首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Blue light (BL) activates the plasma membrane H(+)-ATPase via phosphorylation of the C-terminus with concomitant binding of 14-3-3 protein to the terminus in stomatal guard cells. However, the binding site and role of 14-3-3 protein in this physiological response have not been elucidated. We investigated the above using synthetic phosphopeptides designed from the C-terminus of Vicia H(+)-ATPase (isoform 1; VHA1). The presence of KGLDIDTIQQHYphospho-T(950)V peptide (P-950) prevented binding of 14-3-3 protein to the phosphorylated H(+)-ATPase. Dephosphorylated P-950 and other phosphopeptides, including typical phosphorylation sites in the C-terminus, had no effect on the binding. Incubation of BL-activated plasma membrane H(+)-ATPase with P-950 dissociated the 14-3-3 protein from the H(+)-ATPase without affecting phosphorylation levels and decreased the H(+)-ATPase activity. By contrast, incubation of P-950 with the activated H(+)-ATPase from fusicoccin-treated guard-cell protoplasts neither dissociated the 14-3-3 protein nor decreased the H(+)-ATPase activity. These results indicate that BL induces phosphorylation on threonine residue (Thr(950)) in the C-terminus of H(+)-ATPase, and that the binding of 14-3-3 to this site is required for the activation of H(+)-ATPase in stomatal guard cells.  相似文献   

2.
Recent genetic analysis showed that phototropins (phot1 and phot2) function as blue light receptors in stomatal opening of Arabidopsis thaliana, but no biochemical evidence was provided for this. We prepared a large quantity of guard cell protoplasts from Arabidopsis. The immunological method indicated that phot1 was present in guard cell protoplasts from the wild-type plant and the phot2 mutant, that phot2 was present in those from the wild-type plant and the phot1 mutant, and that neither phot1 nor phot2 was present in those from the phot1 phot2 double mutant. However, the same amounts of plasma membrane H+-ATPase were found in all of these plants. H+ pumping was induced by blue light in isolated guard cell protoplasts from the wild type, from the single mutants of phototropins (phot1-5 and phot2-1), and from the zeaxanthin-less mutant (npq1-2), but not from the phot1 phot2 double mutant. Moreover, increased ATP hydrolysis and the binding of 14-3-3 protein to the H+-ATPase were found in response to blue light in guard cell protoplasts from the wild type, but not from the phot1 phot2 double mutant. These results indicate that phot1 and phot2 mediate blue light-dependent activation of the plasma membrane H+-ATPase and illustrate that Arabidopsis guard cell protoplasts can be useful for biochemical analysis of stomatal functions. We determined isogenes of the plasma membrane H+-ATPase and found the expression of all isogenes of functional plasma membrane H+-ATPases (AHA1-11) in guard cell protoplasts.  相似文献   

3.
Phototropins are blue-light (BL) receptor serine (Ser)/threonine kinases, and contain two light, oxygen, and voltage (LOV) domains, and are members of the PAS domain superfamily. They mediate phototropism, chloroplast movement, leaf expansion, and stomatal opening of higher plants in response to BL. In stomatal guard cells, genetic analysis has revealed that phototropins mediate activation of the plasma membrane H+-ATPase by phosphorylation and drive stomatal opening. However, biochemical evidence for the involvement of phototropins in the BL response of stomata is lacking. Using guard cell protoplasts, we showed that broad bean (Vicia faba) phototropins (Vfphots) were phosphorylated by BL, and that this phosphorylation of Vfphots reached to the maximum level earlier than that of the H+-ATPase. Phosphorylation of both Vfphots and H+-ATPase showed similar sensitivity to BL and were similarly suppressed by protein kinase and flavoprotein inhibitors. We found that a 14-3-3 protein was bound to Vfphots upon phosphorylation, and this binding occurred earlier than the H+-ATPase phosphorylation. Vfphots (Vfphot1a and Vfphot1b) were expressed in Escherichia coli, and phosphorylation sites were determined to be Ser-358 for Vfphot1a and Ser-344 for Vfphot1b, which are localized between LOV1 and LOV2. We conclude that Vfphots act as BL receptors in guard cells and that phosphorylation of a Ser residue between LOV1 and LOV2 and subsequent 14-3-3 protein binding are likely to be key steps of BL response in stomata. The binding of a 14-3-3 protein to Vfphot was found in etiolated seedlings and leaves in response to BL, suggesting that this event was common to phototropin-mediated responses.  相似文献   

4.
A fungal phytotoxin fusicoccin (FC) causes irreversible opening of stomata by activation of the plasma membrane H+-ATPase in guard cells. However, the mechanism by which FC activates the H+-ATPase is not fully understood with respect to the event of phosphorylation. In this study, we provide quantitative evidence that FC-dependent activation of H+-ATPase requires the phosphorylation of the C-terminus, and that FC maintains the activated state by preventing the dephosphorylation. The plasma membrane H+-ATPase in guard cells was phosphorylated on serine and threonine residues in the C-termini of both VHA1 and VHA2 by FC, and the phosphorylation level paralleled the rates of H+-pumping and ATP hydrolysis. An endogenous 14-3-3 protein was co-precipitated with the H+-ATPase, and the amount of 14-3-3 protein was proportional to the phosphorylation level of H+-ATPASE: The recombinant 14-3-3 protein bound to the C-terminus only when it was phosphorylated, even in the presence of FC. The phosphorylated C-terminus was dephosphorylated by alkaline phosphatase, and the dephosphorylation was completely prevented when the C-terminus had been incubated with both FC and 14-3-3 protein. The results suggest that FC activates the H+-ATPase by accumulating the complex of phosphorylated H+-ATPase and 14-3-3 protein through inhibition of the dephosphorylation in guard cells.  相似文献   

5.
Blue light (BL) receptor phototropins activate the plasma membrane H(+)-ATPase in guard cells through phosphorylation of a penultimate threonine and subsequent binding of the 14-3-3 protein to the phosphorylated C-terminus of H?-ATPase, mediating stomatal opening. To date, detection of the phosphorylation level of the guard cell H?-ATPase has been performed biochemically using guard cell protoplasts (GCPs). However, preparation of GCPs from Arabidopsis for this purpose requires >5,000 rosette leaves and takes >8 h. Here, we show that BL-induced phosphorylation of guard cell H?-ATPase is detected in the epidermis from a single Arabidopsis rosette leaf via an immunohistochemical method using a specific antibody against the phosphorylated penultimate threonine of H?-ATPase. BL-induced phosphorylation of the H?-ATPase was detected immunohistochemically in the wild type, but not in a phot1-5 phot2-1 double mutant. Moreover, we found that physiological concentrations of the phytohormone ABA completely inhibited BL-induced phosphorylation of guard cell H?-ATPase in the epidermis, and that inhibition by ABA in the epidermis is more sensitive than in GCPs. These results indicate that this immunohistochemical method is very useful for detecting the phosphorylation status of guard cell H?-ATPase. Thus, we applied this technique to ABA-insensitive mutants (abi1-1, abi2-1 and ost1-2) and found that ABA had no effect on BL-induced phosphorylation in these mutants. These results indicate that inhibition of BL-induced phosphorylation of guard cell H?-ATPase by ABA is regulated by ABI1, ABI2 and OST1, which are known to be early ABA signaling components for a wide range of ABA responses in plants.  相似文献   

6.
7.
The Nicotiana plumbaginifolia plasma membrane H(+)-ATPase isoform PMA2, equipped with a His(6) tag, was expressed in Saccharomyces cerevisiae and purified. Unexpectedly, a fraction of the purified tagged PMA2 associated with the two yeast 14-3-3 regulatory proteins, BMH1 and BMH2. This complex was formed in vivo without treatment with fusicoccin, a fungal toxin known to stabilize the equivalent complex in plants. When gel filtration chromatography was used to separate the free ATPase from the 14-3-3.H(+)-ATPase complex, the complexed ATPase was twice as active as the free form. Trypsin treatment of the complex released a smaller complex, composed of a 14-3-3 dimer and a fragment from the PMA2 C-terminal region. The latter was identified by Edman degradation and mass spectrometry as the PMA2 C-terminal 57 residues, whose penultimate residue (Thr-955) was phosphorylated. In vitro dephosphorylation of this C-terminal fragment prevented binding of 14-3-3 proteins, even in the presence of fusicoccin. Mutation of Thr-955 to alanine, aspartate, or a stop codon prevented PMA2 from complementing the yeast H(+)-ATPase. These mutations were also introduced in an activated PMA2 mutant (Gln-14 --> Asp) characterized by a higher H(+) pumping activity. Each mutation directly modifying Thr-955 prevented 14-3-3 binding, decreased ATPase specific activity, and reduced yeast growth. We conclude that the phosphorylation of Thr-955 is required for 14-3-3 binding and that formation of the complex activates the enzyme.  相似文献   

8.
14-3-3 proteins interact with a novel phosphothreonine motif (Y(946)pTV) at the extreme C-terminal end of the plant plasma membrane H(+)-ATPase molecule. Phosphorylation-independent binding of 14-3-3 protein to the YTV motif can be induced by the fungal phytotoxin fusicoccin. The molecular basis for the phosphorylation-independent interaction between 14-3-3 and H(+)-ATPase in the presence of fusicoccin has been investigated in more detail. Fusicoccin binds to a heteromeric receptor that involves both 14-3-3 protein and H(+)-ATPase. Binding of fusicoccin is dependent upon the YTV motif in the H(+)-ATPase and, in addition, requires residues further upstream of this motif. Apparently, 14-3-3 proteins interact with the unusual epitope in H(+)-ATPase via its conserved amphipathic groove. This implies that very diverse epitopes bind to a common structure in the 14-3-3 protein.  相似文献   

9.
In this study, we report on mutational studies performed to investigate the mechanism of binding of 14-3-3 proteins to the plasma membrane H(+)-ATPase of plant cells. In fact, although the molecular basis of the interaction between 14-3-3 and the known mode-1 and mode-2 consensus sequences are well characterized, no information is available regarding the association with the H(+)-ATPase, which contains the novel binding site YTV totally unrelated to the 14-3-3 canonical motifs. To this purpose, different mutants of the maize 14-3-3 GF14-6 isoform were produced and used in interaction studies with the plasma membrane H(+)-ATPase and with a peptide reproducing the 14-3-3 binding site of the enzyme. The ability of 14-3-3 mutants to stimulate H(+)-ATPase activity was also tested. To investigate the mechanism of fusicoccin-dependent interaction, binding experiments between 14-3-3 proteins and mutants of the extreme portion of the H(+)-ATPase C terminus were also carried out. The results demonstrate that mutations of Lys(56) and Val(185) within the amphipathic groove disrupt the ability of GF14-6 to interact with H(+)-ATPase and to stimulate its activity. Moreover, substitution of Asp(938) and Asp(940) in the MHA2 H(+)-ATPase C terminus greatly decreased association with GF14-6, thereby demonstrating a crucial role of negatively charged residues in the fusicoccin-dependent interaction.  相似文献   

10.
In guard cells, membrane hyperpolarization in response to a blue light (BL) stimulus is achieved by the activation of a plasma membrane H(+)-ATPase. Using the patch clamp technique on broad bean (Vicia faba) guard cells we demonstrate that both steady-state- and BL-induced pump currents require ATP and are blocked by vanadate perfused into the guard cell during patch clamp recording. Background-pump current and BL-activated currents are voltage independent over a wide range of membrane potentials. During BL-activated responses significant hyperpolarization is achieved that is sufficient to promote K(+) uptake. BL activation of pump current becomes desensitized by three or four pulses of 30 s x 100 micromol m(-2) s(-1) BL. This desensitization is not a result of pump inhibition as maximal responses to fusicoccin are observed after full BL desensitization. BL treatments prior to whole cell recording show that BL desensitization is not due to washout of a secondary messenger by whole cell perfusion, but appears to be an important feature of the BL-stimulated pump response. We found no evidence for an electrogenic BL-stimulated redox chain in the plasma membrane of guard cells as no steady-state- or BL-activated currents are detected with NADH or NADPH added to the cytosol in the absence of ATP. Steady-state- nor BL-activated currents are affected by the inclusion along with ATP of 1 mM NADH in the pipette under saturating red light or by including NADPH in the pipette under darkness or saturating red light. These data suggest that reduced products of photosynthesis do not significantly modulate plasma membrane pump currents and are unlikely to be critical regulators in BL-stimulation of the plasma membrane H(+)-ATPase in guard cells.  相似文献   

11.
12.
Polyamines are abundant polycationic compounds involved in many plant physiological processes such as cell division, dormancy breaking, plant morphogenesis and response to environmental stresses. In this study, we investigated the possible role of these polycations in modulating the association of 14-3-3 proteins with the H(+)-ATPase. In vivo experiments demonstrate that, among the different polyamines, spermine brings about 2-fold stimulation of the H(+)-ATPase activity and this effect is due to an increase in 14-3-3 levels associated with the enzyme. In vivo administration of polyamine synthesis inhibitors causes a small but statistically significant decrease of the H(+)-ATPase phosphohydrolytic activity, demonstrating a physiological role for the polyamines in regulating the enzyme activity. Spermine stimulates the activity of the H(+)-ATPase AHA1 expressed in yeast, in the presence of exogenous 14-3-3 proteins, with a calculated S(50) of 70 microM. Moreover, spermine enhances the in vitro interaction of 14-3-3 proteins with the H(+)-ATPase and notably induces 14-3-3 association with the unphosphorylated C-terminal domain of the proton pump. Comparison of spermine with Mg(2+), necessary for binding of 14-3-3 proteins to different target proteins, shows that the polyamine effect is stronger than and additive to that of the divalent cation.  相似文献   

13.
Under drought stress, ABA promotes stomatal closure to prevent water loss. Although protein phosphorylation plays an important role in ABA signaling, little is known about these processes at the biochemical level. In this study, we searched for substrates of protein kinases in ABA signaling through the binding of a 14-3-3 protein to phosphorylated proteins using Vicia guard cell protoplasts. ABA induced binding of a 14-3-3 protein to proteins with molecular masses of 61, 43 and 39 kDa, with the most remarkable signal for the 61 kDa protein. The ABA-induced binding to the 61 kDa protein occurred only in guard cells, and reached a maximum within 3 min at 1 microM ABA. The 61 kDa protein localized in the cytosol. ABA induced the binding of endogenous vf14-3-3a to the 61 kDa protein in guard cells. Autophosphorylation of ABA-activated protein kinase (AAPK), which mediates anion channel activation, and ABA-induced phosphorylation of the 61 kDa protein showed similar time courses and similar sensitivities to the protein kinase inhibitor K-252a. AAPK elicits the binding of the 14-3-3 protein to the 61 kDa protein in vitro when AAPK in guard cells was activated by ABA. The phosphorylation of the 61 kDa protein by ABA was not affected by the NADPH oxidase inhibitor, H(2)O(2), W-7 or EGTA. From these results, we conclude that the 61 kDa protein may be a substrate for AAPK and that the 61 kDa protein is located upstream of H(2)O(2) and Ca(2+), or on Ca(2+)-independent signaling pathways in guard cells.  相似文献   

14.
Interaction of 14-3-3 proteins with their targets depends not only on the phosphorylation status of the target but also on that of 14-3-3 (Fu et al., 2000). In this work we demonstrated that the maize 14-3-3 isoform GF14-6 is a substrate of the tyrosine kinase insulin growth factor receptor 1. By means of site-directed mutants of GF14-6, we identified Tyr-137 as the specific tyrosine residue phosphorylated by the insulin growth factor receptor 1. Phosphorylation of GF14-6 on Tyr-137 lowered its affinity for a peptide mimicking the 14-3-3 binding site of the plant plasma membrane H+-ATPase. Moreover, phosphorylation in planta of 14-3-3 tyrosine residues, resulting from incubation with the tyrosine phosphatase inhibitor, phenylarsine oxide, decreased their association to the H+-ATPase.  相似文献   

15.
Phosphatidic acid is a phospholipid second messenger implicated in various cellular processes in eukaryotes. In plants, production of phosphatidic acid is triggered in response to a number of biotic and abiotic stresses. Here, we show that phosphatidic acid binds to 14-3-3 proteins, a family of regulatory proteins which bind client proteins in a phosphorylation-dependent manner. Binding of phosphatidic acid involves the same 14-3-3 region engaged in protein target binding. Consequently, micromolar phosphatidic acid concentrations significantly hamper the interaction of 14-3-3 proteins with the plasma membrane H(+)-ATPase, a well characterized plant 14-3-3 target, thus inhibiting the phosphohydrolitic enzyme activity. Moreover, the proton pump is inhibited when endogenous PA production is triggered by phospholipase D and the G protein agonist mastoparan-7. Hence, our data propose a possible mechanism involving PA that regulates 14-3-3-mediated cellular processes in response to stress.  相似文献   

16.
The sensitivity of the plasma membrane H+-ATPase in tobacco was investigated in vitro, both at the proton translocation level and the ATPase level, according to plant development and leaf location. Both activities are stimulated by auxin in all leaves, whatever the plant age and the leaf age. However, the sensitivity to auxin was heterogeneous with respect to plant development and leaf location. In parallel experiments using the same plasma membrane samples, polypepides patterns were investigated by two-dimensional gel electrophoresis and image analysis was used to quantify the relative abundance of 110 peptides. Systematic analysis of the two kinds of data identified 8 polypeptides, the abundance of which changed in a consistent way with the sensitivity, whatever the plant developmental state and leaf location. These unknown polypeptides are proposed as potential markers of the membrane response to auxin.  相似文献   

17.
Several authors previously showed that the interaction between 14-3-3 proteins and plasma membrane H(+)-ATPase leads to an activated complex in which the enzyme is endowed with more favorable kinetic parameters and a more physiological pH optimum. In this paper we report immunological studies with antibodies covering a different specific region of the protein, including the N- and the C-terminal ends. The results showed that, beside a free and a complexed form, a third form of H(+)-ATPase in the cell must exist with low activity and no more activation due to the loss of a part of the C-terminal regulatory domain. A model in which 14-3-3 proteins activate H(+)-ATPase by protecting it from a specific proteolytic attack is presented and its generalization is discussed.  相似文献   

18.
The opening of stomata, which is driven by the accumulation of K(+) salt in guard cells, is induced by blue light (BL). The BL activates the H(+) pump; however, the mechanism by which the perception of BL is transduced into the pump activation remains unknown. We present evidence that the pump is the plasma membrane H(+)-ATPase and that BL activates the H(+)-ATPase via phosphorylation. A pulse of BL (30 s, 100 micromol/m(2)/s) increased ATP hydrolysis by the plasma membrane H(+)-ATPase and H(+) pumping in Vicia guard cell protoplasts with a similar time course. The H(+)-ATPase was phosphorylated reversibly by BL, and the phosphorylation levels paralleled the ATP hydrolytic activity. The phosphorylation occurred exclusively in the C-termini of H(+)-ATPases on both serine and threonine residues in two isoproteins of H(+)-ATPase in guard cells. An endogenous 14-3-3 protein was co-precipitated with H(+)-ATPase, and the recombinant 14-3-3 protein bound to the phosphorylated C-termini of H(+)-ATPases. These findings demonstrate that BL activates the plasma membrane H(+)-ATPase via phosphorylation of the C-terminus by a serine/threonine protein kinase, and that the 14-3-3 protein has a key role in the activation.  相似文献   

19.
Blue light (BL)-dependent H+ pumping by guard cells, which drives stomatal opening, is inhibited by abscisic acid (ABA). We investigated this response with respect to the activity of plasma membrane H+-ATPase using Vicia guard cell protoplasts. ATP hydrolysis by the plasma membrane H+-ATPase, phosphorylation of the H+-ATPase, and the binding of 14-3-3 protein to the H+-ATPase stimulated by BL were inhibited by ABA at 10 microm. All of these responses were similarly inhibited by hydrogen peroxide (H2O2) at 1 mm. The ABA-induced inhibitions of BL-dependent H+ pumping and phosphorylation of the H+-ATPase were partially restored by ascorbate, an intracellular H2O2 scavenger. A single-cell analysis of the cytosolic H2O2 using 2',7'-dichlorofluorescin revealed that H2O2 was generated by ABA in guard cell protoplasts. We also indicated that H+ pumping induced by fusicoccin and the binding of 14-3-3 protein to the H+-ATPase were inhibited slightly (approximately 20%) by both ABA and H2O2. By contrast, H2O2 at 1 mm did not affect H+ pumping by the H+-ATPase in microsomal membranes. From these results, we concluded that inhibition of BL-dependent H+ pumping by ABA was due to a decrease in the phosphorylation levels of H+-ATPase and that H2O2 might be involved in this response. Moreover, there are at least two inhibition sites by ABA in the BL signaling pathway of guard cells.  相似文献   

20.
Osteoclasts generate a massive acid flux to mobilize bone calcium. Local extracellular acidification is carried out by vacuolar type H+-ATPase (V-ATPase) localized in the plasma membrane. We have shown that a3, one of the four subunit a isoforms (a1, a2, a3, and a4), is a component of the plasma membrane V-ATPase (Toyomura, T., Oka, T., Yamaguchi, C., Wada, Y., and Futai, M. (2000) J. Biol. Chem. 275, 8760-8765). To establish the unique localization of V-ATPase, we have used a murine macrophage cell line, RAW 264.7, that can differentiate into multinuclear osteoclast-like cells on stimulation with RANKL (receptor activator of nuclear factor kappaB ligand). The V-ATPase with the a3 isoform was localized to late endosomes and lysosomes, whereas those with the a1 and a2 isoforms were localized to organelles other than lysosomes. After stimulation, the V-ATPase with the a3 isoform was immunochemically colocalized with lysosome marker lamp2 and was detected in acidic organelles. These organelles were also colocalized with microtubules, and the signals of lamp2 and a3 were dispersed by nocodazole, a microtubule depolymerizer. In RAW-derived osteoclasts cultured on mouse skull pieces, the a3 isoform was transported to the plasma membrane facing the bone and accumulated inside podosome rings. These findings indicate that V-ATPases with the a3 isoform localized in late endosomes/lysosomes are transported to the cell periphery during differentiation and finally assembled into the plasma membrane of mature osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号