》2005,99(5):1835-1842
The purpose of this study was to compare the influence of prolonged vibration of a hand muscle on the amplitude of the stretch reflex, motor unit discharge rate, and force fluctuations during steady, submaximal contractions. Thirty-two young adults performed 10 isometric contractions at a constant force (5.0 +/- 2.3% of maximal force) with the first dorsal interosseus muscle. Each contraction was held steady for 10 s, and then stretch reflexes were evoked. Subsequently, 20 subjects had vibration applied to the relaxed muscle for 30 min, and 12 subjects received no vibration. The muscle vibration induced a tonic vibration reflex. The intervention (vibration or no vibration) was followed by 2 sets of 10 constant-force contractions with applied stretches (After and Recovery trials). The mean electromyogram amplitude of the short-latency component of the stretch reflex increased by 33% during the After trials (P < 0.01) and by 38% during the Recovery trials (P < 0.01). The standard deviation of force during the steady contractions increased by 21% during the After trials (P < 0.05) and by 28% during the Recovery trials (P < 0.01). The discharge rate of motor units increased from 10.3 +/- 2.7 pulses/s (pps) before vibration to 12.2 +/- 3.1 pps (P < 0.01) during the After trials and to 11.9 +/- 2.6 pps during the Recovery trials (P < 0.01). There was no change in force fluctuations or stretch reflex magnitude for the subjects in the Control group. The results indicate that prolonged vibration increased the short-latency component of the stretch reflex, the discharge rate of motor units, and the fluctuations in force during contractions by a hand muscle. These adjustments were necessary to achieve the target force due to the vibration-induced decrease in the force capacity of the muscle. 相似文献
16.
D C Higgins 《The Yale journal of biology and medicine》1987,60(2):123-131
Studies of the stretch reflex in decerebrate cats indicate a phase advance of peak sinusoidal tension in steady-state cycles between 0.1 and 10 Hz. This phase advance is reduced in acute and chronic cerebellectomy, as shown in previous investigations. Also, the augmentation of muscle peak tension in initial sinusoidal stretch cycles at 0.5-5 Hz has been found to be reduced during the time of reflex and motor instability in the several months following cerebellar ablation. This report shows the increased amplitude and phase lead of integrated electromyographic activity in initiating sinusoidal stretch cycles in the decerebrate cat. These reflex aspects are demonstrated in relation to the discharge of neurons in the dorsal spinocerebellar tract and of cerebellar cortical Purkinje cells in initial sinusoidal cycles. The intensity and phase advance of the discharge in dorsal spinocerebellar tract neurons is altered little, but these features are usually increased in Purkinje cells during initial stretches compared to continuous cycling. In terms of overall motor control, these findings are compatible with concepts of movement control, modulated by the cerebellum, in which the discharge of antagonist motor neurons is regulated in concert with that of agonist muscles upon initiation and termination of movement. 相似文献
17.
A mathematical model of the stretch reflex for the cat soleus muscle is presented. The time-delay differential equations of the model are solved using the fourth-order Runge-Kutta algorithm, introducing a Gaussian-noise term to simulate the environmental noise. The muscle response dynamics are then studied under various levels of average muscle activation. Finally, the feasibility of explaining the so-called physiological tremor from the properties of the stretch reflex mechanisms is discussed by comparing our results with reported experimental evidence. 相似文献
18.
Haghighipour N Heidarian S Shokrgozar MA Amirizadeh N 《Cell biology international》2012,36(7):669-675
Both fetal and adult skeletal muscle cells are continually being subjected to biomechanical forces. Biomechanical stimulation during cell growth affects proliferation, differentiation and maturation of skeletal muscle cells. Bone marrow-derived hMSCs [human MSCs (mesenchymal stem cells)] can differentiate into a variety of cell types, including skeletal muscle cells that are potentially a source for muscle regeneration. Our investigations involved a 10% cyclic uniaxial strain at 1 Hz being applied to hMSCs grown on collagen-coated silicon membranes with or without IGF-I (insulin-like growth factor-I) for 24 h. Results obtained from morphological studies confirmed the rearrangement of cells after loading. Comparison of MyoD and MyoG mRNA levels between test groups showed that mechanical loading alone can initiate myogenic differentiation. Furthermore, comparison of Myf5, MyoD, MyoG and Myf6 mRNA levels between test groups showed that a combination of mechanical loading and growth factor results in the highest expression of myogenic genes. These results indicate that cyclic strain may be useful in myogenic differentiation of stem cells, and can accelerate the differentiation of hMSCs into MSCs in the presence of growth factor. 相似文献
19.
20.
High- and low-threshold reflex segmental reflex reactions produced by stimulating the dorsal root at different stages of the locomotor cycle were investigated during locomotor swimming motions in white rats. Findings show respectively considerable inhibition of and a pronounced increase in extensor and flexor lowthreshold reflex reactions during the absence and presence of activity in the associated muscles. Low-threshold stimulation produced no outstanding effect on the shaping of the muscles' own activity and hence failed to affect time course or amplitude parameters of locomotor movements. Changes in reflex reactions to high-threshold stimulation during the locomotor cycle largely resembled changes in these responses to low-threshold stimulation, although development of highthreshold reactions differed from that of low-threshold response in affecting the parameters of locomotor activity in the associated muscle, while likewise altering frequency parameters of the locomotor rhythm. The physiological significance and mechanisms possibly underlying modulations in the efficacy of afferent peripheral influences during locomotion are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 326–333, May–June, 1988. 相似文献