首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sullivan SM  Holyoak T 《Biochemistry》2007,46(35):10078-10088
The structures of the rat cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK) reported in the PEPCK-Mn2+, -Mn2+-oxaloacetic acid (OAA), -Mn2+-OAA-Mn2+-guanosine-5'-diphosphate (GDP), and -Mn2+-Mn2+-guanosine-5'-tri-phosphate (GTP) complexes provide insight into the mechanism of phosphoryl transfer and decarboxylation mediated by this enzyme. OAA is observed to bind in a number of different orientations coordinating directly to the active site metal. The Mn2+-OAA and Mn2+-OAA-Mn2+GDP structures illustrate inner-sphere coordination of OAA to the manganese ion through the displacement of two of the three water molecules coordinated to the metal in the holo-enzyme by the C3 and C4 carbonyl oxygens. In the PEPCK-Mn2+-OAA complex, an alternate bound conformation of OAA is present. In this conformation, in addition to the previous interactions, the C1 carboxylate is directly coordinated to the active site Mn2+, displacing all of the waters coordinated to the metal in the holo-enzyme. In the PEPCK-Mn2+-GTP structure, the same water molecule displaced by the C1 carboxylate of OAA is displaced by one of the gamma-phosphate oxygens of the triphosphate nucleotide. The structures are consistent with a mechanism of direct in-line phosphoryl transfer, supported by the observed stereochemistry of the reaction. In the catalytically competent binding mode, the C1 carboxylate of OAA is sandwiched between R87 and R405 in an environment that would serve to facilitate decarboxylation. In the reverse reaction, these two arginines would form the CO2 binding site. Comparison of the Mn2+-OAA-Mn2+GDP and Mn2+-Mn2+GTP structures illustrates a marked difference in the bound conformations of the nucleotide substrates in which the GTP nucleotide is bound in a high-energy state resulting from the eclipsing of all three of the phosphoryl groups along the triphosphate chain. This contrasts a previously determined structure of PEPCK in complex with a triphosphate nucleotide analogue in which the analogue mirrors the conformation of GDP as opposed to GTP. Last, the structures illustrate a correlation between conformational changes in the P-loop, the nucleotide binding site, and the active site lid that are important for catalysis.  相似文献   

2.
Gibson LM  Lovelace LL  Lebioda L 《Biochemistry》2008,47(16):4636-4643
Loop 181-197 of human thymidylate synthase (hTS) populates two conformational states. In the first state, Cys195, a residue crucial for catalytic activity, is in the active site (active conformer); in the other conformation, it is about 10 A away, outside the active site (inactive conformer). We have designed and expressed an hTS variant, R163K, in which the inactive conformation is destabilized. The activity of this mutant is 33% higher than that of wt hTS, suggesting that at least one-third of hTS populates the inactive conformer. Crystal structures of R163K in two different crystal forms, with six and two subunits per asymmetric part of the unit cells, have been determined. All subunits of this mutant are in the active conformation while wt hTS crystallizes as the inactive conformer in similar mother liquors. The structures show differences in the environment of catalytic Cys195, which correlate with Cys195 thiol reactivity, as judged by its oxidation state. Calculations show that the molecular electrostatic potential at Cys195 differs between the subunits of the dimer. One of the dimers is asymmetric with a phosphate ion bound in only one of the subunits. In the absence of the phosphate ion, that is in the inhibitor-free enzyme, the tip of loop 47-53 is about 11 A away from the active site.  相似文献   

3.
3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS), the first enzyme of the aromatic biosynthetic pathway in microorganisms and plants, catalyzes the aldol-like condensation of phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) with the formation of DAHP. The native and the selenomethionine-substituted forms of the phenylalanine-regulated isozyme [DAHPS(Phe)] from Escherichia coli were crystallized in complex with PEP and a metal cofactor, Mn(2+), but the crystals displayed disorder in their unit cells, preventing satisfactory refinement. However, the crystal structure of the E24Q mutant form of DAHPS(Phe) in complex with PEP and Mn(2+) has been determined at 1.75 A resolution. Unlike the tetrameric wild-type enzyme, the E24Q enzyme is dimeric in solution, as a result of the mutational perturbation of four intersubunit salt bridges that are critical for tetramer formation. The protein chain conformation and subunit arrangement in the crystals of E24Q and wild-type DAHPS are very similar. However, the interaction of Mn(2+) and PEP in the enzymatically active E24Q mutant complex differs from the Pb(2+)-PEP and Mn(2+)-phosphoglycolate interactions in two enzymatically inactive wild-type complexes whose structures have been determined previously. The geometry of PEP bound in the active site of the E24Q enzyme deviates from planarity due to a 30 degrees twist of the carboxylate plane relative to the enol plane. In addition, seven water molecules are within contact distance of PEP, two of which are close enough to its C2 atom to serve as the nucleophile required in the reaction.  相似文献   

4.
Yeast inorganic pyrophosphatase was found to bind two Mn2+ per subunit in the absence of phosphate and three Mn2+ per subunit in the presence of phosphate. Kinetic studies of the pyrophosphatase-catalyzed hydrolysis of Cr(NH3)4PP and Cr(H2O)4PP were carried out with Mn2+ and with Mg2+ as activators. The results from these studies suggest that three divalent cations per pyrophosphatase active site are required for catalysis. NMR and EPR studies were conducted to evaluate the relative location of the metal ion binding sites on the enzyme. The two Mn2+ ions bound to the free enzyme are in close enough proximity to magnetically interact. Analysis of the NMR and EPR data in terms of a dipolar relaxation mechanism between Mn2+ ions provides an estimate of the distance between them of 10-14 A. When the diamagnetic substrate analog [Co(NH3)4PNP]- or intermediate analog [Co(NH3)4 (P)2]- are bound to pyrophosphatase, two Mn2+ ions still bind to the enzyme and their magnetic interaction increases. In the presence of these Co3+ complexes, the Mn2+--Mn2+ separation decreases to 7-9 A. Several NMR and EPR experiments were conducted at low Mn2+ to pyrophosphatase ratios (approximately 0.3), where only one Mn2+ ion binds per subunit, in the presence of Cr3+ or Co3+ complexes of PNP or PP. Analysis of the Mn2+--Cr3+ dipolar relaxation evident in proton NMR and EPR data provided for the calculation of Mn2+--Cr3+ distances. When the substrate analog CrPNP was present, the Mn2+--Cr3+ distance was congruent to 7 A whereas, when Cr(P)2 was bound to pyrophosphatase, the Mn2+--Cr3+ distance was congruent to 5 A. These results strongly support a model for the catalytic site of pyrophosphatase that involves three metal ion cofactors.  相似文献   

5.
6.
The paramagnetic effect of Mn2+ on the electron paramagnetic resonance spectrum of a nitroxide spin label covalently attached to the active-site serine residue of des-1-41-light chain bovine plasma-activated protein C, and situated at a distance of approximately 1.2 nm from this amino acid, has been utilized to estimate the distance on the enzyme surface between the single Mn2+ site and the free electron of the spin label. This distance has been found to be approx. 1.12 nm. A significant paramagnetic effect of Mn2+ on the spectrum of this same nitroxide spin label bound to activated protein C (APC) has been found. However, in this case distance calculations are complicated by the existence of a multiplicity of Mn2+ sites on APC. If it is assumed that a single Mn2+ site is responsible for the paramagnetic effect on the spectrum of the spin label, the interelectron distance on APC would be approx. 0.90 nm.  相似文献   

7.
The spinach chloroplast ATPase, coupling factor 1, contains three tight Mn2+-binding sites which interact cooperatively. The bound manganese coordinations were studied by x-ray absorption fine structure analysis. Mn2+ was found to be bound to the enzyme with an average Mn-O bond length of 2.15 +/- 0.15 A, significantly shorter than the 2.15 +/- 0.15 A of the Mn-O bond of the average first hydration shell for Mn2+ in aqueous solution. On adding ATP to the manganese-enzyme mixture, a tertiary complex of Mn2+ X ATP X enzyme was formed as indicated by the appearance of a second shell. Mn-P bond distances were estimated at 4.95 +/- 0.15 A in the tertiary Mn2+ X ATP X enzyme complex, which was considerably longer than the Mn-P bond distance of 3.36 +/- 0.15 A for the Mn2+ X ATP complex in aqueous solution. The Mn-P bond distance in the tertiary Mn2+ X ATP X enzyme complex decreased to 4.32 +/- 0.15 A when selenite, a potent effector of ATPase activity, was added. Based on these results, it is suggested that the tertiary complex is required for catalysis. The stimulation of ATP hydrolysis by anions such as selenite may be the result of shortening the distance between Mn2+ and the ATP phosphates in the enzyme active site.  相似文献   

8.
J M Stewart  C M Grisham 《Biochemistry》1988,27(13):4840-4848
1H nuclear magnetic relaxation measurements have been used to determine the three-dimensional conformation of an ATP analogue, Co(NH3)4ATP, at the active site of sheep kidney Na,K-ATPase. Previous studies have shown that Co(NH3)4ATP is a competitive inhibitor with respect to MnATP for the Na,K-ATPase [Klevickis, C., & Grisham, C. M. (1982) Biochemistry 21, 6979; Gantzer, M. L., Klevickis, C., & Grisham, C. M. (1982) Biochemistry 21, 4083] and that Mn2+ bound to a single, high-affinity site on the ATPase can be an effective paramagnetic probe for nuclear relaxation studies of the Na,K-ATPase [O'Connor, S. E., & Grisham, C. M. (1979) Biochemistry 18, 2315]. From the paramagnetic effect of Mn2+ bound to the ATPase on the longitudinal relaxation rates of the protons of Co(NH3)4ATP at the substrate site (at 300 and 361 MHz), Mn-H distances to seven protons on the bound nucleotide were determined. Taken together with previous 31P nuclear relaxation data, these measurements are consistent with a single nucleotide conformation at the active site. The nucleotide adopts a bent configuration, in which the triphosphate chain lies nearly parallel to the adenine moiety. The glycosidic torsion angle is 35 degrees, and the conformation of the ribose ring is slightly N-type (C2'-exo, C3'-endo). The delta and gamma torsional angles in this conformation are 100 degrees and 178 degrees, respectively. The bound Mn2+ lies above and in the plane of the adenine ring. The distances from Mn2+ to N6 and N7 are too large for first coordination sphere complexes but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Transferred nuclear Overhauser effect measurements (in the two-dimensional mode) have been used to determine the three-dimensional conformation of an ATP analogue, Co(NH3)4ATP, at the active site of sheep kidney Na,K-ATPase. Previous studies have shown that Co(NH3)4ATP is a competitive inhibitor with respect to MnATP for the Na,K-ATPase [Klevickis, C., & Grisham, C.M. (1982) Biochemistry 21, 6979. Gantzer, M.L., et al. (1982) Biochemistry 21, 4083]. Nine unique proton-proton distances on ATPase-bound Co(NH3)4ATP were determined from the initial build-up rates of the cross-peaks of the 2D-TRNOE data sets. These distances, taken together with previous 31P and 1H relaxation measurements with paramagnetic probes, are consistent with a single nucleotide conformation at the active site. The bound Co(NH3)4ATP) adopts an anti conformation, with a glycosidic torsion angle of 35 degrees, and the conformation of the ribose ring is slightly N-type (C2'-exo, C3'-endo). The delta and gamma torsional angles in this conformation are 100 degrees and 178 degrees, respectively. The nucleotide adopts a bent configuration, in which the triphosphate chain lies nearly parallel to the adenine moiety. Mn2+ bound to a single, high-affinity site on the ATPase lies above and in the plane of the adenine ring. The distances from enzyme-bound Mn2+ to N6 and N7 are too large for first coordination sphere complexes, but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules. The NMR data also indicate that the structure of the bound ATP analogue is independent of the conformational state of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Adenosine kinase (ADK) catalyzes the phosphorylation of adenosine (Ado) to adenosine monophosphate (AMP). It is part of the purine salvage pathway that has been identified only in eukaryotes, with the single exception of Mycobacterium spp. Whereas it is not clear if Mycobacterium tuberculosis (Mtb) ADK is essential, it has been shown that the enzyme can selectively phosphorylate nucleoside analogs to produce products toxic to the cell. We have determined the crystal structure of Mtb ADK unliganded as well as ligand (Ado) bound at 1.5- and 1.9-A resolution, respectively. The structure of the binary complexes with the inhibitor 2-fluoroadenosine (F-Ado) bound and with the adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP) (non-hydrolyzable ATP analog) bound were also solved at 1.9-A resolution. These four structures indicate that Mtb ADK is a dimer formed by an extended beta sheet. The active site of the unliganded ADK is in an open conformation, and upon Ado binding a lid domain of the protein undergoes a large conformation change to close the active site. In the closed conformation, the lid forms direct interactions with the substrate and residues of the active site. Interestingly, AMP-PCP binding alone was not sufficient to produce the closed state of the enzyme. The binding mode of F-Ado was characterized to illustrate the role of additional non-bonding interactions in Mtb ADK compared with human ADK.  相似文献   

11.
Ramakrishnan B  Boeggeman E  Qasba PK 《Biochemistry》2004,43(39):12513-12522
Beta-1,4-galactosyltransferase (beta4Gal-T1) in the presence of manganese ion transfers galactose from UDP-galactose (UDP-Gal) to N-acetylglucosamine (GlcNAc) that is either free or linked to an oligosaccharide. Crystallographic studies on bovine beta4Gal-T1 have shown that the primary metal binding site is located in the hinge region of a long flexible loop, which upon Mn(2+) and UDP-Gal binding changes from an open to a closed conformation. This conformational change creates an oligosaccharide binding site in the enzyme. Neither UDP nor UDP analogues efficiently induce these conformational changes in the wild-type enzyme, thereby restricting the structural analysis of the acceptor binding site. The binding of Mn(2+) involves an uncommon coordination to the Sdelta atom of Met344; when it is mutated to His, the mutant M344H, in the presence of Mn(2+) and UDP-hexanolamine, readily changes to a closed conformation, facilitating the structural analysis of the enzyme bound with an oligosaccharide acceptor. Although the mutant M344H loses 98% of its Mn(2+)-dependent activity, it exhibits 25% of its activity in the presence of Mg(2+). The crystal structures of M344H-Gal-T1 in complex with either UDP-Gal.Mn(2+) or UDP-Gal.Mg(2+), determined at 2.3 A resolution, show that the mutant enzyme in these complexes is in a closed conformation, and the coordination stereochemistry of Mg(2+) is quite similar to that of Mn(2+). Although either Mn(2+) or Mg(2+), together with UDP-Gal, binds and changes the conformation of the M344H mutant to the closed one, it is the Mg(2+) complex that engages efficiently in catalyses. Thus, this property enabled us to crystallize the M344H mutant for the first time with the acceptor substrate chitobiose in the presence of UDP-hexanolamine and Mn(2+). The crystal structure determined at 2.3 A resolution reveals that the GlcNAc residue at the nonreducing end of chitobiose makes extensive hydrophobic interactions with the highly conserved Tyr286 residue.  相似文献   

12.
D T Lodato  G H Reed 《Biochemistry》1987,26(8):2243-2250
The 2 equiv of divalent cation that are required cofactors for pyruvate kinase reside in sites of different affinities for different species of cation [Baek, Y. H., & Nowak, T. (1982) Arch. Biochem. Biophys. 217, 491-497]. The intrinsic selectivity of the protein-based site for Mn(II) and of the nucleotide-based site for Mg(II) has been exploited in electron paramagnetic resonance (EPR) investigations of ligands for Mn(II) at the protein-based site. Oxalate, a structural analogue of the enolate of pyruvate, has been used as a surrogate for the reactive form of pyruvate in complexes with enzyme, Mn(II), Mg(II), and ATP. Addition of Mg(II) to solutions of enzyme, Mn(II), ATP, and oxalate sharpens the EPR signals for the enzyme-bound Mn(II). Superhyperfine coupling between the unpaired electron spin of Mn(II) and the nuclear spin of 17O, specifically incorporated into oxalate, shows that oxalate is bound at the active site as a bidentate chelate with Mn(II). Coordination of the gamma-phosphate of ATP to this same Mn(II) center is revealed by observation of superhyperfine coupling form 17O regiospecifically incorporated into the gamma-phosphate group of ATP. By contrast, 17O in the alpha-phosphate or in the beta-phosphate groups of ATP does not influence the spectrum. Experiments in 17O-enriched water show that there is also a single water ligand bound to the Mn(II). These data indicate that ATP bridges Mn(II) and Mg(II) at the active site. A close spacing of the two divalent cations is also evident from the occurrence of magnetic interactions for complexes in which 2 equiv of Mn(II) are present at the active site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Pyridoxal 5'-phosphate (pyridoxal-5'-P) has been found to act as a bifunctional reagent during the inactivation of porcine heart cytoplasmic malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37). The biphasic kinetics and X-azolidine-like structure formed were similar to those observed for mitochondrial malate dehydrogenase (Wimmer, M.J., Mo, T., Sawyers, D.L., and Harrison, J.H. (1975) J. Biol. Chem. 250, 710-715). In the cytoplasmic enzyme, however, irreversible inactivation representing X-azolidine formation was found to be the dominant characteristic of the interaction with pyridoxal-5'-P. Spectral evidence indicated that at total inactivation 2 mol of pyridoxal-5'-P were incorporated per mol of enzyme or one pyridoxal-5'-P per enzymatic active site. The presence of NADH protected the enzyme from inactivation suggesting interaction of pyridoxal-5'-P at or near the enzymatic active centers of this enzyme. Fluorometric titrations indicated that pyridoxal-5'-P-inactivated enzyme failed to bind NADH or at least failed to bind NADH in the same fashion as native enzyme.  相似文献   

14.
The mechanism of metabolic energy production by malolactic fermentation in Lactococcus lactis has been investigated. In the presence of L-malate, a proton motive force composed of a membrane potential and pH gradient is generated which has about the same magnitude as the proton motive force generated by the metabolism of a glycolytic substrate. Malolactic fermentation results in the synthesis of ATP which is inhibited by the ionophore nigericin and the F0F1-ATPase inhibitor N,N-dicyclohexylcarbodiimide. Since substrate-level phosphorylation does not occur during malolactic fermentation, the generation of metabolic energy must originate from the uptake of L-malate and/or excretion of L-lactate. The initiation of malolactic fermentation is stimulated by the presence of L-lactate intracellularly, suggesting that L-malate is exchanged for L-lactate. Direct evidence for heterologous L-malate/L-lactate (and homologous L-malate/L-malate) antiport has been obtained with membrane vesicles of an L. lactis mutant deficient in malolactic enzyme. In membrane vesicles fused with liposomes, L-malate efflux and L-malate/L-lactate antiport are stimulated by a membrane potential (inside negative), indicating that net negative charge is moved to the outside in the efflux and antiport reaction. In membrane vesicles fused with liposomes in which cytochrome c oxidase was incorporated as a proton motive force-generating mechanism, transport of L-malate can be driven by a pH gradient alone, i.e., in the absence of L-lactate as countersubstrate. A membrane potential (inside negative) inhibits uptake of L-malate, indicating that L-malate is transported an an electronegative monoanionic species (or dianionic species together with a proton). The experiments described suggest that the generation of metabolic energy during malolactic fermentation arises from electrogenic malate/lactate antiport and electrogenic malate uptake (in combination with outward diffusion of lactic acid), together with proton consumption as result of decarboxylation of L-malate. The net energy gain would be equivalent to one proton translocated form the inside to the outside per L-malate metabolized.  相似文献   

15.
His373 in flavocytochrome b2 has been proposed to act as an active site base during the oxidation of lactate to pyruvate, most likely by removing the lactate hydroxyl proton. The effects of mutating this residue to glutamine have been determined to provide further insight into its role. The kcat and kcat/Klactate values for the mutant protein are 3 to 4 orders of magnitude smaller than the wild-type values, consistent with a critical role for His373. Similar effects are seen when the mutation is incorporated into the isolated flavin domain of the enzyme, narrowing the effects to lactate oxidation rather than subsequent electron transfers. The decrease of 3500-fold in the rate constant for reduction of the enzyme-bound FMN by lactate confirms this part of the reaction as that most effected by the mutation. The primary deuterium and solvent kinetic isotope effects for the mutant enzyme are significantly smaller than the wild-type values, establishing that bond cleavage steps are less rate-limiting in H373Q flavocytochrome b2 than in the wild-type enzyme. The structure of the mutant enzyme with pyruvate bound, determined at 2.8 A, provides a rationale for these effects. The orientation of pyruvate in the active site is altered from that seen in the wild-type enzyme. In addition, the active site residues Arg289, Asp 292, and Leu 286 have altered positions in the mutant protein. The combination of an altered active site and the small kinetic isotope effects is consistent with the slowest step in turnover being a conformational change involving a conformation in which lactate is bound unproductively.  相似文献   

16.
1. Mitochondria isolated from abdomen muscle of crayfish Orconectes limosus exhibit malic enzyme activity in the presence of L-malate, NADP and Mn2+ ions after addition of Triton X-100. Under optimal conditions about 230 nmole of reduced NADP and an equivalent amount of pyruvate are produced per min per mg of mitochondrial protein. 2. The pH optimum for decarboxylation of L-malate is about 7.5. 3. The apparent Km for L-malate, NADP and Mn2+ ions was found to be 0.66, 0.012, and 0.0025 mM, respectively. 4. The requirement for Mn2+ can be replaced by Mg2+, Co2+ and Ni2+ ions; however, higher concentrations of these ions than Mn2+ are required for a full stimulation of malic enzyme activity. 5. Oxaloacetate and pyruvate inhibited the enzyme activity in a competitive manner with apparent Ki values of 0.05 mM and 5.4 mM, respectively.  相似文献   

17.
In D(2)O, scytalone exchanges its two C2 hydrogen atoms for deuterium atoms at different rates. At pD 7.0 and 25 degrees C, half-lives for the exchanges are 0.8 and 10 days for the pro-S and pro-R hydrogens, respectively. The differential exchange rates allow for the preparation of multiple scytalone samples (through incubation of scytalone in D(2)O and then back exchanging with H(2)O) having differential levels of deuterium enrichment at the C2 pro-S and pro-R positions. From these samples, the stereochemical preference for hydrogen abstraction during the dehydration reaction mediated by the enzyme scytalone dehydratase was determined. At pH 7. 0, deuterium at the pro-S position has little effect on enzyme catalysis, whereas deuterium at the pro-R position produces kinetic isotope effects of 2.3 (25 degrees C), 5.1 (25 degrees C), and 6.7 (6.8 degrees C) on k(cat), k(cat)/K(m), and the single-turnover rate, respectively. The results are fully consistent with the enzyme catalyzing a syn elimination through an E1cb-like mechanism. The syn elimination is compatible with the interactions realized between a scytalone boat conformation and key active site residues as modeled from multiple X-ray crystal structures of the enzyme in complexes with inhibitors.  相似文献   

18.
Phosphonoacetaldehyde hydrolase (phosphonatase) from Bacillus cereus catalyzes hydrolytic P-C bond cleavage of phosphonoacetaldehyde (Pald) via a Schiff base intermediate formed with Lys53. A single turnover requires binding of Pald to the active site of the core domain, closure of the cap domain containing the Lys53 over the core domain, and dissociation of the products following catalysis. The ligand binding and dissociation steps occur from the "open conformer" (domains are separated and the active site is solvent-exposed), while catalysis occurs from the "closed conformer" (domains are bound together and the active site is sequestered from solvent). To test the hypothesis that bound substrate stabilizes the closed conformer, thus facilitating catalysis, the rates of chemical modification of Lys53 in the presence and absence of inert substrate and/or product analogues were compared. Acetylation of Lys53 with 2,4-dinitrophenylacetate (DNPA) resulted in the loss of enzyme activity. The pseudo-first-order rate constant for inactivation varied with pH. The pH profile of inactivation is consistent with a pK(a) of 9.3 for Lys53. The inhibitors tungstate and vinyl sulfonate, which are known to bind to active site residues comprising the core domain, protected Lys53 from acetylation. These results are consistent with a dynamic equilibrium between the open and closed conformations of phosphonatase and the hypothesis that ligand binding stabilizes the closed conformation required for catalytic turnover.  相似文献   

19.
The preferred conformations of β-phenylpropionyl-l-phenylalanine (β-PPP) and N-carbobenzoxy-l-phenylalanine (Cbz-Phe), two inhibitors of thermolysin, have been determined by computing potential energy using empirial potential energy functions. Of the 15 to 20 conformations that are favoured for each of these inhibitors only a few have the right conformation to reach the active site of the enzyme. The conformer of β-PPP that initiates binding with the enzyme is different from the bound one, while for Cbz-Phe the bound and initiating conformers are quite similar. Thus, β-PPP favours the ‘induced fit’ model while Cbz-Phe follows the ‘lock and key’ model of binding. The inhibitors differ in their alignment at the active site.  相似文献   

20.
Aminoglycoside nucleotidyltransferase (2')-Ia [ANT (2')-Ia] was cloned from Pseudomonas aeruginosa and purified from overexpressing Escherichia coli BL21(DE3) cells. The first enzyme-bound conformation of an aminoglycoside antibiotic in the active site of an aminoglycoside nucleotidyltransferase was determined using the purified aminoglycoside nucleotidyltransferase (2' ')-Ia. The conformation of the aminoglycoside antibiotic isepamicin, a psuedo-trisaccharide, bound to aminoglycoside nucleotidyltransferase (2' ')-Ia has been determined using NMR spectroscopy. Molecular modeling, employing experimentally determined interproton distances, resulted in two different enzyme-bound conformations (conformer 1 and conformer 2) of isepamicin. Conformer 1 was by far the major conformer defined by the following average glycosidic dihedral angles: PhiBC = -65.26 +/- 1.63 degrees and PsiBC = -54.76 +/- 4.64 degrees. Conformer 1 was further subdivided into one major (conformer 1a) and two minor components (conformers 1b and 1c) based on the comparison of glycosidic dihedral angles PhiAB and PsiAB. The arrangement of substrates in the enzyme.metal-ATP.isepamicin complex was determined on the basis of the measured effect of the paramagnetic substrate analogue Cr(H2O)4ATP on the relaxation rates of substrate protons which were used to determine relative distances of isepamicin protons to the Cr3+. Both conformers of isepamicin yielded arrangements that satisfied the NOE restraints and the observed paramagnetic effects of Cr(H2O)4ATP. It has been suggested that aminoglycosides use both electrostatic interactions and hydrogen bonds in binding to RNA and that the contacts made by the A and B rings to RNA are the most important for binding [Fourmy, D., Recht, M. I., Blanchard, S. C., and Puglisi, J. D. (1996) Science 274, 1367-1371]. Comparisons based on the determined conformations of enzyme-bound aminoglycoside antibiotics also suggested that interactions of rings A and B with enzymes may be the major determinant in aminoglycoside binding to enzymes [Serpersu, E. H., Cox, J. R., DiGiammarino, E. L., Mohler, M. L., Ekman, D. R., Akal-Strader, A., and Owston, M. (2000) Cell Biochem. Biophys. (in press)]. The conformation of isepamicin bound to the aminoglycoside nucleotidyltransferase (2' ')-Ia, determined in this work, lent further support to this theory. Furthermore, comparison of enzyme-bound conformations of isepamicin to the RNA-bound conformation of gentamycin C1a also showed remarkable similarities between the enzyme-bound and RNA-bound aminoglycoside antibiotic conformations. These studies should aid in the design of effective inhibitors possessing a broad range of aminoglycoside-modifying enzymes as targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号