首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual leaves of potato (Solanum tuberosum L. W729R), a C3 plant, were subjected to various irradiances (400-700 nm), CO2 levels, and temperatures in a controlled-environment chamber. As irradiance increased, stomatal and mesophyll resistance exerted a strong and some-what paralleled regulation of photosynthesis as both showed a similar decrease reaching a minimum at about 85 neinsteins·cm−2·sec−1 (about ½ of full sunlight). Also, there was a proportional hyperbolic increase in transpiration and photosynthesis with increasing irradiance up to 85 neinsteins·cm−2·sec−1. These results contrast with many C3 plants that have a near full opening of stomata at much less light than is required for saturation of photosynthesis.  相似文献   

2.
Leaf resistance for water vapor (total diffusion resistance minus boundary layer resistance), transpiration, and leaf temperature were measured in attached leaves of greenhouse-grown Xanthium strumarium L. plants that had been pretreated for 72 hours with high (40 C day, 35 C night), or low (10 C day, 5 C night) air temperatures. Measurements were made in a wind tunnel at light intensity of 1.15 cal cm−2 min−1, air temperatures between 5 and 45 C, and wind speed of 65 cm sec−1. Leaf resistances in low temperature pretreated plants were higher (8 to 27 sec cm−1) than in controls or high temperature pretreated plants (0.5 to 3 sec cm−1) at leaf temperatures between 5 and 25 C. Thus, the pretreatment influenced stomatal aperture.  相似文献   

3.
The oxygen consumption of a starved chlorophyll-free, yellow mutant of Chlorella vulgaris is enhanced by very small amounts of blue light (λ 450 mμ); a saturation level is reached at about 500 ergs cm−2 sec−1. At that intensity the respiration is about 3 times greater than in the dark. An action spectrum for the enhancement of respiration shows 2 peaks around λ 450 and 375 mμ. Flavins and cis-carotenoids are discussed as the pigments involved.  相似文献   

4.
Light acclimation during and after leaf expansion in soybean   总被引:10,自引:7,他引:3       下载免费PDF全文
Soybean plants (Glycine max var. Ransom) were grown at light intensities of 850 and 250 μeinsteins m−2 sec−1 of photosynthetically active radiation. A group of plants was shifted from each environment into the other environment 24 hours before the beginning of the experiment. Net photosynthetic rates and stomatal conductances were measured at 2,000 and 100 μeinsteins m−2 sec−1 photosynthetically active radiation on the 1st, 2nd, and 5th days of the experiment to determine the time course of photosynthetic light adaptation. The following factors were also measured: dark respiration, leaf water potential, leaf thickness, internal surface area per external surface area, chlorophyll content, photosynthetic unit size and number, specific leaf weight, and activities of malate dehydrogenase, and glycolate oxidase. Comparisons were made with plants maintained in either 850 or 250 μeinsteins m−2 sec−1 environments. Changes in photosynthesis, stomatal conductance, leaf anatomy, leaf water potential, photosynthetic unit size, and glycolate oxidase activity occurred upon altering the light environment, and were complete within 1 day, whereas chlorophyll content, numbers of photosynthetic units, specific leaf weight, and malate dehydrogenase activity showed slower changes. Differences in photosynthetic rates at high light were largely accounted for by internal surface area differences with low environmental light associated with low internal area and low photosynthetic rate. An exception to this was the fact that plants grown at 250 μeinsteins m−2 sec−1 then switched to 850 μeinsteins m−2 sec−1 showed lower photosynthesis at high light than any other treatment. This was associated with higher glycolate oxidase and malate dehydrogenase activity. Photosynthesis at low light was higher in plants kept at or switched to the lower light environment. This increased rate was associated with larger photosynthetic unit size, and lower dark respiration and malate dehydrogenase activity. Both anatomical and physiological changes with environmental light occurred even after leaf expansion was complete and both were important in determining photosynthetic response to light.  相似文献   

5.
Zusammenfassung Ein tagesperiodischer Wechsel der spektralen Zusammensetzung des Lichtes (12 Std 2900 ° K:12 Std 3400 ° K) vermag die Bewegungsaktivität vonTaeniopygia guttata zu synchronisieren, selbst wenn die meßbare Lichtintensität konstant bleibt (100 Lux, 440 erg × cm–2 × sec–1). Die spektrale Zusammensetzung des Lichtes ist von der Sonnenhöhe abhängig. Dieser Faktor kann als tagesperiodischer Zeitgeber in der Hocharktis wirksam sein.
Quality of light is a Zeitgeber forTaeniopygia guttata
Summary Circadian locomotor activity ofTaeniopygia guttata was synchronized by changing spectral distribution of light (12 h 2900 ° K: 12 h 3400 ° K). Intensities were equal in both phases (100 Lux, 440 erg. cm–2. sec–1). Light quality depends on the altitude of the sun and, therefore, it might be a Zeitgeber in high arctic regions.


Mit Unterstützung durch die Deutsche Forschungsgemeinschaft (Sachbeihilfe an Prof. Remmert Be 107/12).  相似文献   

6.
Phosphorus deficiency was induced in sugar beet plants (Beta vulgaris L. var. F5855441), cultured hydroponically under standardized environmental conditions, by removal of phosphorus from the nutrient supply at the ten leaf stage 28 days after germination. CO2 and water vapor exchange rates of individual attached leaves were determined at intervals after P cutoff. Leaves grown with an adequate nutrient supply attained net rates of photosynthetic CO2 fixation of 125 ng CO2 cm−2 sec−1 at saturating irradiance, 25 C, and an ambient CO2 concentration of about 250 μl l−1. After P cutoff, leaf phosphorus concentrations decreased as did net rates of photosynthetic CO2 uptake, photorespiratory evolution of CO2 into CO2-free air, and dark respiration, so that 30 days after cutoff these rates were about one-third of the control rates. The decrease in photosynthetic rates during the first 15 days after cutoff was associated with increased mesophyll resistance (rm) which increased from 2.4 to 4.9 sec cm−1, while from 15 to 30 days there was an increase in leaf (mainly stomatal) diffusion resistance (rl′) from 0.3 to 0.9 sec cm−1, as well as further increases in rm to 8.5 sec cm−1. Leaf diffusion resistance (rl′) was increased greatly by low P at low but not at high irradiance, rl′ for plants at low P reaching values as high as 9 sec cm−1.  相似文献   

7.
Light integrators with a linear response are not suitable for measuring the light climates of plants because plants are not linear integrators. It should be possible to make a quantitative allowance for this nonlinearity by using the CO2 uptake curve of the plant. To test this, we have subjected white clover plants to different levels of constant light, comparing the rate of increase of total dry matter with the net rate of uptake of CO2 per day. Temperature, humidity, daylength and nutrient supply were kept constant. The growth rate calculated from CO2 uptake agreed well with the observed rate over the light levels tested (3.7-88 w·m−2, 0.4-0.7 micron: 1 w·m−2 = 103 erg · sec−1 cm−2). All plants put on weight over the few days of the experiment, even those placed at light levels below their compensation point. The plants adapted their respiration rates to be a constant proportion of their growth rates. Most of the adaptation occurred within 24 hours of the light change. The adaptation of respiration has implications for models of light/growth relations in plant communities, almost all of which assume that respiration is proportional to leaf area and independent of growth rate or light level. The only model which does not is that of de Wit, and this gave good agreement with our results.  相似文献   

8.
Tropic Responses of Funaria Spores to Red Light   总被引:1,自引:0,他引:1       下载免费PDF全文
The tropic responses of Funaria hygrometrica spores to continuous illumination with red light (610 to 690 mμ) have been studied over the intensity range from 10-5 through 10+6 erg/cm2 second, using both plane polarized light and partial illumination with unpolarized light. From the relative frequency of outgrowth origin in different directions, the following is inferred. (1). The germination direction of chloronemal filaments is directly influenced by red light over this whole intensity range, while that of rhizoids tends to be opposite the chloronema. (2) Three photoreceptor systems direct chloronemal primordia: (a) A low intensity system acting from 10-5 to 10-0.5 erg/cm2 second. It favors their growth from a cell's brightest part(s). Its photoreceptors are disoriented, excited by the electric vector, and probably are dispersed phytochrome molecules. (b) A medium intensity system which acts largely alone only at 100.5 erg/cm2 second but is influential from 100 to 105 erg/cm2 second. It likewise favors growth from a cell's brightest part(s); its receptor molecules are also excited electrically, but they are tangentially oriented. (c) A high intensity system which acts alone from 105 to 106 erg/cm2 second and is influential down to 101 erg/cm2 second. It favors growth of the chloronemas from a cell's darkest part. Its receptors probably are magnetically excited and tangentially oriented. The polarotropic responses of the chloronemas resemble those directing their origins. One new feature is that under intense (106 erg/cm2 second) plane polarized and vertically directed light, many soon grow to form tight helices.  相似文献   

9.
Srivastava A  Zeiger E 《Plant physiology》1992,100(3):1562-1566
Chlorophyll a fluorescence transients from isolated Vicia faba guard cell chloroplasts were used to probe the response of these organelles to light quality. Guard cell chloroplasts were isolated from protoplasts by passing them through a 10-μm nylon net. Intact chloroplasts were purified on a Percoll gradient. Chlorophyll a fluorescence transients induced by actinic red or blue light were measured with a fluorometer equipped with a measuring beam. Actinic red light induced a monophasic quenching, and transients induced by blue light showed biphasic kinetics having a slow and a fast component. The difference between the red and blue light-induced transients could be observed over a range of fluence rates tested (200-800 μmol m−2 s−1). The threshold fluence rate of blue light for the induction of the fast component of quenching was 200 μmol m−2 s−1, but in the presence of saturating red light, fluence rates as low as 25 μmol m−2 s−1 induced the fast quenching. These results indicate that guard cell chloroplasts have a specific response to blue light.  相似文献   

10.
Summary Purple membrane vesicles prepared by different techniques differ widely in their morphology and ability to establish a proton gradient in the light. The procedures used to prepare active vesicles do not completely dissociate the purple membrane and thus preserve a preferential orientation of the protein, while most of the lipid is exchanged for added lipid. Responses to illumination are largely determined by the size of the vesicles and the degree to which bacteriorhodopsin is preferentially oriented. Any attempt to compare the interaction of different lipids with bacteriorhodopsin by measuring the pH response must take these factors into account.With an improved technique we have obtained vesicles of rather uniform size and bacteriorhodopsin orientation, which accumulate protons with an initial rate of 160 ng H+ sec–1 mg–1 protein at light intensities of 106 erg cm–2 sec–1. The kinetics of the process are complex and at present insufficiently understood.  相似文献   

11.
Cultures of Anabaena variabilis were exposed to different light intensities, and the time course of photoadaptation was measured by photosynthetic rate and changes in pigmentation. A shift down in intensity of 284 μEin · m−2 · sec−1 caused a temporary decrease in the photosynthetic response followed by gradual adaptation to the new conditions. Final chlorophyll a and carotenoid concentrations were reached after 1 day, although other physiological indicators showed that adaptation required 4 days. The parameter Ik was shown to be the best indicator of photoadaptation. A shift up in light intensity of the same magnitude also required 4 days for complete photoadaptation by the culture, although chlorophyll and carotenoid concentrations stabilized within 1 day. A shift down in light intensity of 392 μEin · m−2 · sec−1 resulted in a temporary attempt to adapt followed by collapse of the population. This demonstrates an apparent threshold in the magnitude of the shift in light intensity which will permit successful adaptation. Simultaneous changes in light intensity and temperature also adversely affected culture populations. Our observations present a possible cause for the decline or prevention of an algal bloom under a fluctuating light regime and suggest that it may be possible to predict this decline as a result of synoptic weather patterns or hydrodynamic influences.  相似文献   

12.
Populations of Periplaneta americana (L.) were exposed for 8–20 week periods in specially designed rooms to 254 nm UV at low intensity (50–115 ergs sec–1cm–2), high intensity (160–220 ergs sec–1cm–2), or to white light. The rooms contained tables and chairs to simulate occupied space, with food and water placed in positions exposed to UV radiation. General irradiation (where the whole room was exposed to UV) at 115 ergs sec–1cm–2 and above was effective in producing high mortality in all stages except 8–10th instar nymphs and adults. Hot-spots irradiation (where UV lamps were placed behind table and chair harborages) produced high mortality only in 1 st-3rd instar nymphs which would result in slower elimination of a population. Crude aggregation pheromone was not successful in holding cockroaches close to radiation sources or substantially increasing mortality under the conditions of the experiments.
Zusammenfassung Populationen von Periplaneta americana (L.), die hinsichtlich ihrer Alterszusammensetzung (2.–3.; 5–6.; 8.–10. und adultes Stadium) und der Anzahlen in jedem Stadium festgelegt waren, wurden für 8–20 Wochenperioden in speziell dafür entworfenen Räumen einer 254 nm UV-Bestrahlung mit geringer (50–115 erg sec–1cm–2) oder hoher (160–220 erg sec–1cm–2) Intensität oder weißem Licht (als Kontrolle) ausgesetzt. Die Räume enthielten Tische und Stühle, um bewohnten Raum mit natürlichen Zufluchtsstätten mit Nahrung und Wasser an Stellen, die der UV-Bestrahlung unterlagen, zu simulieren. Ganzraumbestrahlung mit 115 erg sec–1cm–2 und darüber erzeugte hohe Mortalität bei 1.–3. und 5.–6.-Larvenstadien, örtliche Bestrahlung (UV-Lampen hinter Tisch- und Stuhl-Zufluchtsstätten) dagegen nur beim 1.–3.-Stadium, was zu einer langsameren Ausrottung einer Population führen würde. Ungereinigtes Aggregationspheromon als Zusatz, um Schaben dicht an die UV-Quellen zu locken und sie hier zu halten, war offenbar unwirksam, da eben die Mortalität nicht signifikant zunahm. Dieses Versagen war in erster Linie auf die Konkurrenz mit der Fülle von natürlichem Pheromon, das von den gewohnten Zufluchtsstätten ausging, zurückzuführen, verbunden mit der dem UV-Licht innewohnenden Abschreckung. Dennoch darf man annehmen, daß UV-Bestrahlung einen bedeutsamen Wert für die Verhinderung eines Populationswachstums (durch Ausschalten junger Larvenstadien) besitzt, besonders dort, wo chemische Bekämpfung aus Gesundheits- und Sicherheitsgründen oder wegen gesetzlichen Einschränkungen nur begrenzt möglich ist.
  相似文献   

13.
We grew velvetleaf (Abutilon theophrasti Medic.) and cotton (Gossypium hirsutum L. var. Stoneville 213) at three irradiances and determined the photosynthetic responses of single leaves to a range of six irradiances from 90 to 2000 μeinsteins m−2sec−1. In air containing 21% O2, velvetleaf and cotton grown at 750 μeinsteins m−2sec−1 had maximum photosynthetic rates of 18.4 and 21.9 mg of CO2 dm−2hr−1, respectively. Maximum rates for leaves grown at 320 and 90 μeinsteins m−2sec−1 were 15.3 and 10.3 mg of CO2 dm−2hr−1 in velvetleaf and 12 and 6.7 mg of CO2 dm−2hr−1 in cotton, respectively. In 1 O2, maximum photosynthetic rates were 1.5 to 2.3 times the rates in air containing 21% O2, and plants grown at medium and high irradiance did not differ in rate. In both species, stomatal conductance was not significantly affected by growth irradiance. The differences in maximum photosynthetic rates were associated with differences in mesophyll conductance. Mesophyll conductance increased with growth irradiance and correlated positively with mesophyll thickness or volume per unit leaf area, chlorophyll content per unit area, and photosynthetic unit density per unit area. Thus, quantitative changes in the photosynthetic apparatus help account for photosynthetic adaptation to irradiance in both species. Net assimilation rates calculated for whole plants by mathematical growth analysis were closely correlated with single-leaf photosynthetic rates.  相似文献   

14.
Exposure to light is a major determinant of sleep timing and hormonal rhythms. The role of retinal cones in regulating circadian physiology remains unclear, however, as most studies have used light exposures that also activate the photopigment melanopsin. Here, we tested the hypothesis that exposure to alternating red light and darkness can enhance circadian resetting responses in humans by repeatedly activating cone photoreceptors. In a between-subjects study, healthy volunteers (n = 24, 21–28 yr) lived individually in a laboratory for 6 consecutive days. Circadian rhythms of melatonin, cortisol, body temperature, and heart rate were assessed before and after exposure to 6 h of continuous red light (631 nm, 13 log photons cm−2 s−1), intermittent red light (1 min on/off), or bright white light (2,500 lux) near the onset of nocturnal melatonin secretion (n = 8 in each group). Melatonin suppression and pupillary constriction were also assessed during light exposure. We found that circadian resetting responses were similar for exposure to continuous versus intermittent red light (P = 0.69), with an average phase delay shift of almost an hour. Surprisingly, 2 subjects who were exposed to red light exhibited circadian responses similar in magnitude to those who were exposed to bright white light. Red light also elicited prolonged pupillary constriction, but did not suppress melatonin levels. These findings suggest that, for red light stimuli outside the range of sensitivity for melanopsin, cone photoreceptors can mediate circadian phase resetting of physiologic rhythms in some individuals. Our results also show that sensitivity thresholds differ across non-visual light responses, suggesting that cones may contribute differentially to circadian resetting, melatonin suppression, and the pupillary light reflex during exposure to continuous light.  相似文献   

15.
Heinz Clauss 《Protoplasma》1972,74(3):357-379
Zusammenfassung Bei Zellen der marinen Grünalge Acetabularia mediterranea liegen nach 2stündiger Photosynthese im Weißlicht (8000 Lux) etwa 80% des fixierten14C in äthanollöslicher Form vor, etwa 12% entfallen auf Stärke, 2–3% auf Protein und 6% auf die Zellwand.Werden die Zellen mit Rotlicht (Dauerlicht, 3800 erg · cm–2 · sec–1) bestrahlt, so fällt die Einbaurate in allen 4 Fraktionen stark ab (Abb. 1). Dabei nimmt der14C-Anteil in der äthanollöslichen Fraktion innerhalb von 3 Wochen zu Lasten der Stärke und Zellwand von 80% auf ca. 90% zu. Im Gegensatz dazu wird im Blaulicht (Dauerlicht, 5600 erg · cm–2 · sec–1) mit der Bestrahlungsdauer der Einbau in Stärke, Zellwand und Protein gefördert (Abb. 1).Trotz sinkender Einbauraten von14C in Stärke nimmt im Rotlicht der Stärkegehalt pro Zelle zu, liegt dagegen im Blaulicht trotz höherer14C-Einbauraten deutlich unter demjenigen der Rotlichtzellen (Tabelle 1 und 2). Die Akkumulation von Stärke im Rotlicht dürfte demnach auf einer Hemmung des Stärkeabbaus beruhen.Der Gehalt an löslichen Kohlenhydraten (Fructose, Glucose, Saccharose, Fructosane) stagniert in Rotlichtzellen und steigt in Blaulichtzellen um ein Mehrfaches an (Tabelle 1).Bestrahlung mit Blaulicht nach Rotlichtvorbehandlung führt zu einem Ansteigen der Photosyntheseintensität. Nach 8stündiger Bestrahlung nimmt die Fixierungsrate zu und erreicht nach 48- bis 72stündiger Bestrahlung etwa das 5- bis 6fache des am Ende der Rotlichtbestrahlung gemessenen Wertes (Abb. 2).Diesem Anstieg der Fixierungsrate muß offenbar eine Synthese von Proteinen vorausgehen (Abb. 3). Auch der14C-Einbau in Stärke und die Zellwand steigt bereits vor der Gesamtfixierung an, und außerdem wird der Abbau der während der Rotlichtvorbehandlung akkumulierten Stärke eingeleitet (Tabelle 2).Der Hauptanteil des14C in der löslichen Fraktion entfällt auf die löslichen Kohlenhydrate. Bestrahlung mit Blaulicht nach Rotlichtvorbehandlung führt zunächst zu einer Abnahme des14C-Einbaus in die löslichen Kohlenhydrate, gefolgt von einem starken Anstieg bis zur 72. Stunde und einem erneuten Abfall (Abb. 4). Während der14C-Einbau in Fructose, Saccharose und Glucose diesem Kurvenverlauf folgt, steigt der Einbau in Inulin bis zur 72. Stunde kontinuierlich an (Abb. 5).Demgegenüber ist der auf die basische (Aminosäuren) und die saure Fraktion entfallende Anteil gering. Der14C-Einbau in beide nimmt im Blaulicht kontinuierlich zu (Abb. 4). Aminosäuren werden in den Zellen auch nach 3wöchiger Bestrahlung mit Rotlicht gebildet. Ferner ist der Gehalt an Aminosäuren am Ende der Rotlichtvorbehandlung am höchsten (Tabelle 3). Die Syntheserate von Protein in Rotlicht dürfte demnach nicht durch die Aminosäurekonzentration begrenzt werden.Die Ursache für den Abfall der Photosyntheseintensität bei Rotlichtbestrahlung ist den vorliegenden Daten nicht zu entnehmen. Die Möglichkeiten, die dabei eine Rolle spielen könnten, werden diskutiert.
The effect of red and blue light on photosynthesis ofAcetabularia mediterranea and on the distribution of assimilated carbon
Summary After photosynthesis for two hours in white light (8000 lux), cells of the marine chlorophycean algaAcetabularia mediterranea contain about 80% of the14C incorporated in ethanol soluble form, about 12% in starch, 2–3% in protein, and 6% in the cell wall.When cells are irradiated with red light (continuous light, 3800 erg · cm–2 · sec–1), the incorporation rate for all four fractions is sharply reduced (Fig. 1). Concomitantly, the14C content in the ethanol soluble fraction rises in three weeks from 80% to about 90%, to the debit of starch and cell wall. In contrast to these findings, incorporation into starch, cell wall, and protein under blue light (continuous light, 5600 erg · cm–2 · sec–1) rises with the irradiation time (Fig. 1).Starch content per cell rises under red light in spite of declining incorporation rates of14C into starch, whereas it is clearly reduced in blue light below the values for red light cells, notwithstanding the increased14C incorporation rates (Tables 1 and 2). Accumulation of starch under red light seems to be due, therefore, to an inhibition of starch degradation.Soluble carbohydrate content (fructose, glucose, sucrose, fructosans) stagnates in red light cells and is multiplied in blue light cells (Table 1).Blue light irradiation after red light pretreatment increases the intensity of photosynthesis. The assimilation rate rises after an irradiation period of eight hours, reaching, after 48 to 72 hours of irradiation, about five to six times the level at the end of the red light period.Obviously, this rise in the assimilation rate must be preceded by protein synthesis (Fig. 3).14C incorporation into starch and cell wall rises even before the increase in total fixation, too, and, in addition, degradation of starch accumulated during the red light pretreatment is initiated (Table 2). The main amount of14C in the soluble fraction falls to soluble carbohydrates. Irradiation with blue light after red light pretreatment results at first in a reduction of14C incorporation into soluble carbohydrates, followed by a sharp increase till the 72nd hour and another decline (Fig. 4).14C incorporation into fructose, sucrose, and glucose follows this pattern, whereas incorporation into inulin increases continuously till the 72nd hour (Fig. 5).The amount falling to the basic and the acid fractions is small, in contrast.14C incorporation into both fractions rises continuously in blue light (Fig. 4).Amino acids are formed in the cells even after a three-week period of red light irradiation. Furthermore, the amino acid content is highest at the end of the red light pretreatment (Table 3). Thus, the rate of protein synthesis in red light seems not to be limited by amino acid concentration.The cause for the reduction of photosynthesis under irradition with red light does not become obvious from the data obtained. Factors possibly playing a role in this process are discussed.


Die Untersuchungen wurden durch Sachmittel der Deutschen Forschungsgesellschaft unterstützt. Frau I. MAASS danke ich für die sorgfältige Mithilfe bei den Versuchen.  相似文献   

16.
The nutritional economy of the developing fruit of Pisum sativum L. (cv. Greenfeast) was studied in terms of intake of translocate, incorporation of C and N into dry matter, transpiration, and CO2 exchanges of the fruit with its external and internal atmospheres. The environmental conditions were 12-hr days (22 C, 850 μeinsteins m−2 sec−1 at fruit level); 12-hr nights of 15 C.  相似文献   

17.
Summary Changes in culture conditions caused strong changes in the pigment composition in the blue-green alga Anacystis nidulans. Under normal illumination (white light; 0.6·103 erg/cm2·sec) the relation between the amounts of chlorophyll a and phycocyanin was 1:6.6. In a high light intensity (20.8·103 erg/cm2·sec) the phycocyanin content was reduced and the relations thus changed to 1:1.9. Growing the algae in red light of high intensity (20·103 erg/cm2·sec) increased the phycocyanin content; the chlorophyll a: phycocyanin relation was then 1:12.1.The action spectrum of apparent photosynthesis showed a minimum at 473 nm in all three cultures. The maximum of photosynthesis in low light cultures fell in the absorption region of phycocyanin at 621 nm. The action spectrum of the red light culture showed a reduced rate of photosynthesis in the same region. The strong light culture had an action spectrum similar to that of the red light culture with a maximum at 651 nm. The differing action spectrum of the low light culture may be a result of interruption in the energy transfer from phycocyanin to chlorophyll a within pigment system II.The transients of CO2 exchange are independent of the pigment composition. Two different types of transients were found depending on the wavelength of the incident light. In red light of 550–650 nm a higher stationary rate was reached after a maximum of photosynthesis at the beginning of the illumination period. In blue and far red light a lower rate was found after the first maximum. Following a illumination period in blue or far red light a CO2 evolution in the dark was observed. On the other hand, this CO2 evolution was not found after illumination with red light. These effects are possiblt caused by a decarboxylation reaction (photorespiration) which occurs only in blue and far red light.  相似文献   

18.
Blue spruce (Picea pungens Engelm.) seedlings grow continuously when exposed to photoperiods exceeding 16 hours and enter dormancy within 4 weeks under photoperiods of 12 hours or less. Dormancy was prevented under 12-hour photoperiods by 2-hour light breaks of red light (1.70 μw/cm2 at 650 nm) or high intensity white light (2,164.29 μw/cm2 at 400 to 800 nm) given in the middle of the 12-hour night, and by continuous low intensity white light (204.76 μw/cm2 at 400 to 800 nm). Two-hour light breaks of far red light (1.80 μw/cm2 at 730 nm), red light followed by far red light, or low intensity white light were not effective in delaying dormancy. The results imply that the phytochrome system mediates the photoperiodic control of dormancy in blue spruce seedlings. The similarity of results obtained using the low intensity, long duration as against the high intensity, short duration light treatments suggests that the law of reciprocity applies in this response.  相似文献   

19.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ·cm−2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4′,6′-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ·cm−2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ·cm−2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ·cm−2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

20.
The denitrification rates in a marine sediment, estimated by using 15N-nitrate, Vmax, Km, and sediment nitrate concentrations, were 12.5 and 2.0 nmol of N2-N cm−3 day−1 at 0 to 1 and 1 to 3 cm, respectively, at 12°C. The total rate was 165 nmol of N2-N m−2 day−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号