首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gynodioecious populations consist of separate hermaphroditic and female individuals. Females are at a selective disadvantage because they contribute genes to the next generation only through ovules, while hermaphrodites contribute genes through ovules and pollen. For females to be maintained in populations they must have some compensating selective advantage. The outcrossing hypothesis postulates that females are maintained because their progeny result from obligate outcrossing, whereas some of the progeny of hermaphrodites result from self-fertilization and are less fit because of inbreeding depression. If correct, the frequency of females should be positively correlated with selfing rates of hermaphrodites in populations. We found a strong positive correlation between female frequency and selfing rates of hermaphrodites (r = 0.91, P < 0.01) in eight gynodioecious populations of Hawaiian species of Bidens. Our results confirm that the obligate outcrossing of females is a major factor maintaining females in gynodioecious populations. However, the observed selfing rates are insufficient by themselves to account for the frequency of females in these populations.  相似文献   

2.
Multilocus outcrossing rates were estimated in natural and experimental populations of Salvia pratensis, an entomophilous, gynodioecious, protandrous perennial. Male steriles were used to check the estimation procedure of outcrossing rates in hermaphrodites. Estimates of outcrossing rates in hermaphroditic plants ranged from 38.2% to 81.8% in natural populations and from 71.5% to 95.5% in experimental populations. No correlations were found between outcrossing rates and population size. However, outcrossing in hermaphrodites was promoted by high plant densities and low frequencies of male steriles. It is argued that effective management to preserve genetic variation in populations of S. pratensis should provide for the maintenance of high plant densities.  相似文献   

3.
Floral features related to the breeding system were studied for 11 species of Hawaiian Bidens. Protandry and male sterility promote outcrossing, while self-compatibility and geitonogamy contribute to inbreeding. The combination of these floral mechanisms results in a mixed mating system in all species studied. Outcrossing rates of 15 populations of these species ranged from 0.43 to 0.88, averaging 0.65. Apparent selling rates of females ranged from 0 to 0.25 in seven gynodioecious populations surveyed, suggesting that there is variation in the level of biparental inbreeding among populations. The presence of females increased the level of outcrossing by an average of 9% in gynodioecious populations. This study indicates that the efficiency of gynodioecy as an outcrossing mechanism largely depends on the current outcrossing rate of hermaphrodites, the frequency of females, and the extent of genetic substructuring in populations. On average, autogamy contributed 4%, geitonogamy contributed 24%, and consanguineous mating contributed 15% to the realized selfing rate (43%) in the hermaphrodites of these species.  相似文献   

4.
In gynodioecious plants the selective processes that determine the relative number of female and hermaphroditic individuals are often frequency dependent. Frequency-dependent fitness can occur in the two sexes through a variety of mechanisms, especially given pollen limitation and inbreeding depression when hermaphrodites are rare. Frequency dependence in several components of the fitness of female and hermaphroditic Silene vulgaris was tested in experiments in which the relative numbers of the two sexes was varied among 12 artificial populations. In females, the proportion of flowers that set fruit covaried positively among populations with the frequency of hermaphrodites in two separate experiments, whereas the number of flowers/plant covaried negatively in one case. In hermaphrodites, the number of seeds/fruit covaried positively with the frequency of hermaphrodites, whereas the fitness of hermaphrodites estimated through pollen transfer covaried negatively. The results are discussed as they relate to the selective maintenance of gynodioecy in S. vulgaris and in light of a recent model of the effect of population structure on selection in gynodioecious systems.  相似文献   

5.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

6.
The aim of this study was to determine and compare the mating systems among Psychotria tenuinervis populations at anthropogenic edges, natural edges, and the forest interior using allozyme electrophoresis of naturally pollinated progeny arrays. P. tenuinervis showed low outcrossing rates, varying from 37% to 50% of the mating attributable to outcrossing and 50% to 63% attributable to self-fertilization, in the three habitats. The forest interior had the highest outcrossing rate (t m = 0.50 and t s = 0.43) among the three habitats. However, there were no differences in either multilocus or single-locus rates among the three habitats, indicating that the contribution of biparental inbreeding to the apparent selfing rate in these populations was very low. The multilocus (t m) and single-locus (t s) outcrossing rates for the P. tenuinervis in the sample plots within each habitat showed great heterogeneity. In conclusion, edge creation seems not to influence its mating systems. Additionally, although P. tenuinervis is a distylous species, the population’s inbreeding can be attributed almost entirely to self-fertilization.  相似文献   

7.
 To evaluate how environmental and genetic factors influence mating-system evolution, accurate estimates of outcrossing rates of individual plants (families) are required. Using isozyme markers, we observed wide variation in family outcrossing rates in three natural populations of Asclepias incarnata using three statistical methods: (1) a multilocus maximum-likelihood procedure (t m); (2) a multilocus method-of-moments procedure (t a); and (3) a direct comparison of progeny phenotypes against maternal phenotypes (t d). Neighborhood floral-display size was positively correlated with t a in one population, but showed no relationship with any of the other estimates of outcrossing for any population. Monte-Carlo simulations revealed that statistical variation associated with these estimation procedures can be large enough to explain all of the observed variation in outcrossing. We also found that significant, spurious correlations with neighborhood floral display could arise, on average, 7% of the time by chance alone. Our observations suggest that it is difficult to obtain accurate estimates of outcrossing in naturally pollinated plants using the estimation procedures currently available. Moreover, we caution that attempts to interpret observed variation in family outcrossing estimates by observing variation in ecological parameters could be misleading. Received: 28 September 1998 / Accepted: 27 October 1998  相似文献   

8.
Progeny arrays of Ocotea tenera (Lauraceae), a gynodioecious tree endemic to Costa Rica, were electrophoretically surveyed for allozyme variation to estimate the outcrossing rate in the overall population and to test for differences in outcrossing rates between hermaphroditic and female trees. Multilocus outcrossing rate estimates across 3 yr indicated O. tenera predominantly outcrosses. However, significant heterogeneity in single-locus outcrossing rates was found among loci. Two loci (Fe1, Fe2) gave high outcrossing estimates, and a third locus (Gdh) gave much lower outcrossing estimates. Heterogeneity in Gdh pollen allele frequencies, consanguineous matings, and selection against homozygous zygote genotypes at the Fe1 and Fe2 loci are factors contributing to the discrepancy in outcrossing rate estimates among loci. There were no differences in the mating systems of hermaphroditic and female trees, which suggests that factors beyond prevention of self-fertilization may have also promoted the evolution of gynodioecy in O. tenera.  相似文献   

9.
Outcrossing rates were estimated in both natural and experimental populations of Scabiosa columbaria, a self-compatible, entomophilous, gynodioecious, protandrous perennial. In natural populations, estimates of the outcrossing rate in hermaphrodites were near to one and ranged from 0.84 ± 0.07 to 1.12 ± 0.11. The effect of plant density on outcrossing rates was studied in two experimental populations of 27 individuals. Contrary to expectation the estimates of the outcrossing rate in hermaphrodites were about 100% for both densities. However, in the sparse population, the fraction of developed seeds of plants used to estimate outcrossing rates was significantly lower than of plants in the dense population (0.41 ± 0.06 and 0.68 ± 0.08, respectively). Artificial pollinations of these plants in the greenhouse showed that the fraction of developed seeds was 0.60 ± 0.01 and 0.83 ± 0.05 after self- and cross-pollination, respectively. The combined results suggested that the differential success of self- and cross-pollination might have caused equalization of the outcrossing rates in the experimental populations, despite different plant densities. The implications of the results for conservation biology are discussed.  相似文献   

10.
The influence of outcrossing and pollination biology on the maintenance of hermaphroditism was studied for Schiedea lydgatei (Caryophyllaceae: Alsinoideae), a species endemic to Moloka`i in the Hawaiian Islands. Schiedea lydgatei is the only hermaphroditic species in an otherwise dimorphic clade and hermaphroditism is likely the result of a reversal from a gynodioecious ancestor. Both wind and native moths in the family Pyralidae are responsible for pollination in S. lydgatei. Outcrossing rates were generally high (0.80), especially in years when the greatest number of plants were flowering. The combination of high outcrossing rates and substantial inbreeding depression indicates that at present females would not be favored in the population. Pollination by both wind and insects is consistent with the hypothesis that hermaphroditism is the result of a relatively recent reversal, as the ancestor of S. lydgatei was probably wind pollinated and gynodioecious with few females in the populations. A shift from wind to predominately insect pollination on Moloka`i may have resulted in increased outcrossing rates and prevented the expression of high inbreeding depression among progeny of hermaphrodites, a condition that would select against females and favor a reversal to hermaphroditism. Because few females were likely to have been present in ancestral populations that colonized Moloka`i, founder effect is another potential explanation for loss of females. In either case, current high levels of outcrossing prevent re-establishment of females in populations of S. lydgatei.  相似文献   

11.
Widén B  Widén M 《Oecologia》1990,83(2):191-196
Summary Pollen movement is often restricted in natural populations, and insufficient pollination is a potential constraint on sexual reproduction in outcrossing species. Seed-set should decrease with increased distance from the pollen source in outcrossing plants. This prediction was tested using females of the clonal, gynodioecious herb Glechoma hederacea in three natural populations. In controlled pollinations, both hermaphrodites and females had similar high percentages of fruit-set and seed-set. In a natural population where a female clone was isolated from the nearest hermaphroditic clone by c. 100 m, fruit-set was low (1%). In another population where hemaphroditic clones were rare and female clones had a patchy distribution, fruit-and seed-set in females were pollen-limited and decreased with increased distance from the nearest pollen source. The estimated mean pollen dispersal distance was 5.9 m when calculated on fruit-set and 5.3 m when calculated on seed-set. The most frequent pollinators were bumblebees. The mean and median distances moved by pollinators between ramets were 0.13 m and 0.05 m. In a third population where female clones were isolated from the nearest hermaphrodites by more than 200 m, fruit-set was 0%. After introduction of 16 hermaphroditic ramets in the center of the female clone, fruit-set varied between 0% and 100% in individual female ramets. Fruit-set decreased with increased distance from the pollen source. The mean and median pollen movement distances were 1.06 m and 0.54 m.  相似文献   

12.
Although in gynodioecious populations male steriles require a fecundity advantage to compensate for their gametic disadvantage, southern Spanish populations of the long-lived shrub Daphne laureola do not show any fecundity advantage over hermaphrodites in terms of seed production and early seedling establishment. By using allozyme markers, we assess the mating system of this species in five populations differing in sex ratio, and infer levels of inbreeding depression over the whole life cycle by comparing the inbreeding coefficients at the seed and adult plant stages. Extremely low outcrossing rates (0.001相似文献   

13.
Five allozyme polymorphisms were used to analyze the mating system in a Sitka spruce seed orchard in Saanichton, British Columbia. Allelic frequencies differed between the pollen and maternal pools at three of the five loci, with alleles rare in the maternal pool being even rarer in the effective pollen pool. Minor differences in pollen allelic frequencies were observed in the upper vs. lower crown. The multilocus outcrossing rate of the upper crown (tm = 0.909) exceeded that of the lower crown (tm = 0.764). Single-locus estimates of the outcrossing rate were significantly heterogeneous, with the lowest estimate of outcrossing, t = 0.773, observed for PGM-2 locus. Analyses of the mating system for the three maternal PGM-2 genotypes revealed heterogeneous pollen allelic frequencies and heterogeneous outcrossing rates, possibly due to assortative mating at this locus.  相似文献   

14.
There has been very little empirical study of quantitative genetic variation in flower size in sexually dimorphic plant species, despite the frequent occurrence of flower size differences between sexual phenotypes. In this study we quantify the nature of quantitative flower size variation in females and hermaphrodites of gynodioecious Thymus vulgaris. In a field study, females had significantly smaller flowers than hermaphrodites, and the degree of flower size dimorphism varied significantly among populations. To quantify the genetic basis of flower size variation we sampled maternal progeny from 10 F0 females in three populations (across the range of variation in flower size in the field), performed controlled crosses on F1 offspring in the glasshouse and grew F2 progeny to flowering in uniform field conditions. A significant population * sex interaction was again observed, hence the degree of sexual dimorphism shows genetic variation among populations. A significant family * sex interaction was also observed, indicating that the degree of sexual dimorphism shows genetic variation among families. Females showed significantly greater variation among populations and among families than hermaphrodites. Female flower size varied significantly depending on the degree of stamen abortion, with morphologically intermediate females having flowers more similar to hermaphrodites than to other females. The frequency of female types that differ in the degree of stamen abortion varied among populations and families and mean family female flower size increased as the proportion of intermediate female types increased across families. Variation in the degree of flower size dimorphism thus appears to be a result of variation in the degree of stamen abortion in females, the potential causes of which are discussed.  相似文献   

15.
Summary Outcrossing rates were estimated in three populations of the gynodioecious species Plantago coronopus by means of electrophoresis of adult plants and their natural progenies. A multilocus estimation procedure was used. Heterogeneity among the pollen-pool allele frequencies did not exist either in space of in time. Differences between populations in mean outcrossing rates were large (range: 0.34–0.93), probably caused by differences in densities of flowering plants. In addition, there was considerable variability between individuals, which was at least partly caused by the presence of male sterility. Population density may, via its influence on outcrossing rates, be a factor influencing the maintenance of male sterile plants in the population. The level of outcrossing in hermaphrodites was not low enough to explain the maintenance of male steriles. Outcrossing rates in two populations, established via progeny analysis, were much lower than calculated with the fixation index, possibly indicating heterozygote advantage in these natural populations.Grassland Species Research Group Publication no. 134  相似文献   

16.
The mating system and allozyme variation at 20 loci in three Klamath Mountains and two Sierra Nevada populations of Jeffrey pine (Pinus jeffreyi Grev. & Balf.) were investigated. On average, multilocus estimates of the proportion of viable progeny due to outcrossing (tm) were high in all populations (mean tm = 0.935, range 0.881 to 0.971). Despite differences in stand structure, tm did not differ (P > 0.05) between the Klamath (mean tm = 0.933) and Sierra Nevada (mean tm = 0.937) populations. At all but one locus in one population and at two in another, genotype frequencies fit (P > 0.05) Hardy-Weinberg expectations. Mean estimates of observed heterozygosity in Klamath (0.182) and Sierra Nevada (0.327) populations were comparable to values reported for other conifers.  相似文献   

17.
In gynodioecious species, females coexist with hermaphrodites in natural populations even though hermaphrodites attract more pollinators, are capable of reproducing through pollen, and can self-fertilize. This study tests the hypothesis that inbreeding depression helps to maintain females in natural populations. It also examines whether gender lineages that differ in selfing rates might experience different levels of inbreeding depression. Female and hermaphroditic lineages of the gynodioecious species Geranium maculatum were used in self, sib-cross and outcross experiments to examine inbreeding depression levels and to determine whether these levels differ between hermaphroditic and female lineages. Six fitness correlates were measured in the greenhouse and compared among pollination types and between genders. Severe inbreeding depression was found for both individual fitness traits and cumulative fitness in early life history stages. Inbreeding depression levels were slightly higher in hermaphroditic than in female lineages, but this difference was not statistically significant. Because females are unable to self-pollinate and are less likely to experience inbreeding than hermaphrodites under natural conditions, these results suggest that severe inbreeding depression could confer a selective advantage for females that could help to maintain females in natural populations.  相似文献   

18.
 A valuable approach to understanding the evolution of gender dimorphism involves studies of single species that exhibit intraspecific variation in sexual systems. Here we survey sex ratios in 35 populations of Wurmbea biglandulosa, previously described as hermaphroditic. We found pronounced intraspecific variation in sexual systems; populations in the northeastern part of the species' range were hermaphroditic, whereas other populations were gynodioecious and contained 2–44% females. Populations with lower annual rainfall were more likely to be gynodioecious, supporting the view that gender dimorphism evolves more frequently in harsher environments. In gynodioecious populations, however, female frequency was not related to either annual rainfall or habitat, indicating that other factors are important in determining sex ratio variation. Females had smaller flowers and shorter stems than did hermaphrodites, potentially providing a basis for resource compensation. A female fecundity advantage may contribute to the maintenance of females in populations because females produced more ovuliferous flowers and had more ovules per flower than did hermaphrodites. Received March 2, 2001 Accepted February 25, 2002  相似文献   

19.
The objectives of this study were to estimate the outcrossing rate and to explain genetic consequences of the development of seed in the endocarp in a natural population of neem in Bangladesh. Cotyledons of germinated open-pollinated seeds of individual trees were analyzed by starch-gel electrophoresis to examine allozymes. Three loci with clear Mendelian segregation were used to estimate outcrossing rate. A multilocus mixed mating model was used to evaluate the mating system. The population exhibited high outcrossing rates both for multilocus (tm=0.90±0.024) and mean single-locus (ts=0.92±0.020) estimates. The difference between these two parameters (tm–ts=0±SE 0.038) was insignificant, indicating that there was no ’biparental inbreeding’ in the population. The degree of variance of the estimates of multilocus outcrossing rates decreased when two or more loci were included. In order to elucidate the significance of polycarpy a total of 471 seeds were counted out of 440 endocarps. This mechanism appears to be a possible way of avoiding inbreeding. The results indicated that the studied neem population was predominantly allogamous. Received: 10 January 1999 / Accepted: 10 April 1999  相似文献   

20.
Many plants combine sexual reproduction with some form of asexual reproduction to different degrees, and lower genetic diversity is expected with asexuality. Moreover, the ratios of sexual morphs in species with gender dimorphism are expected to vary in proportion to the reproductive success of the sexual process. Hence, sex ratios can directly influence the genetic structure and diversity of a population. We investigated genotypic diversity in 23 populations of a facultative, apomictic gynodioecious orchid, Satyrium ciliatum, to examine the effect on genotypic diversity of variation in the frequency of females and in the amount of sexual reproduction. The study involved one pure female, seven gynodioecious (both females and hermaphrodites present) and 15 hermaphroditic populations. Pollinia receipt was higher in hermaphroditic than in gynodioecious populations. Analyses of variation in ISSRs demonstrated that genotypic diversity was high in all populations and was not significantly different between hermaphroditic and gynodioecious populations. We used character compatibility analysis to determine the extent to which recombination by sexual reproduction contributed to genotypic diversity. The results indicate that the contribution of recombination to genotypic diversity is higher in hermaphroditic than in gynodioecious populations, consistent with the finding that hermaphroditic populations received higher amounts of pollinia. Our finding of reduced recombination in gynodioecious populations suggests that maintenance of sex in hermaphrodites plays an important role in generating genotypic diversity in this apomictic orchid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号