首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have compared the intracellular localization of catalase and another peroxisomal marker enzyme, alpha-hydroxy acid oxidase (HAOX), in the livers of guinea pig and rat using immunoelectron microscopy and subcellular fractionation combined with immunoblotting and enzyme activity determination. Antibodies against both enzymes were raised in rabbits and their specificities established by immunoblotting. By immunoelectron microscopy, gold particles representing antigenic sites for catalase were found in guinea pig hepatocytes not only in peroxisomes but also in the cytoplasm and the nuclear matrix. In rat liver, however, catalase was localized exclusively in peroxisomes with no cytoplasmic labeling. Moreover, in both species HAOX was found only in peroxisomes. Subcellular fractionation revealed that purified peroxisomes from both species contained comparable levels of each, catalase and HAOX activities. The total catalase activity, however, was substantially higher in guinea pig and most of this excess catalase was in the cytosolic fraction with some activity also in nuclei. In rat liver, 30 to 40% of both enzymes and in guinea pig liver 30% of HAOX were recovered in the supernatant fraction implying that the fragility of peroxisomes in both species is quite comparable. These observations establish the occurrence of extraperoxisomal catalase in guinea pig liver. The catalase in the cytoplasm and nucleus of liver parenchymal cells is most probably involved in scavenging of H2O2, protecting the cell against toxic and mutagenic effects of this noxious agent.  相似文献   

2.
Cytoskeleton alterations of NIH/3T3 fibroblast monolayers transfected with Ha-ras-activated oncogene were studied by immunofluorescence, immunoelectron microscopy, and immunoelectrophoretic analysis of actin isoforms. Transformation foci were found to consist of cells with a round shape and rare stress fibers that spread sparsely, forming rare focal contacts and fibronexuses. The loss of stress fibers in transformed cells was confirmed by staining with rhodamine-phalloidin and with a fluorescinated anti-non-muscle cell actin antibody. The transformed cells were anchored to the substrate prominently by filaments that contained fibronectin, as showed by immunoelectron microscopy. A down-regulation of alpha-actin isoform was observed by immunofluorescence and immunoblotting analysis using a specific monoclonal antibody. The diffuse distribution of alpha-actin, lacking a specific association with stress fibers, challenges the hypothesis of a connection between alpha-actin down-regulation and stress fiber loss.  相似文献   

3.
Pancreatic beta cells are sensitive to reactive oxygen species and this may play an important role in type 1 diabetes and during transplantation. Beta cells contain low levels of enzyme systems that protect against reactive oxygen species. The weakest link in their protection system is a deficiency in the ability to detoxify hydrogen peroxide by the enzymes glutathione peroxidase and catalase. We hypothesize that the deficit in the ability to dispose of reactive oxygen species is responsible for the unusual sensitivity of beta cells and that increasing protection will result in more resistant beta cells. To test these hypotheses we have produced transgenic mice with increased beta cell levels of catalase. Seven lines of catalase transgenic mice were produced using the insulin promoter to direct pancreatic beta cell specific expression. Catalase activity in islets from these mice was increased by as much as 50-fold. Northern blot analysis of several tissues indicated that overexpression was specific to the pancreatic islet. Catalase overexpression had no detrimental effects on islet function. To test whether increased catalase activity could protect the transgenic islets we exposed them to hydrogen peroxide, streptozocin, and interleukin-1beta. Fifty-fold overexpression of catalase produced marked protection of islet insulin secretion against hydrogen peroxide and significantly reduced the diabetogenic effect of streptozocin in vivo. However, catalase overexpression did not provide protection against interleukin-1beta toxicity and did not alter the effects of syngeneic and allogenic transplantation on islet insulin content. Our results indicate that in the pancreatic beta cell overexpression of catalase is protective against some beta cell toxins and is compatible with normal function.  相似文献   

4.
The role of catalase in hydrogen peroxide resistance in Schizosaccharomyces pombe was investigated. A catalase gene disruptant completely lacking catalase activity is more sensitive to hydrogen peroxide than the parent strain. The mutant does not acquire hydrogen peroxide resistance by osmotic stress, a treatment that induces catalase activity in the wild-type cells. The growth rate of the disruptant is not different from that of the parent strain. Additionally, transformed cells that overexpress the catalase activity are more resistant to hydrogen peroxide than wildtype cells with normal catalase activity. These results indicate that the catalase of S. pombe plays an important role in resistance to high concentrations of hydrogen peroxide but offers little in the way of protection from the hydrogen peroxide generated in small amounts under normal growth conditions.  相似文献   

5.
Oxidants such as H(2)O(2) play a role in the toxicity of certain DNA-damaging agents, a process that often involves the tumor suppressor p53. H(2)O(2) is rapidly degraded by catalase, which protects cells against oxidant injury. To study the effect of catalase on apoptosis induced by DNA-damaging agents, HepG2 cells were infected with adenovirus containing the cDNA of catalase (Ad-Cat). Forty-eight hours after infection, catalase protein and activity was increased 7-10-fold compared with control cells infected with Ad-LacZ. After treatment with Vp16 or mitomycin C, control cells underwent apoptosis in a p53-dependent manner; however, overexpression of catalase inhibited this apoptosis. Basal levels as well as Vp16- or mitomycin C-stimulated levels of p53 and p21 protein were decreased in the catalase-overexpressing cells as compared with control cells; however, p53 mRNA levels were not decreased by catalase. There was no difference in p53 protein synthesis between catalase-overexpressing cells and control cells. However, pulse-chase experiments indicated that p53 protein degradation was enhanced in the catalase-overexpressing cells. Proteasome inhibitors but not calpeptin prevented the catalase-mediated decrease of p53 content. Whereas Vp16 increased, catalase overexpression decreased the phosphorylation of p53. The protein phosphatase inhibitor okadaic acid did not prevent the catalase-mediated down-regulation of p53 or phosphorylated p53. These results demonstrate that catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents in association with decreasing p53 phosphorylation; the latter may lead to an acceleration in the degradation of p53 protein by the proteasome complex. This suggests that the level of catalase may play a critical role in cell-induced resistance to the effects of anti-cancer drugs which up-regulate p53.  相似文献   

6.
Quantitative immunoelectron microscopy in conjunction with quantitative analysis of immunoblots have been used to study the effects of bezafibrate (BF), a peroxisome-proliferating hypolipidemic drug, upon six different enzyme proteins in rat liver peroxisomes (Po). Antibodies against following peroxisomal enzymes: catalase, urate oxidase, alpha-hydroxy acid oxidase, acyl-CoA oxidase, bifunctional enzyme (hydratase-dehydrogenase) and thiolase, were raised in rabbits, and their monospecificities were confirmed by immunoblotting. Female Sprague-Dawley rats were treated for 7 days with 250 mg/kg/day bezafibrate and liver sections were incubated with the appropriate antibodies followed by the protein A-gold complex. The labeling density for each enzyme was estimated by automatic image analysis. In parallel experiments immunoblots prepared from highly purified peroxisome fractions of normal and BF-treated rats were incubated with the same antibodies. The antigens were visualized by an improved protein A-gold method including an anti-protein A step and silver amplification. The immunoblots were also quantitated by an image analyzer. The results revealed a selective induction of beta-oxidation enzymes by bezafibrate with thiolase showing the most increase followed by bifunctional protein and acyl-CoA oxidase. The labeling density for catalase and alpha-hydroxy acid oxidase was reduced, confirming fully the quantitative analysis of immunoblots which in addition revealed reduction of uricase. These observations demonstrate that hypolipidemic drugs induce selectively the beta-oxidation enzymes while other peroxisomal enzymes are reduced. The quantitative immunoelectron microscopy with automatic image analysis provides a versatile, highly sensitive and efficient method for rapid detection of modulations of individual proteins in peroxisomes.  相似文献   

7.
The morphogenesis and movement of bile canaliculi (BC) are not well understood. This is because culture of hepatocytes that maintain polarity of cell membranes and possess highly differentiated functions has never been successful. We found that small hepatocytes (SHs), which are known to be hepatic progenitor cells, could proliferate and differentiate into mature hepatocytes and that BC-like structures developed between rising/piled-up cells. We investigated how BC-like structures developed with maturation of SHs and whether the structures were functionally active as BC. Hepatic cells, including SHs, were isolated from an adult rat liver and cultured. Immunocytochemistry and immunoblotting for BC proteins, such as ectoATPase, 5'-nucleotidase, dipeptidylpeptidase IV, and multidrug-resistance associated protein 2, were examined and time-lapse microscopy was used for the observation of BC contractions. Secretion of bilirubin into the reconstructed BC was also observed. The results of immunocytochemistry, immunoblots, and immunoelectron micrographs revealed that BC proteins were localized in the intercellular space that coincided with BC-like structures reconstructed between rising/piled-up cells. Tight junction-associated protein ZO-1 was also expressed along the BC-like structures. Bilirubin added to the medium were secreted into BC-like structure and accumulated without leakage. Time-lapse microscopy showed continuous contractions of reconstructed BC. In conclusion, BC-like structures reconstructed by SHs may be functional with membrane polarity, secretory ability, and motility. These results show that this culture system may suitable for investigating the mechanism of the formation of BC and their functions.  相似文献   

8.
A number of structurally unrelated hypolipidaemic agents and certain phthalate-ester plasticizers induce hepatomegaly and proliferation of peroxisomes in rodent liver, but there is relatively limited data regarding the specific effects of these drugs on liver non-parenchymal cells. In the present study, liver parenchymal, Kupffer and endothelial cells from untreated and fenofibrate-fed rats were isolated and the activities of two enzymes associated with peroxisomes (catalase and the peroxisomal fatty acid beta-oxidation system) as well as cytosolic and microsomal epoxide hydrolase were measured. Microsomal epoxide hydrolase, cytosolic epoxide hydrolase and catalase activities were 7-12-fold higher in parenchymal cells than in Kupffer or endothelial cells from untreated rats; the peroxisomal fatty acid beta-oxidation activity was only detected in parenchymal cells. Fenofibrate increased catalase, cytosolic epoxide hydrolase and peroxisomal fatty acid beta-oxidation activities in parenchymal cells by about 1.5-, 3.5- and 20-fold, respectively. The induction of catalase (2-3-fold) and cytosolic epoxide hydrolase (3-5-fold) was also observed in Kupffer and endothelial cells; furthermore, a low peroxisomal fatty acid beta-oxidation activity was detected in endothelial cells. Morphological examination by electron microscopy showed that peroxisomes were confined to liver parenchymal cells in untreated animals, but could also be observed in endothelial cells after administration of fenofibrate.  相似文献   

9.
The intracellular distribution of extra-embryonic endodermal, cytoskeletal proteins A (Endo A) and B (Endo B) was investigated by double-label immunofluorescent microscopy and double-label immunoelectron microscopy. In parietal endodermal cells, the immunofluorescent distribution of Endo B was always coincident with that of Endo A and could be distinguished from vimentin, particularly at the periphery of the cell. At the electron microscopic level, antibodies against both Endo A and Endo B recognized both bundles and individual intermediate filaments. Double-label immunoelectron microscopy was achieved by use of two sizes of colloidal gold particles (5 nm and 20 nm) that were stabilized with secondary antibodies. These results show that Endo A and B are found in the same intermediate filament and probably co-polymerize to form such structures.  相似文献   

10.
We purified catalase-2 of the nematode Caenorhabditis elegans and identified peroxisomes in this organism. The peroxisomes of C. elegans were not detectable by cytochemical staining using 3, 3'-diaminobenzidine, a commonly used method depending on the peroxidase activity of peroxisomal catalase at pH 9 in which genuine peroxidases are inactive. The cDNA sequences of C. elegans predict two catalases very similar to each other throughout the molecule, except for the short C-terminal sequence; catalase-2 (500 residues long) carries a peroxisomal targeting signal 1-like sequence (Ser-His-Ile), whereas catalase-1 does not. The catalase purified to near homogeneity from the homogenate of C. elegans cells consisted of a subunit of 57 kDa and was specifically recognized by anti-(catalase-2) serum but not by anti-(catalase-1) serum. Subcellular fractionation and indirect immunoelectron microscopy of the nematode detected catalase-2 inside vesicles judged to be peroxisomes using morphological criteria. The purified enzyme (220 kDa) was tetrameric, similar to many catalases from various sources, but exhibited unique pH optima for catalase (pH 6) and peroxidase (pH 4) activities; the latter value is unusually low and explains why the peroxidase activity was undetectable using the standard alkaline diaminobenzidine-staining method. These results indicate that catalase-2 is peroxisomal and verify that it can be used as a marker enzyme for C. elegans peroxisomes.  相似文献   

11.
A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2T, exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state.  相似文献   

12.
The biogenesis of peroxisomes was investigated in the model of regenerating rat liver after partial hepatectomy (PH), using analytical differential centrifugation in combination with immunoblotting and in vivo pulse labeling as well as immunoelectron microscopy. The total activity of catalase decreased sharply after PH, returning gradually over several days to normal levels. In the 16 to 32-h period the enzyme activity started to increase first in the heavy mitochondrial fraction, shifting at 28 h to the crude peroxisomal and at 32 h to the microsomal fraction, suggesting de novo formation of peroxisomes by budding or fragmentation from larger aggregates. Whereas most peroxisomal matrix proteins were reduced during the 16 to 32-h period after PH, the 26 and 70 kDa peroxisomal membrane proteins were increased. Moreover, in vivo pulse labeling studies with radioactive leucine showed significantly higher levels of specific activity in the peroxisomal membrane than in the matrix subfractions at 16 h with increasing labeling of the matrix at 32 h after PH. These findings suggest that de novo formation of peroxisomes in regenerating rat liver is initiated by the synthesis of membrane proteins and is followed by that of the matrix components.  相似文献   

13.
Mitoskelin: a mitochondrial protein found in cytoskeletal preparations   总被引:1,自引:0,他引:1  
A 70 kD protein, which we have named mitoskelin, is highly enriched in cytoskeletal preparations from bovine cardiac muscle. Mitoskelin has three main variants with isoelectric points between 5.6 and 5.8. Immunoblotting with polyclonal antibodies directed against mitoskelin shows that, like intermediate filament proteins, the majority of mitoskelin resists solubilization from a myocardial homogenate by a series of extraction solutions ranging from very low salt to 0.6 M KI buffers and by 0.1-1% Nonidet P-40 detergent. By double-label immunofluorescence on cells and tissues, mitoskelin is colocalized with the mitochondrial marker cytochrome c oxidase. Mitoskelin is associated with the inner membranes of mitochondria as shown by immunoelectron microscopy and immunoblotting. Immunological cross-reactivity and similarities of molecular weight, pI, distribution, and chromatographic properties indicate that mitoskelin is the 70 kD component of complex I (NADH: ubiquinone oxidoreductase), a portion of the mitochondrial oxidative phosphorylation system. No function or activity has yet been demonstrated for the 70 kD component of the 25-polypeptide complex I. Dialysis against physiological buffers allows purified, urea-solubilized mitoskelin to form 10 nm wide filamentous structures that do not closely resemble intermediate filaments. These results suggest the exciting possibility that mitochondria may contain a membrane-associated filamentous skeleton.  相似文献   

14.
We have obtained several hybridoma clones producing antibodies to microtubule-associated proteins (MAPs) from bovine brain. Interaction of one of these antibodies, named RN 17, with cultured cells was studied by indirect immunofluorescence and immunoelectron microscopy. RN 17 antibody recognized both high molecular weight (HMW) MAPs, MAP 1 and MAP 2, in immunoblotting reaction with brain microtubules. In lysates of cultured cells, it bound to a protein doublet with a molecular weight of 100 kD. By immunofluorescence microscopy we showed that RN 17 antibody stained cytoplasmic fibrils, mitotic spindles and small particles in the cytoplasm of various cultured cells. The cytoplasmic fibrils were identified as both microtubules and intermediate filaments by double fluorescence microscopy and by their response to colcemid and 0.6 M KCl. This identification was confirmed by immunoelectron microscopy which also showed that the particles stained by RN 17 antibody are coated vesicles. Thus, cultured non-neural cells may contain a novel protein that binds to microtubules, intermediate filaments, and coated vesicles.  相似文献   

15.
The peroxisomal localization and characterization of NADP-dependent isocitrate dehydrogenase (perICDH) in young and senescent pea (Pisum sativum) leaves was studied by subcellular fractionation, kinetic analysis, immunoblotting, and immunoelectron microscopy. The subunit molecular mass for perICDH determined by immunoblotting was 46 kD. By isoelectric focusing (IEF) of the peroxisomal matrix fraction, the NADP-ICDH activity was resolved into four isoforms, perICDH-1 to perICDH-4, with isoelectric points (pIs) of 6.0, 5.6, 5.4, and 5.2, respectively. The kinetic properties of the NADP-ICDH in peroxisomes from young and senescent pea leaves were analyzed. The maximum initial velocity was the same in peroxisomes from young and senescent leaves, while the Michaelis constant value in senescent leaf peroxisomes was 11-fold lower than in young leaf peroxisomes. The protein levels of NADP-ICDH in peroxisomes were not altered during senescence. The kinetic behavior of this enzyme suggests a possible fine control of enzymatic activity by modulation of its Michaelis constant during the natural senescence of pea leaves. After embedding, electron microscopy immunogold labeling of NADP-ICDH confirmed that this enzyme was localized in the peroxisomal matrix. Peroxisomal NADP-ICDH represents an alternative dehydrogenase in these cell organelles and may be the main system for the reduction of NADP to NADPH for its re-utilization in the peroxisomal metabolism.  相似文献   

16.
Following exposure to 95% oxygen, clonogenic cell survival was assayed and qualitative morphologic changes were observed in a Chinese hamster fibroblast cell line (HA-1). The time in 95% O2 necessary to clonogenically inactivate 90% of the cells was inversely related to the cell density of the cultures at the beginning of hyperoxic exposure (from 1 to 6 X 10(4) cells/cm2). The O2-induced loss in clonogenicity and evidence of morphologic injury were shown to be significantly delayed (17-22 h) in an H2O2-resistant variant of the parental HA-1 cell line. After the delay in onset of clonogenic cell killing or morphologic injury, the process of injury proceeded in a similar fashion in both cell lines. The H2O2-resistant cell line demonstrated significantly greater catalase activity (20-fold), CuZn superoxide dismutase activity (2-fold), and Se-dependent glutathione peroxidase activity (1.5-fold). The greater activities of CuZn superoxide dismutase and catalase were accompanied by similarly greater quantities of immunoreactive protein as determined by immunoblotting. These data demonstrate that the cells adapted and/or selected for growth in a highly peroxidative environment also became refractory to O2-induced toxicity, which may be related to increased expression of antioxidant enzymes. However, the magnitude of this cross-resistance to O2 toxicity was less than the magnitude of the cellular resistance to the toxicity of exogenous H2O2, suggesting that in this system the toxicity of 95% oxygen is not identical to H2O2-mediated cytotoxicity.  相似文献   

17.
Pseudomonas aeruginosa K/2PfS, when transformed with an expression plasmid harboring the pilin gene (pilE1) of Neisseria gonorrhoeae MS11, was able to express and assemble gonococcal pilin monomers into surface-associated pili, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and immunoelectron microscopy. Concomitant with the expression of gonococcal pili in P. aeruginosa was the virtual loss of production of P. aeruginosa K/2PfS pili normally associated with the host cell.  相似文献   

18.
Transglutaminase type 1 was identified as a tyrosine-phosphorylated protein from the isolated junctional fraction of the mouse liver. This enzyme was reported to be involved in the covalent cross-linking of proteins in keratinocytes, but its expression and activity in other cell types have not been examined. Northern blotting revealed that transglutaminase type 1 was expressed in large amounts in epithelial tissues (lung, liver, and kidney), which was also confirmed by immunoblotting with antibodies raised against mouse recombinant protein. Immunoblotting of the isolated junctional fraction revealed that transglutaminase type 1 was concentrated in the fraction not only as a 97-kDa form but also as forms of various molecular masses cross-linked to other proteins. In agreement with this finding, endogenous transglutaminase type 1 was immunofluorescently colocalized with E-cadherin in cultured simple epithelial cells. In the liver and kidney, immunoelectron microscopy revealed that transglutaminase type 1 was concentrated, albeit not exclusively, at cadherin-based adherens junctions. Furthermore, by in vitro and in vivo labeling, transglutaminase cross-linking activity was also shown to be concentrated at intercellular junctions of simple epithelial cells. These findings suggested that the formation of covalently cross-linked multimolecular complexes by transglutaminase type 1 is an important mechanism for maintenance of the structural integrity of simple epithelial cells, especially at cadherin-based adherens junctions.  相似文献   

19.
20.
Six different monoclonal antibodies raised against pig brain myosin were used to characterize aggregation-competent fragments of the rod portion of bovine brain myosin. As a prerequisite, the antibody-binding regions in pig brain myosin were determined, and recognition of the same epitopes in the bovine protein was ascertained. A combination of electron microscopy on rotary shadowed myosin: antibody complexes, immunoblotting of proteolytic rod fragments and immunoelectron microscopy with gold-conjugated antibodies allowed for the following conclusions: (1) Rod fragments lacking as much as 24 kDa at the N-terminal, and approximately 16 kDa at the C-terminal end are still aggregation competent. (2) Brain myosin rods aggregate in an antiparallel fashion. These data contribute to our knowledge on structural features of brain myosin relevant to its presumed functions in brain cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号