首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The localisation of GABA immunoreactive neurones in retinas of a variety of animals was examined. Immunoreactivity was associated with specific populations of amacrine neurones in all species examined, viz. rat, rabbit, goldfish, frog, pigeon and guinea-pig. All species, with the exception of the frog, possessed immunoreactive perikarya in their retinal ganglion cell layers. These perikarya are probably displaced amacrine cells because GABA immunoreactivity was absent from the optic nerves and destruction of the rat optic nerve did not result in degeneration of these cells. GABA immunoreactivity was also associated with the outer plexiform layers of all the retinas studied; these processes are derived from GABA-positive horizontal cells in rat, rabbit, frog, pigeon and goldfish retinas, from bipolar-like cells in the frog, and probably from interplexiform cells in the guinea-pig retina.The development of GABA-positive neurones in the rabbit retina was also analysed. Immunoreactivity was clearly associated with subpopulations of amacrine and horizontal cells on the second postnatal day. The immunoreactivity at this stage is strong, and fairly well developed processes are apparent. The intensity of the immunoreactivity increases with development in the case of the amacrine cells. The immunoreactive neurones appear fully developed at about the 8th postnatal day, although the immunoreactivity in the inner plexiform layer becomes more dispersed as development proceeds. The immunoreactive horizontal cells become less apparent as development proceeds, but they can still be seen in the adult retina.The GABA immunoreactive cells in rabbit retinas can be maintained in culture. Cultures of retinal cells derived from 2-day-old animals can be maintained for up to 20 days and show the presence of GABA-positive cells at all stages. In one-day-old cultures the GABA immunoreactive cells lacked processes but within three days had clearly defined processes. After maintenance for 10 days a meshwork of GABA-positive fibres could also be seen in the cultures.  相似文献   

2.
河川沙塘鳢视觉器官的发育及其与摄食的关系   总被引:7,自引:0,他引:7  
利用光学显微镜观察了河川沙塘鳢(Odontobutis potamophila)视觉器官的发育,并对其发育与摄食的关系进行了研究。河川沙塘鳢的眼囊起源于神经外胚层。当胚胎发育至心跳期时,眼囊内陷形成视杯;之后,视杯内表面的外胚层形成晶状体而与视杯分离,视杯进一步发育形成视网膜。随着胚胎的进一步发育,晶状体的直径增加,结构逐步发育完善。胚胎发育至眼黑色素出现期时,视网膜分化为6层,其中,外核层、内核层和神经节细胞层3个核层明显;胚胎发育至孵化前期时,视网膜已分化为10层。孵出后1d的仔鱼,其视网膜已能行使功能,仔鱼逐渐开口摄食。随着稚、幼鱼的发育,视网膜厚度进一步增加,结构发育完善。视网膜的结构和视觉特性显示河川沙塘鳢是要求光照条件好、白昼活动并具有较好视觉功能的鱼类。  相似文献   

3.
Several reactive biotin esters were injected into the eyes of chick and quail embryos at various stages of development. Four of the biotin esters reacted with molecules of the eye tissue and were detected with light and electron microscopy in fluorescein isothiocyanate and peroxidase-avidin incubated sections and whole mounts. Intra and extracellular components of the lens, the vitreous body, and the retina were labeled to different degrees. Three of the biotin esters (biotin-N-hydroxysuccinimidester, biotin-epsilon-aminocaproic acid-N-hydroxysuccinimidester, and desthiobiotin-N-hydroxysuccinimidester) prominently marked the optic fiber layer in the retina and the biotin labels were transported along the optic pathway. The tracers were detected up to the growth cone of axons 24 to 36 hr after injection. Explants from biotin marked retinas were cultured on collagen or basal laminae. During culturing axons grew out from these explants into the substratum showing that labeled tissue and nerve fibers were viable. The development of the optic pathway at the chiasma of quail embryos was studied using the biotin/avidin tracing. The bulk of fibers emerging from the retina crossed as shown by double labeling of both optic nerves in a complex pattern of segregated and interdigitizing axon bundles at the chiasma toward the contralateral side of the brain. From stage 25 onward a minor ipsilateral projection was found. At the same developmental stage a few fibers traveled into the contralateral optic nerve and grew retrogradely toward the contralateral eye. The percentage of specimens having this retino-retinal projection increased during development from 53% (stage 24 to 27; E3.5-E5.5) to 89% (stage 29 to 35; E6-E8) and declined to 40% at late embryogenesis (stage 37 to 41; E9-E12). The fact that all retinal axons were found within predictable pathways with some of them running in the wrong direction suggests that nerve fiber pathways provide accurate positional information, but at best weak directional information for growing nerve fibers.  相似文献   

4.
The early patterns of retinal degeneration were studied in the goldfish after optic nerve sectioning by l.m. and e.m. Beginning on the 2nd postsurgical day there was an initial degeneration of neurons in the ganglion cell and inner nuclear layers of the central retina. Massive ganglion cell degeneration in the whole retina (60%) as well as degeneration of neurons in inner and outer nuclear layer of the peripheral retina was evident around the 7th postsurgical day. The early degenerating cells appeared to be cones and cone bipolars.  相似文献   

5.
Calretinin is a calcium-binding protein which participates in a variety of functions including calcium buffering and neuronal protection. It also serves as a developmental marker of retinal ganglion cells (RGCs). In order to study the role of calretinin in the development and regeneration of RGCs, we have studied its pattern of expression in the retina at different developmental stages, as well as during optic nerve regeneration by means of immunohistochemistry. During development, calretinin is found for the first time in RGCs when they connect with the optic tectum. Optic nerves from adult zebrafish were crushed and after different survival times, calretinin expression in the retina, optic nerve tract and optic tectum was studied. From the day of crushing to 10 days later, calretinin expression was found to be downregulated within RGCs and their axons, as was also observed during the early developmental stages of RGCs, when they are not committed to a definite cell phenotype. Moreover, 13 days after lesion, when the regenerating axons arrived at the optic tectum, a recovery of calretinin immunoreactivity within the RGCs was observed. These results indicate that calretinin may play an important role during optic nerve regeneration, Thus, the down-regulation of Calretinin during the growth of the RGC axons towards the target during development as well as during their regeneration after injury, indicates that an increase the availability of cytosolic calcium is integral to axon outgrowth thus recapitulating the pattern observed during development.  相似文献   

6.
The development of the lens, retina and optic lobes was followed in Octopus australis and O. pallidus , two species that produce benthic larvae and can readily be reared in the laboratory from egg to adult.
The inner part of the lens starts to form at Naef's stage IX, and consists of a central core with overlying layers formed from processes of the lentigenic cells. Microvilli occur on the surface of the lens, and cilia and microvilli are visible in the retina, which at this point, however, is undifferentiated. The optic lobes have not started to form. The outer part of the lens starts to develop from stage XVI.
Cellular differentiation of the retina, through cell nuclei crossing the basement membrane, starts at stage XV, with rhabdome development occurring from stage XVI onwards. The optic lobes are clearly formed at stage XII, but only start to differentiate and show layering from stage XVI.
At hatching all adult structures are clearly visible, although considerable quantitative changes still occur before the final adult form is reached.
The development of the visual system of Octopus is similar to that of several species of decapod previously reported.  相似文献   

7.
Unlike in mammals, fish retinal ganglion cells (RGCs) have a capacity to repair their axons even after optic nerve transection. In our previous study, we isolated a tissue type transglutaminase (TG) from axotomized goldfish retina. The levels of retinal TG (TG(R)) mRNA increased in RGCs 1-6weeks after nerve injury to promote optic nerve regeneration both in vitro and in vivo. In the present study, we screened other types of TG using specific FITC-labeled substrate peptides to elucidate the implications for optic nerve regeneration. This screening showed that the activity of only cellular coagulation factor XIII (cFXIII) was increased in goldfish optic nerves just after nerve injury. We therefore cloned a full-length cDNA clone of FXIII A subunit (FXIII-A) and studied temporal changes of FXIII-A expression in goldfish optic nerve and retina during regeneration. FXIII-A mRNA was initially detected at the crush site of the optic nerve 1h after injury; it was further observed in the optic nerve and achieved sustained long-term expression (1-40days after nerve injury). The cells producing FXIII-A were astrocytes/microglial cells in the optic nerve. By contrast, the expression of FXIII-A mRNA and protein was upregulated in RGCs for a shorter time (3-10days after nerve injury). Overexpression of FXIII-A in RGCs achieved by lipofection induced significant neurite outgrowth from unprimed retina, but not from primed retina with pretreatment of nerve injury. Addition of extracts of optic nerves with injury induced significant neurite outgrowth from primed retina, but not from unprimed retina without pretreatment of nerve injury. The transient increase of cFXIII in RGCs promotes neurite sprouting from injured RGCs, whereas the sustained increase of cFXIII in optic nerves facilitates neurite elongation from regrowing axons.  相似文献   

8.
Neurofilament phosphorylation in development. A sign of axonal maturation?   总被引:5,自引:0,他引:5  
Monoclonal antibodies to the 200K neurofilament (NF) protein selectively decorated axons in tissue sections. Dilution of the antibodies in phosphate buffer and digestion with phosphatase abolished the stain. With conventional monoclonal and polyclonal NF antibodies, i.e. antibodies decorating NF regardless of their location (axons, perikarya and dendrites), the staining was not affected by this treatment. With all antibodies, axon-specific and conventional, the staining was abolished by trypsin digestion. Subsequent digestion with phosphatase did not restore the staining. Compared with conventional NF antibodies, staining with axon-specific anti-NF 200K was a late phenomenon in chick embryo development. NF 200K immunoreactivity was first observed in peripheral nerves and in the anterior columns of the spinal cord on day 10. Sensory ganglia and optic nerve fibers were negative. With conventional NF antibodies these structures were stained on days 4 and 5, respectively. In the following days of development the study was confined to the retina, optic nerves, cranial peripheral nerves and sensory ganglia. Up to day 16, bundles of thin peripheral nerve fibers, strongly decorated by conventional NF antibodies, did not stain with anti-NF 200K in double labelling experiments. Nerve bundles emerging from the ganglia were also negative, although some thick nerve fibers within the ganglia were stained. NF 200K immunoreactivity was first observed on day 17 in the optic nerve and in the layer of optic nerve fibers. At this time, staining was confined to the bundle emerging from the temporal side of the retina. In newborn chicken, only few fibers stained with anti-NF 200K in the nasal bundle, while the temporal bundle was well stained. It is suggested that the NF 200K antibodies reacted with a phosphorylated epitope in the axon, and that NF phosphorylation is a late event in ontogenesis probably related to axonal maturation.  相似文献   

9.
The expression of the neural cell adhesion molecules L1 and N-CAM and of their shared carbohydrate epitope L2/HNK-1 was studied during the development and after the transection of mouse sciatic nerves. During development, L1 and N-CAM were detectable on most, if not all, Schwann cells at embryonic day 17, the earliest stage tested. With increasing age, the immunoreactivity was reduced being confined to non-myelinating Schwann cells by post-natal day 10, at which stage the staining pattern resembled that seen in adult sciatic nerves. Double-immunolabelling experiments revealed a complete overlap between L1 and N-CAM antibodies. The L2/HNK-1 epitope was not detectable in developing sciatic nerves until the end of the 2nd post-natal week, when it appeared to be associated with the outer profiles of thick myelin sheets, as also seen in adult sciatic nerves. Three days after the transection of adult sciatic nerves, L1 antigen and N-CAM was detectable in more Schwann cells in the distal nerve end than in untreated control nerves. The peak level of the reappearance of L1 antigen and N-CAM in Schwann cells occurred between 2 and 4 weeks after transection. The reduction of L1-antigen expression to its normal adult level took more than a year, thus recapitulating normal development, but on a more protracted time scale. Similarly, the L2/HNK-1 epitope remained undetectable until the transected nerve had returned to its normal state of myelination, i.e. approximately 1 year after transection.  相似文献   

10.
The carbocyanine dye, DiI, has been used to study the retinal origin of the uncrossed retinofugal component of the mouse and to show the course taken by these fibres through the optic nerve and chiasm during development. Optic axons first arrive at the chiasm at embryonic day 13 (E13) but do not cross the midline until E14. After this stage, fibres taking an uncrossed course can be selectively labelled by unilateral tract implants of DiI. The earliest ipsilaterally projecting ganglion cells are located in the dorsal central retina. The first sign of the adult pattern of distribution of ganglion cells with uncrossed axons located mainly in the ventrotemporal retina is seen on embryonic day 16.5, thus showing that the adult line of decussation forms early in development. A small number of labelled cells continue to be found in nasal and dorsal retina at all later stages. At early stages (E14-15), retrogradely labelled uncrossed fibres are found in virtually all fascicles of the developing nerve, intermingling with crossed axons throughout the length of the nerve. At later stages of development (E16-17), although uncrossed fibres pass predominantly within the temporal part of the stalk, they remain intermingled with crossed axons. A significant number of uncrossed axons also lie within the nasal part of the optic stalk. The position of uncrossed fibres throughout the nerve in the later developmental stages is comparable to that seen in the adult rodent (Baker and Jeffery, 1989). The distribution of uncrossed axons thus indicates that positional cues are not sufficient to account for the choice made by axons when they reach the optic chiasm.  相似文献   

11.
The ventral region of the chick embryo optic cup undergoes a complex process of differentiation leading to the formation of four different structures: the neural retina, the retinal pigment epithelium (RPE), the optic disk/optic stalk, and the pecten oculi. Signaling molecules such as retinoic acid and sonic hedgehog have been implicated in the regulation of these phenomena. We have now investigated whether the bone morphogenetic proteins (BMPs) also regulate ventral optic cup development. Loss-of-function experiments were carried out in chick embryos in ovo, by intraocular overexpression of noggin, a protein that binds several BMPs and prevents their interactions with their cognate cell surface receptors. At optic vesicle stages of development, this treatment resulted in microphthalmia with concomitant disruption of the developing neural retina, RPE and lens. At optic cup stages, however, noggin overexpression caused colobomas, pecten agenesis, replacement of the ventral RPE by neuroepithelium-like tissue, and ectopic expression of optic stalk markers in the region of the ventral retina and RPE. This was frequently accompanied by abnormal growth of ganglion cell axons, which failed to enter the optic nerve. The data suggest that endogenous BMPs have significant effects on the development of ventral optic cup structures.  相似文献   

12.
Changes in the electroretinogram were studied and the rhodopsin content determined in the retina and optic cup of Hunter rats during development of hereditary degeneration of the retina. Changes in the rhodopsin content in the retina and optic cup were found to take place differently in time. The content of visual pigment in the optic cup increased until the 45th day, and then it fell slowly; in the retina it increased until the 25th day and fell sharply after the 35th day after birth. The amplitude of the electroretinogram recorded during stimulation of all intensities from threshold to saturating fell steadily from the 17th to the 35th day; later a sharp fall in the amplitude of the response to weak stimulation with disappearance of thea wave of the electroretinogram took place. The 35th day is thus the critical period in the development of the disease. The possible role of disturbances of rhodopsin resynthesis in the phenomena observed is discussed.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Research Institute of Human Morphology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 527–531, September–October, 1977.  相似文献   

13.
Mammalian eye development requires vitamin A (retinol, ROL). The role of vitamin A at specific times during eye development was studied in rat fetuses made vitamin A deficient (VAD) after embryonic day (E) 10.5 (late VAD). The optic fissure does not close in late VAD embryos, and severe folding and collapse of the retina is observed at E18.5. Pitx2, a gene required for normal optic fissure closure, is dramatically downregulated in the periocular mesenchyme in late VAD embryos, and dissolution of the basal lamina does not occur at the optic fissure margin. The addition of ROL to late VAD embryos by E12.5 restores Pitx2 expression, supports dissolution of the basal lamina, and prevents coloboma, whereas supplementation at E13.5 does not. Surprisingly, ROL given as late as E13.5 completely prevents folding of the retina despite the presence of an open fetal fissure, showing that coloboma and retinal folding represent distinct VAD-dependent defects. Retinal folding due to VAD is preceded by an overall reduction in the percentage of cyclin D1 positive cells in the developing retina, (initially resulting in retinal thinning), as well as a dramatic reduction in the cell adhesion-related molecules, N-cadherin and β-catenin. Reduction of retinal cell number combined with a loss of the normal cell-cell adhesion proteins may contribute to the collapse and folding of the retina that occurs in late VAD fetuses.  相似文献   

14.
The mab-21 gene was first identified because of its requirement for ray identity specification in Caenorhabditis elegans. It is now known to constitute a family of genes that are highly conserved from vertebrates to invertebrates, and two homologues Mab21l1 and Mab21l2 have been identified in many species. Here we describe the generation of Mab21l2-deficient mice, which have defects in eye and body wall formation. The mutant mouse eye has a rudimentary retina, as a result of insufficient invagination of the optic vesicle due to deficient proliferation, causing the absence of lens. The defects in optic vesicle development correlate with reduced expression of Chx10, which is also required for retina development; Rx, Lhx2, and Pax6 expression is not significantly affected. We conclude that Mab21l2 expression is essential for optic vesicle growth and formation of the optic cup, its absence causing reduced expression of Chx10. Mutant mice also display abnormal extrusion of abdominal organs, defects in ventral body wall formation, resulting in death in utero at mid-gestational stage. Our results reveal that Mab21l2 plays crucial roles in retina and in ventral body wall formation.  相似文献   

15.
Rat retina structure was studied between embryonic day 14 and adult with antibodies specific for vimentin, glial fibrillary acidic protein (GFA) and the proteins of the neurofilament triplet. Vimentin could be detected in radial processes throughout the retina at all stages studied. These processes are believed to correspond, in the developing retina, to ventriculocytes, and in the mature retina to Müller cells. They could not normally be stained with any of the other intermediate filament antibodies employed here. We did find, however, that some older albino rats possessed GFA staining in addition to vimentin in these processes. Since we never saw such staining in the retinae of mature non-albino rats, and the retinae of older albino rats often showed signs of degeneration, we concluded that such GFA expression was most likely pathological. Neurofilament protein-positive processes were first detectable at embryonic day 15 1/2 in the inner regions of the retina, and corresponded to the axons of retinal ganglion cells. Such processes were equivalently displayed with antibodies to 68 K and 145 K protein, but were negative with 200 K protein. Some 68 K and 145 K positive fibers could also be decorated with vimentin antibody at this stage, though at later stages this was not the case. At later development stages more 68 K and 145 K neurofilament positive processes appeared, and after the first post-natal week progressively more of such processes became in addition 200 K positive, so that almost all neurofilament positive fibers in the adult stained for all three proteins. Such fibers, in the mature retina corresponded to 68 K and 145 K positive optic nerve fibers, and the processes of neurones in the inner plexiform layer. All fibers in the mature optic nerve fiber layer, but not all of those in the inner plexiform layer were stainable with 200 K antibodies. At 4 days post-natal we were able to detect 68 K and 145 K protein positive profiles in the outer regions of the developing retina, the prospective outer plexiform layer. Such profiles were always in addition vimentin positive, but negative for 200 K protein. During further development such profiles became ordered into a well defined layer and from about post-natal day 13 all of them began to acquire 200 K protein. They could be identified as the processes of horizontal cells. They continued to express vimentin in addition to the three triplet proteins in the adult, a so far unprecedented situation. We were able to detect neurofilament staining in the mature retina only in the above described regions, the inner and outer nuclear layer and the photoreceptor processes being completely free of staining. GFA was first detected in short processes adjacent to the inner limiting membrane which penetrated the optic nerve fiber layer. Such profiles were first detectable in the eye of the newborn animal, and were invariably identically stainable with vimentin at this age. These profiles could be stained with both vimentin and GFA at all later stages examined, although GFA staining became very much stronger than vimentin staining in some profiles in the adult. The results presented here are discussed in terms of development of the different retinal cell types.  相似文献   

16.
The water-soluble proteins of chick retina were studied during the formation of eye cup and at the early stages of histological differentiation of retina by the micro-method of electrophoresis in 20% polyacrilamide gel. The retina of embryos at the stages under study contains a range of proteins forming over 20 fractions in electrophoresis. The most fractions are formed by the proteins which electrophoretic mobilities exceed that of serum albumin. The early stages of retina development are characterized by the definite changes in its protein composition. These changes manifest themselves in the disappearance of the most anodic fractions beginning from the stage of contact between the optic vesicle and presumptive lens ectoderm. During the subsequent development, these proteins are detected again in the retina, the corresponding anodic fractions being most distinct at the stage of completed eye cup. Their content in the retina decreases repeatedly with the beginning of histogenesis up to their complete disappearance.  相似文献   

17.
The goldfish optic nerve can regenerate after injury. To understand the molecular mechanism of optic nerve regrowth, we identified genes whose expression is specifically up-regulated during the early stage of optic nerve regeneration. A cDNA library constructed from goldfish retina 5 days after transection was screened by differential hybridization with cDNA probes derived from axotomized or normal retina. Of six cDNA clones isolated, one clone was identified as the Na,K-ATPase catalytic subunit alpha3 isoform by high- sequence homology. In northern hybridization, the expression level of the mRNA was significantly increased at 2 days and peaked at 5-10 days, and then gradually decreased and returned to control level by 45 days after optic nerve transection. Both in situ hybridization and immunohistochemical staining have revealed the location of this transient retinal change after optic nerve transection. The increased expression was observed only in the ganglion cell layer and optic nerve fiber layer at 5-20 days after optic nerve transection. In an explant culture system, neurite outgrowth from the retina 7 days after optic nerve transection was spontaneously promoted. A low concentration of ouabain (50-100 nm ) completely blocked the spontaneous neurite outgrowth from the lesioned retina. Together, these data indicate that up-regulation of the Na,K-ATPase alpha3 subunit is involved in the regrowth of ganglion cell axons after axotomy.  相似文献   

18.
Four proteins with molecular weights of 58,000 can be separated as a linear array by two-dimensional gel electrophoresis. They are highly concentrated in the goldfish optic nerve and are designated as ON1, ON2, ON3, and ON4. Proteins ON1 and ON2 are undetectable in the optic nerve after disconnection and their concentration is gradually restored during regeneration. In vitro incubations of retinas, optic nerves, or tecta in the presence of [35S]methionine indicate that proteins ON1 and ON2 are of retinal origin. The labeling rate of these proteins in the retina increases fourfold after optic nerve crush whereas the overall labeling rate in the retina remains largely constant. Their synthesis cannot be detected in tissues devoid of retinal ganglion cells. This is consistent with the view that ON1 and ON2 are synthesized by retinal ganglion cells and are consequently of neuronal origin in the optic nerve. In contrast, similar experiments indicate that ON3 and ON4 are of nonneuronal origin. They are synthesized in the optic nerve in the absence of retinal ganglion cells.  相似文献   

19.
Prenatal development of the eye in a microphthalmic hamster strain (“anophthalmic white”) is compared with established normal developmental periods. The mutant eye primordium is first distinguished at an average of ten gestational days (Period 6) by an incompletely invaginated optic cup, uniformly pseudostratified outer neuroepithelial layer and widely separated margins of the optic fissure. The outer layer of the mutant cup subsequently becomes abnormally thickened, especially posteriorly and midventrally, and, except in a few eyes with localized imperfect fusion, the optic fissure is unfused at twelve days (Period 9), by which time fusion is normally complete. At 13 to 15 days (Periods 10–11) the fissure is unfused or irregularly fused in regions of variable location and extent. The occurrence of fissure fusion with concomitant loss of continuity between inner and outer epithelial layers is generally restricted to expanded anterior regions in 14–16 day (Periods 11–12) eyes. The presence of presumptive neural retina in the outer layer of the cup characterizes the mutant eye; and to varying degrees, in day 13–16 eyes, the presumptive neural retina (1) provides persistent continuity between the two cup layers, (2) forms both fused and unfused margins of the optic fissure, and (3) extends into an outer position of the optic cup. As early as 13 days (Period 10), nerve fibers are present in the outer layer of the cup, and by the last prenatal and first postnatal days (Period 12), ectopic nerve fiber bundles are widely distributed.  相似文献   

20.
Bone morphogenetic proteins (BMPs) act repeatedly in the development of nervous system tissues. While BMP signaling is critical for the early growth and patterning of the eye, we are interested in possible later functions of BMPs in the morphological development of retinal neurons and formation of synaptic connections. Therefore, we conducted an in situ hybridization analysis of the mRNA expression for the ligands Bmp2, -4 and 7 and the type Ia, Ib and II receptors (BmprIa, BmprIb and BmprII) during development of the retina of Xenopus laevis. Bmp4 mRNA is expressed in the dorsal retina and Bmp7 in the distal peripheral retina during the period of cell differentiation, while Bmp2 is not present in the eye. The type I receptors are expressed predominantly ventrally, from the optic vesicle stage until at least stage 35/36, after most cells have differentiated and many synaptic connections have formed. BmprII mRNA, however, is distributed evenly across the dorsoventral axis, with highest expression in retinal ganglion cell and inner nuclear layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号