首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lean and adipose beef carcass tissues inoculated with Brochothrix thermosphacta (BT) (approx. 4.50 log10 cfu cm−2) were left untreated (U) or treated with 100 μg ml−1 nisin (N), calcium alginate (A) or 100 μg ml−1 nisin immobilized in a calcium alginate gel (AN). Tissue samples were refrigerated after treatments and bacterial populations and nisin activity were determined at 0, 1, 2 and 7 d. U, A and N treatments of lean and adipose tissues did not suppress bacterial growth (>6 log10 cfu cm−2 by day 7) while treatments of lean and adipose tissues with AN suppressed bacteria (>2.42 log10 cfu cm−2 by day 7). Bacteriocin titres from both tissues were higher in AN vs N samples after the 7 d incubation. This study demonstrates that immobilization of nisin in a gel may be a more effective delivery system of a bacteriocin to the carcass surface than direct application.  相似文献   

2.
A highly specific antisera was produced in New Zealand white rabbits against nisin Z, a 3400 Da bacteriocin produced by Lactococcus lactis ssp. lactis biovar. diacetylactis UL 719. A dot immunoblot assay was then developed to detect nisin Z in milk and whey. As few as 1·5 10−1 international units per ml (IU ml−1), corresponding to 0·003 μg ml−1 of pure nisin Z, were detected in carbonate-bicarbonate buffer within 6 h using chemiluminescence. When milk and whey samples were tested, approximately 0·155 μg ml−1 (7·9 IU ml−1) of nisin Z was detected. The detection limit obtained was lower than that of traditional methods including microtitration and agar diffusion.  相似文献   

3.
The conditions for high production of nisin Z and pediocin during pH-controlled, mixed-strain batch cultures in a supplemented whey permeate medium with Lactococcus lactis subsp. lactis biovar. diacetylactis UL719, a nisin Z producer strain, and variant T5 of Pediococcus acidilactici UL5, a pediocin-producing strain resistant to high concentrations of nisin, were studied. Mixed cultures were performed at 37 °C and pH 5·5 by first inoculating with variant T5 and then with L. diacetylactis UL719 after 8 h incubation, and were compared with single-strain batch cultures. High productions of both nisin Z and pediocin were obtained after 18 or 16 h incubation during mixed cultures, with titres of 3000 and 730 AU ml−1, or 1060 and 1360 AU ml−1, respectively, corresponding to approximately 75 and 55, or 25 and 100 mg l−1 of pure nisin Z and pediocin, respectively. In pure cultures, nisin Z and pediocin productions were higher than in mixed cultures, and maximum activities were obtained after 10 h incubation, with approximately 10 000 AU ml−1 (250 mg l−1 pure nisin Z) and 2500 AU ml−1 (190 mg l−1 pure pediocin). During mixed cultures, significant pediocin degradation was observed in the culture supernatant fluid after 16 h incubation, together with a sharp drop in Ped. acidilactici UL5 cell viability. In the test conditions, the feasibility of producing a nisin/pediocin mixture by mixed-strain fermentation was demonstrated. The bacteriocin mixture produced in a supplemented whey permeate medium could be used as a natural food-grade biopreservative with a broad activity spectrum.  相似文献   

4.
Pectinatus frisingensis , a Gram-negative and strictly anaerobic beer spoilage bacterium is sensitive to nisin. An increase in nisin concentration (0 to 1100 IU ml−1) added to the culture medium prolonged the lag phase, and decreased the growth rate of the bacterium. In addition, late exponential cells of P. frisingensis exposed to low concentrations of nisin lost immediately a part of their intracellular K+. Presence of Mg2+ up to 15 mmol l−1 did not protect P. frisingensis from nisin-induced loss of viability and K+ efflux. Potassium leaks were also measured in P. frisingensis late exponential phase cells exposed to combined effects of nisin addition (100–500 IU ml−1), 10 min mild heat-treatment (50 °C) or rapid cooling (2 °C), and pH (4·0 and 6·2). Net K+ efflux from both starving and glucose-metabolizing cells, was more important at pH 6·2, whatever the temperature treatment and nisin addition. Reincubation at 30 °C of P. frisingensis glucose-metabolizing cells exposed to a preliminary combination of nisin addition and mild heat or cooling down treatment, showed that cells exposed to rapid cooling reaccumulated more K+ than heat-treated cells, whatever the pH conditions. A combination of nisin and mild heat-treatment could thus be of interest to prevent P. frisingensis growth in beers.  相似文献   

5.
Aims:  The aim of this work was to investigate the germination and inactivation of spores of Bacillus species in buffer and milk subjected to high pressure (HP) and nisin.
Methods and Results:  Spores of Bacillus subtilis and Bacillus cereus suspended in milk or buffer were treated at 100 or 500 MPa at 40°C with or without 500 IU ml−1 of nisin. Treatment at 500 MPa resulted in high levels of germination (4 log units) of B. subtilis spores in both milk and buffer; this increased to >6 logs by applying a second cycle of pressure. Viability of B. subtilis spores in milk and buffer was reduced by 2·5 logs by cycled HP, while the addition of nisin (500 IU ml−1) prior to HP treatment resulted in log reductions of 5·7 and 5·9 in phosphate buffered saline and milk, respectively. Physical damage of spores of B. subtilis following HP was apparent using scanning electron microscopy. Treating four strains of B. cereus at 500 MPa for 5 min twice at 40°C in the presence of 500 IU ml−1 nisin proved less effective at inactivating the spores of these isolates compared with B. subtilis and some strain-to-strain variability was observed.
Conclusions:  Although high levels of germination of Bacillus spores could be achieved by combining HP and nisin, complete inactivation was not achieved using the aforementioned treatments.
Significance and Impact of the Study:  Combinations of HP treatment and nisin may be an appealing alternative to heat pasteurization of milk.  相似文献   

6.
Nisin is a bacteriocin with a broad antibacterial spectrum including strains of Listeria monocytogenes . Populations of L. monocytogenes , however, frequently contain spontaneous nisin-resistant mutants. When a culture of L. monocytogenes Scott A was exposed to nisin concentrations between 10 and 500 IU ml−1, the initial decrease in viable numbers was followed by regrowth of survivors to nisin. Nisin-resistant mutants of L. monocytogenes Scott A were isolated after a single exposure to nisin at 100 IU ml−1 and were shown to be sensitive to the non-nisin bacteriocins, sakacin A and enterocin B, produced by Lactobacillus sake Lb 706 and Enterococcus faecium BFE 900, respectively. The regrowth of L. monocytogenes Scott A following the initial decrease due to exposure to nisin was prevented by nisin-resistant Lact. sake Lb 706–1a and to a somewhat lesser extent, by Ent. faecium BFE 900–6a. Listerial cells surviving nisin action were thus inhibited by the bacteriocin-producing strains that might be used as starter or protective cultures in foods. Growth of a nisin-resistant mutant of L. monocytogenes Scott A (Li3) was also suppressed by the bacteriocinogenic cultures. Use of nisin in combination with a starter culture producing a non-nisin antilisterial bacteriocin may therefore prevent the emergence of nisin-resistant mutants of L. monocytogenes .  相似文献   

7.
Cow's milk was inoculated with ca 103 and 107 cfu ml−1 Escherichia coli O157 : H7. After fermentation at 42°C for 0–5 h, the yoghurt was stored at 4°C. Two kinds of yoghurt were used : traditional yoghurt (TY), made with Streptococcus thermophilus and Lactobacillus bulgaricus starter cultures, and 'bifido' yoghurt (BY), made with the two starter cultures plus Bifidobacterium bifidum . After 7 d E. coli O157 : H7 decreased from 3·52 to 2·72 log10 cfu ml−1 and from 7·08 to 5·32 log10 cfu ml−1 in TY, and from 3·49 to 2·73 log10 cfu ml−1 and from 7·38 to 5·41 log10 cfu ml−1 in BY. The pH values of yoghurt dropped from 6·6 to 4·5 and 4·4 in TY (for low and high pathogen inocula, respectively), and from 6·6 to 4·6 and 4·5 in BY (for low and high pathogen inocula, respectively).  相似文献   

8.
Aims:  The identification of a new compound active against Agrobacterium tumefaciens .
Methods and Results:  The culture conditions of a newly isolated Bacillus subtilis strain, designed 14B, were optimized, as a first step, to produce its bacteriocin (termed Bac 14B) for the biocontrol of Agrobacterium spp., the causal agents of the crown gall disease. Bac 14B was then partially purified and biochemically characterized. Bacillus subtilis 14B was observed to produce an antibacterial compound having a protinaceous nature. As estimated by sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE), the semi-purified bacteriocin substance was found to be a monomeric protein with a molecular weight of 21 kDa. While the latter's antimicrobial activity was completely stable during exposure to a temperature range of up to 100°C for 2 h, its initial activity was totally lost at 121°C for 20 min. The maximum bacteriocin production (4096 AU ml−1) was recorded after 96 h-incubation in an optimized Luria Bertani medium supplemented with 10 g l−1 glucose, 15 g l−1 K2HPO4 and 5 g l−1 MgSO4 7H2O at 30°C in a shaking flask culture. Interestingly, the B. subtilis 14B culture supernatant that contained the bacteriocin under study was proved efficient in reducing both the percentage of galled plants and the number of galls in tomato.
Conclusion:  The findings revealed that B. subtilis 14B and its bacteriocin are efficient in reducing the percentage of infections in plants caused by Ag. tumefaciens .
Significance and Impact of the Study:  The results could be useful for the nurserymen who are particularly interested in the biocontrol of the crown gall disease.  相似文献   

9.
Bacteria isolated from radish were identified as Lactococcus lactis subsp. cremoris R and their bacteriocin was designated lactococcin R. Lactococcin R was sensitive to some proteolytic enzymes (proteinase-K, pronase-E, proteases, pepsin, α-chymotrypsin) but was resistant to trypsin, papain, catalase, lysozyme and lipase, organic solvents, or heating at 90 °C for 15, 30 and 60 min, or 121 °C for 15 min. Lactococcin R remained active after storage at −20 and −70 °C for 3 months and after exposure to a pH of 2–9. The molecular weight of lactococcin R was about 2·5 kDa. Lactococcin R was active against many food-borne pathogenic and food spoilage bacteria such as Clostridium, Staphylococcus, Listeria, Bacillus, Micrococcus, Enterococcus, Lactobacillus, Leuconostoc, Streptococcus and Pediococcus spp., but was not active against any Gram-negative bacteria. Lactococcin R was produced during log phase and reached a maximum activity (1600 AU ml−1) at early stationary phase. The highest lactococcin R production was obtained in MRS broth with 0·5% glucose, at 6·5–7·0 initial pH values, 30 °C temperature and 18–24-h incubation times. Lactococcin R adsorbed maximally to its heat-killed producing cells at pH 6–7 (95%). Crude lactococcin R at 1280 AU ml−1 was bactericidal, reducing colony counts of Listeria monocytogenes by 99·98% in 3 h. Lactococcin R should be useful as a biopreservative to prevent growth of food-borne pathogenic and food spoilage bacteria in ready-to-eat, dairy, meat, poultry and other food products. Lactococcin R differs from nisin in having a lower molecular weight, 2·5 kDa vs 3·4 kDa, and in being sensitive to pepsin and α-chymotrypsin to which nisin is resistant.  相似文献   

10.
The heat treatment necessary to inactivate spores of non-proteolytic Clostridium botulinum in refrigerated, processed foods may be influenced by the occurrence of lysozyme in these foods. Spores of six strains of non-proteolytic Cl. botulinum were inoculated into tubes of an anaerobic meat medium, to give 106 spores per tube. Hen egg white lysozyme (0–50 μg ml-1) was added, and the tubes were given a heat treatment equivalent to 19·8 min at 90°C, cooled, and incubated at 8°, 12°, 16° and 25°C for up to 93 d. In the absence of added lysozyme, neither growth nor toxin formation were observed. A 6–D inactivation was therefore achieved. In tubes to which lysozyme (5–50 μg ml-1) had been added prior to heating, growth and toxin formation were observed. With lysozyme added at 50 μg ml-1, growth was first observed after 68 d at 8°C, 31 d at 12°C, 24 d at 16°C, and 9 d at 25°C. Thus, in these circumstances, a heat treatment equivalent to 19·8 min at 90°C was not sufficient, on its own, to give a 6–D inactivation. A combination of the heat treatment, maintenance at less than 12°C, and a shelf-life not more than 4 weeks reduced the risk of growth of non-proteolytic Cl. botulinum by a factor of 106.  相似文献   

11.
The efficacy of nisin to control the food-borne pathogen Listeria monocytogenes in ricotta-type cheeses over long storage (70 d) at 6–8°C was determined. Cheeses were prepared from unpasteurized milk by direct acidification with acetic acid (final pH 5·9) and/or calcium chloride addition during heat treatment. Nisin was added in the commercial form of Nisaplin® pre-production to the milk. Each batch of cheese was inoculated with 102–103 cfu g−1 of a five-strain cocktail of L. monocytogenes before storage. Shelf-life analysis demonstrated that incorporation of nisin at a level of 2·5 mg l−1 could effectively inhibit the growth of L. monocytogenes for a period of 8 weeks or more (dependent on cheese type). Cheese made without the addition of nisin contained unsafe levels of the organism within 1–2 weeks of incubation. Measurement of initial and residual nisin indicated a high level of retention over the 10-week incubation period at 6–8°C, with only 10–32% nisin loss.  相似文献   

12.
Aim:  To investigate the nisin Z innocuity using normal human gingival fibroblast and epithelial cell cultures, and its synergistic effect with these gingival cells against Candida albicans adhesion and transition from blastospore to hyphal form.
Methods and Results:  Cells were cultured to 80% confluence and infected with C. albicans in the absence or presence of various concentrations of nisin Z. Our results indicate that only high concentrations of nisin Z promoted gingival cell detachment and differentiation. Determination of the LD50 showed that the fibroblasts were able to tolerate up to 80  μ g ml−1 for 24 h, dropping thereafter to 62  μ g ml−1 after 72 h of contact, compared to 160  μ g ml−1 after 24 h, and 80  μ g ml−1 after 72 h recorded by the gingival epithelial cells which displayed a greater resistance to nisin Z. The use of nisin Z even at low concentration (25  μ g ml−1) at appropriate concentrations with gingival cells significantly reduced C. albicans adhesion to gingival monolayer cultures and inhibited the yeast's transition.
Conclusion:  These findings show that when used at non-toxic levels for human cells, nisin Z can be effective against C. albicans adhesion and transition and may synergistically interact with gingival cells for an efficient resistance against C. albicans .
Significance and Impact of the Study:  This study suggests the potential usefulness of nisin Z as an antifungal agent, when used in an appropriate range.  相似文献   

13.
The efficacy of high-temperature, short-time (HTST) pasteurization (72 °C/15 s) when low numbers (≤ 103 cfu ml −1 ) of Mycobacterium paratuberculosis are present in milk was investigated. Raw cows' milk spiked with Myco. paratuberculosis (103 cfu ml−1, 102 cfu ml−1, 10 cfu ml−1, and 10 cfu 50 ml−1) was subjected to HTST pasteurization using laboratory pasteurizing units. Ten bovine strains of Myco. paratuberculosis were tested in triplicate. Culture in BACTEC Middlebrook 12B radiometric medium detected acid-fast survivors in 14·8% and 10% of HTST-pasteurized milk samples at the 103 and 102 cfu ml−1 inoculum levels, respectively, whereas conventional culture on Herrold's egg yolk medium containing mycobactin J detected acid-fast survivors in only 3·7% and 6·7% of the same milk samples. IS900-based PCR confirmed that these acid-fast survivors were Myco. paratuberculosis . No viable Myco. paratuberculosis were isolated from HTST-pasteurized milk initially containing either 10 cfu ml−1 or 10 cfu 50 ml−1.  相似文献   

14.
This study examined the attachment kinetics of Yersinia enterocolitica serotype O:3 to determine the optimum conditions for its isolation from meat enrichment systems using a novel surface adhesion technique. Minced beef was inoculated with Y. enterocolitica at an initial level of 10 cfu g−1 and incubated at 25 °C in an enrichment broth. Yersinia was recovered from enriched samples on polycarbonate membranes by surface adhesion and enumerated using immunofluorescence microscopy. The surface adhesion immunofluorescence technique (SAIF) had a minimum detection limit of approximately 4·0–4·5 log10 cfu ml−1 and provided good correlation between the estimation of the numbers of Yersinia in the enrichment broth derived from plate counts on Yersinia Selective agar (CIN) and those determined by SAIF ( r 2 = 0·94; rsd = ± 0·21). A derived regression equation of the SAIF count vs plate counts was used to predict Y. enterocolitica numbers in spiked meat samples stored at 0 °C for up to 20 d. The numbers as predicted by the SAIF method showed good correlation with counts derived by plating techniques ( r 2 = 0·78; rsd = ± 0·42). The application of the SAIF technique for the rapid detection of Y. enterocolitica serotype O:3 from meat is discussed.  相似文献   

15.
The metamorphosis of Solea senegalensis was studied in larvae reared at 20° C and fed four different feeding regimes. A, Artemia (4 nauplii ml−1); B, Artemia (2 nauplii ml−1); C, mixed diet (2 nauplii ml−1 and 3 mg ml−1 microencapsulated diet); and D, microencapsulated diet (3·7 mg ml−1). Rotifers were also supplied in all cases during the first days of feeding. These feeding regimes supported different growth rates during the pre-metamorphosis period (regime A, G=0·376 day−1; regime B, G=0·253 day−1; regime C, G=0·254 day−1; regime D, G=0·162 day−1). Larvae started metamorphosis 9 days after hatching (DAH) when fed the regime A, 13 DAH with regime B, 11 DAH with regime C and 15 DAH with regime D. A minimum 5·6–5·9 mm LT was required under all feeding regimes to initiate the metamorphosis. Eye translocation was completed when the larvae reached 8·6–8·7 mm LT (regimes A, B and C), but only 7·3 mm LT with regime D. 4·4–6·2 days were required to complete eye migration under the regimes A, B and C, and 18·3 days under the regime D. This transformation is concomitant with changes in body reserves, and with the pattern of some digestive enzymes.  相似文献   

16.
A cell-free crude extract containing the white line inducing principle (WLIP), a lipodepsipeptide produced by Pseudomonas 'reactans' , could inhibit browning of mushrooms caused by Pseudomonas tolaasii . Mushrooms inoculated with Ps. tolaasii at concentrations of 2·7 × 106 cfu ml−1 or higher showed the symptoms of the disease after 2 d of incubation. Mushroom caps treated with various concentrations of a crude WLIP preparation, and later inoculated with bacterial concentrations higher than the threshold value, did not develop the symptoms of the disease. One milligram of a crude WLIP preparation could block 50% of the symptoms caused by 1·2 × 107 cfu. The inhibition of browning was effective when incubating at low temperatures for 4 d. A suspension containing 1·6 mg ml−1 of pure WLIP was also able to inhibit the symptoms of brown blotch disease induced by 7·6 × 106 cfu ml−1 of Ps. tolaasii .  相似文献   

17.
The Limulus lysate test (LLT) for endotoxin assay has been found to be an excellent, simple and rapid test of microbial quality of refrigerated ground beef. In fresh ground beef held at 5°C for 7–12 d, LLT titres increased from 102–105 and correlated very highly with extract-release volume (ERV) data and total viable Gram negative counts at both 5° and 30°C. The LLT was negative for fresh beef containing low numbers of bacteria and on aged beef in the absence of increasing numbers of Gram negative bacteria. Of 14 Gram negative meat isolates, all gave a positive LLT while none of eight miscellaneous Gram positive bacteria did. The use of this test provides objective information on the microbial quality of fresh refrigerated ground meats in 1 h. Based upon this study, it is suggested that a 0·1 ml inoculum from a 103 dilution of good quality ground beef should produce a negative lysate test and thus serve as an additional rapid screening test of meat microbial quality.  相似文献   

18.
N. ONISHI, I. KIRA AND K. YOKOZEKI. 1996. Galacto-oligosaccharide (Gal-OS) was produced from lactose by a yeast, Sirobasidium magnum CBS6803. With toluene-treated resting cells, 136 mg ml−1 of Gal-OS was produced from 360 mg ml−1 of lactose at 50°C for 42 h. Then, the yield of Gal-OS was increased by a culture method in which cell growth followed the enzymatic reaction : 224 mg ml−1 of Gal-OS was produced at 30°C for 60 h. Finally, combination of the toluene-treated resting cells and glucose oxidase plus catalase was applied to improve productivity by the removal of a by-product, glucose, which inhibits the Gal-OS production, from the reaction mixture. In this case, 242 mg ml−1 4-galactosyl-lactose. of Gal-OS was produced at 50°C for 42 h without cell growth. The structure of the major product ws identified as 4-galactosyl-laetos.  相似文献   

19.
A simple and sensitive method was developed to replace the need for complex and laborious DNA extraction to remove inhibitory substances in potato tuber peel extract before detection of Erwinia carotovora subsp. atroseptica (Eca) by PCR. Eca was enriched by a factor of 105 when peel extract was inoculated onto a selective medium, CVP, and incubated at 27°C for 24 h. Bacterial micro-colonies which developed were suspended in 500 μl of water and the bacteria diluted in water 100-fold, or 10-fold followed by washing by centrifugation, before PCR testing. The sensitivity of detection obtained with the former was ca 101–102 cells ml−1 and with the latter ca 101 cells ml−1, when different numbers of streptomycin-resistant Eca strain were added to peel extract from three Eca-free potato cultivars. The method was validated and the sensitivity confirmed relative to two different commonly used Eca detection methods using naturally contaminated tubers.  相似文献   

20.
We investigated the combined effects of pressure, temperature, pH, initial spore concentration and the presence of nisin on the survival of spores of Bacillus coagulans. Spores were more sensitive to pressure both at lower pH and at higher treatment temperatures. An additional 1.5-log10 reduction in cfu ml-1 was observed when pH was lowered from 7.0 to 4.0 during pressurization at 400 Mpa and 45°C. A 4-log10 cfu ml-1 reduction was observed when the temperature was increased from 25°C to 70°C during pressurization at 400 Mpa. The spores were sensitive to nisin at concentrations as low as 0.2 IU ml-1. At least a 6-log10 reduction was generally achieved with pressurization at 400 Mpa in pH 4.0 buffer at 70°C for 30 min when plated in nutrient agar containing 0.8 IU ml-1 nisin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号