首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
大鼠心肌线粒体Ca2+-ATP酶的制备及活性测定   总被引:10,自引:0,他引:10  
Ca~(2 )在细胞内有许多重要的功能,它参与不同酶系和多种类型细胞活动的调节。细胞内Ca~(2 )的这些功能需很低的Ca~(2 )浓度(μmol/L或更低),维持细胞浆低Ca~(2 )浓度是与细胞Ca~(2 )调节装置有关,心肌细胞的这类装置包括肌膜、肌浆网、线粒体以及一些与Ca~(2 )结合的蛋白(如钙调素)和小分子物质,其中线粒体是重要的机构之一。Vasington等首次报道了肾脏线粒体对Ca~(2 )的摄取作用,并注意到这一过  相似文献   

2.
细胞Ca2+稳态的维持是其生命活动正常进行的重要条件.病理条件下,细胞Ca2+稳态紊乱,将导致其功能和结构的严重损害.线粒体具有完整的Ca2+转运系统,可参与细胞Ca2+浓度的调节.我所既往研究表明,严重烧伤早期心肌细胞内Ca2+浓度升高,且分布异常.本研究探讨严重烧伤早期心肌线粒体Ca2+转运变化及外源性ATP的影响,以期阐明烧伤后心肌线粒体Ca2+超载的发生机制.  相似文献   

3.
Na+和Ca2+对拟南芥根原生质体质膜内向K+通道电流的影响   总被引:2,自引:1,他引:2  
以拟南芥(Arabidopsis thaliana Columbia)根为材料,利用膜片钳技术测定其根细胞原生质体质膜内向K^ 电流,并对Na^ 对其K^ 电流的影响进行了初步研究,发现Na^2 可明显抑制拟南芥根细胞原生质体的内向K^ 电流,外施Ca^2 可缓解Na^ 对内向K^ 电流的抑制.说明Ca^2 参与了质膜上K^ 通道对K^ /Na^ 的选择性吸收的调节,从而使植物适应盐胁迫.  相似文献   

4.
目的和方法采用大鼠心肌线粒体体外孵育的方法,观察线粒体L-精氨酸/一氧化氮系统对线粒体Ca2+转运功能的影响.结果NO生成的底物L-Arg (10-4 mol/L)、外源性NO供体硝普纳(5×10-7 mol/L)孵育的线粒体NO-2的生成量分别高于对照组66%、89% (P<0.01);钙含量较对照组分别低40%、54% (P<0.01); 线粒体Ca2+的摄入量较对照组分别减少67%、85%(P<0.01), 线粒体Ca2+释放率(11%、8%)降低与对照组(14%)相比差异显著(P<0.05、P<0.01).NO合酶抑制剂左旋硝基精氨酸甲酯(L-NAME, 10-4 mol/L)与相同浓度的L-Arg共同孵育的线粒体,明显抑制了L-Arg对线粒体的效应,与单纯L-Arg组比较,NO2生成减少,线粒体钙含量和反映线粒体45 Ca2+的摄入与释放能力都接近对照组水平.结论心肌线粒体L-精氨酸/一氧化氮系统参与了线粒体对心肌细胞Ca2+浓度的调节,其生理和病理生理意义值得进一步探讨.  相似文献   

5.
白细胞介素—2的中枢镇痛作用   总被引:4,自引:0,他引:4  
本实验采用侧脑室给药,以钾离子透入法引起大鼠甩尾反应为指标,测定动物的痛阈,发现白细胞介素-2具有显著提高大鼠痛阈的作用,此作用能被抗IL-2单克隆抗体所阻断。纳洛酮能反转IL-2的镇痛作用,表明其作用机理与阿片受体有关。  相似文献   

6.
为深入研究细胞因子白细胞介素-2(interleukin-2,IL-2)对心肌收缩功能的影响及其可能机制,本实验采用酶解分离成年大鼠心室肌细胞模型,用视频跟踪计算机系统记录测定单个心室肌细胞收缩反应并用双波长荧光系统检测细胞[Ca2+]i.心肌细胞收缩参数包括最大收缩幅度(dL)、细胞最大收缩速度(+dL/dtmax)、细胞最大舒张速度(-dL/dtmax)和舒张末期细胞长度.结果显示,IL-2(2-1000U/ml)浓度依赖性地抑制心肌细胞dL、±dL/dtmax和舒张末期细胞长度;用一氧化氮(ni-tric oxide,NO)合酶抑制剂L-NAME(100mmol/L)和可溶性鸟苷酸环化酶(sGC)抑制剂ODQ(10mmol/L)可减弱IL-2对心肌细胞收缩的抑制作用,iNOS抑制剂Aminoguanidine(100mmol/L)对IL-2的作用则无明显影响.200 U/ml的IL-2可降低单个心室肌细胞电刺激诱导的钙瞬变幅度;ODQ(10mmol/L)可明显抑制IL-2对心肌细胞钙瞬变的作用.以上结果提示IL-2对大鼠心肌细胞收缩功能具有直接抑制作用,其机制可能通过刺激NOS活性,增加NO的生成,激活可溶性鸟苷酸环化酶(sGC)从而导致细胞内Ca2+含量降低所致.  相似文献   

7.
白细胞介素-2中枢镇痛作用途径的探讨   总被引:3,自引:0,他引:3  
抗IL-2受体α亚基的单克隆抗体不能阻断IL-2的中枢镇痛作用,以及丧失与IL-2受体β亚基结合能力的IL-2突变体仍具有提高大鼠痛阈的能力,这表明IL-2的中枢镇痛作用并不是通过IL-2受体所介导,亦表示IL-2的免疫和镇痛作用是通过不同的受体途径实现的。加之内源性阿片肽与IL-2分子有着共同的抗原决定基和结构相似性,提示IL-2可以与阿片受体直接结合产生中枢镇痛效应。从放射免疫法测定的IL-2侧脑室注射后不同时间大鼠脑内不同核团的内源性阿片肽含量,推测IL-2的中枢镇痛作用可能还与弓状核、室旁核、蓝斑等核团的β-EP和LEK有关。  相似文献   

8.
Zhang QH  Zhu YL  Hu YZ  Zhang WH  Chen JK  Wang FZ 《生理学报》2000,52(6):487-490
采用原代无血清细胞培养技术结合免疫组织(细胞)化学和半定量反转录-PCR方法,观察白细胞介素2(IL-2)对大鼠垂体前叶雌激素受体(ER)蛋白含量和基因表达的影响,以探讨IL-2和ER在大鼠重体前叶的相互关系。结果显示:在大鼠垂体前叶细胞有IL-2受体表达。在无血清培养条件下,IL-2能增加ERα蛋白含量,促进ERα基因表达,而对ERβ的作用正好相反,rhIL-2(10μg/L)作用48h后,ER  相似文献   

9.
pH改变对心肌细胞内Ca2+浓度和细胞长度的影响   总被引:1,自引:0,他引:1  
目的:探讨细胞内pH(pHi)改变对心肌细胞内Ca^2 浓度([Ca^2 ]i)和细胞长度的影响。方法:心肌细胞内分别灌注20mmol/L丙酸钠和15mmol/L NH4Cl ,建立细胞内酸碱中毒模型。荧光指示剂indo-1和SNARF-1载入大鼠心肌细胞内,用荧光显微镜同时测定心肌[Ca^2 ]i、pHi和细胞长度。结果:细胞内酸中毒早期,收缩期和舒张期[Ca^2 ]i轻度增加,细胞缩短(CS)降低,细胞长度增加,心肌纤维对Ca^2 的敏感性和CS/[Ca^2 ]i降低(P<0.01);碱中毒时,收缩期和舒张期[Ca^2 ]i均较对照组降低,CS增加,细胞长度变短,心肌纤维对Ca^2 的敏感性和CS/[Ca^2 ]i增加(P<0.01)。结论:酸中毒早期[Ca^2 ]i和细胞长度增加,碱中毒时[Ca^2 ]i和细胞长度降低。酸、碱中毒对Ca^2+敏感性的影响并非线性关系,即单位pHi变化时酸中毒对敏感性的影响较碱中毒小。  相似文献   

10.
白细胞介素-2的中枢镇痛作用   总被引:4,自引:0,他引:4  
本实验采用侧脑室给药,以钾离子透入法引起大鼠甩尾反应为指标,测定动物的痛阈,发现白细胞介素-2(IL-2)具有显著提高大鼠痛阈的作用,此作用能被抗IL-2单克隆抗体所阻断。纳洛酮能反转IL-2的镇痛作用,表明其作用机理与阿片受体有关。  相似文献   

11.
12.
Phenylglyoxal (PGO) was used as a reagent for chemical modification of the ATP-binding site of Ca2+-transporting ATPase of rabbit skeletal muscle sarcoplasmic reticulum (SR-ATPase). When 1 mM PGO was reacted with SR-ATPase at 30°C at pH 8.5, PGO was bound to the ATPase molecule in two-to-one stoichiometry with concomitant loss of activity of the ATPase to form the phosphorylated intermediate (E-P). ATP and ADP prevented the binding of PGO and thereby protected the enzyme from inactivation. The SR membranes were labeled with [14C]PGO and then digested with pepsin to identify the attachment site of PGO. A 14C-labeled peptide (402lle-Arg*-Ser-Gly-Gln406) was purified to homogeneity by C18-reversed phase HPLC (Arg* denotes the binding site of [14C]PGO). These results indicate that Arg403 is located in the ATP binding site of the SR-ATPase.  相似文献   

13.
In this report we describe the application of spectroscopic methods to the study of Ca2+ release by isolated native sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle. To date, dual-wavelength spectroscopy of arsenazo III and antipyrylazo III difference absorbance have been the most common spectroscopic methods for the assay of SR Ca2+ transport. The utility of these methods is the ability to manipulate intraluminal Ca2+ loading of SR vesicles. These methods have also been useful for studying the effect of both agonists and antagonists upon SR Ca2+ release and Ca2+ uptake. In this study, we have developed the application of Calcium Green-2, a long-wavelength excitable fluorescent indicator, for the study of SR Ca2+ uptake and release. With this method we demonstrate how ryanodine receptor Ca2+ channel opening and closing is regulated in a complex manner by the relative distribution of Ca2+ between extraluminal and intraluminal Ca2+ compartments. Intraluminal Ca2+ is shown to be a key regulator of Ca2+ channel opening. However, these methods also reveal that the intraluminal Ca2+ threshold for Ca2+-induced Ca2+ release varies as a function of extraluminal Ca2+ concentration. The ability to study how the relative distribution of a finite pool of Ca2+ across the SR membrane influences Ca2+ uptake and Ca2+ release may be useful for understanding how the ryanodine receptor is regulated, in vivo.  相似文献   

14.
ATPase activity in rat heart sarcoplasmic reticulum was stimulated in a concentration-dependent manner by both Ca2+ and Mg2+ in the complete absence of the other cation. Increasing concentrations of Mg2+ produced an apparent inhibition of the Ca2+-dependent ATP hydrolysis. CDTA (trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate) had no effect on these responses. The results indicate the presence of a low affinity non-specific divalent cation-stimulated ATPase in rat heart sarcoplasmic reticulum. However, sarcoplasmic reticulum vesicles transported Ca2+ with a high affinity (K0.5 Ca2+ = 0.41 M) suggesting the presence of a high affinity Ca2+-transporting ATPase. Calmodulin did not stimulate rat heart sarcoplasmic reticulum ATPase activity over a range of Ca2+ and Mg2+ concentrations and failed to stimulate membrane phosphorylation and Ca2+ transport into sarcoplasmic reticulum vesicles. Calmodulin antagonists trifluoperazine and compound 48180 did not affect the ATPase activity. Catalytic subunit of cAMP-dependent protein kinase was also ineffective in stimulating the ATPase activity. These results suggest the presence of an ATPase activity in rat heart sarcoplasmic reticulum with different properties from the high affinity Ca2+-pumping ATPase previously characterized in dog heart and other species.Abbreviations cAMP adenosine 3,5-monophosphate - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - PLB phospholamban - SR sarcoplasmic reticulum - TFP trifluoperazine  相似文献   

15.
Three experimental systems are described including sarcoplasmic reticulum (SR) vesicles, reconstituted proteoliposomes, and recombinant protein obtained by gene transfer and expression in foreign cells. It is shown that the Ca2+ ATPase of sarcoplasmic reticulum (SR) includes an extramembranous globular head which is connected through a stalk to a membrane bound region. Cooperative binding of two calcium ions occurs sequentially, within a channel formed by four clustered helices within the membrane bound region. Destabilization of the helical cluster is produced following enzyme phosphorylation by ATP at the catalytic site in the extramembranous region. The affinity and orientation of the Ca2+ binding site are thereby changed, permitting vectorial dissociation of bound Ca2+ against a concentration gradient. A long range linkage between phosphorylation and Ca2+ binding sites is provided by an intervening peptide segment that retains high homology in cation transport ATPases, and whose function is highly sensitive to mutational perturbations.  相似文献   

16.
In resting muscle, cytoplasmic Ca2+ concentration is maintained at a low level by active Ca2+ transport mediated by the Ca2+ ATPase from sarcoplasmic reticulum. The region of the protein that contains the catalytic site faces the cytoplasmic side of the membrane, while the transmembrane helices form a channel-like structure that allows Ca2+ translocation across the membrane. When the coupling between the catalytic and transport domains is lost, the ATPase mediates Ca2+ efflux as a Ca2+ channel. The Ca2+ efflux through the ATPase channel is activated by different hydrophobic drugs and is arrested by ligands and substrates of the ATPase at physiological pH. At acid pH, the inhibitory effect of cations is no longer observed. It is concluded that the Ca2+ efflux through the ATPase may be sufficiently fast to support physiological Ca2+ oscillations in skeletal muscle, that occur mainly in conditions of intracellular acidosis.  相似文献   

17.
We propose an overview of the mechanism of Ca2+ transport through the sarcoplasmic reticulum membrane via the Ca2+-ATPase. We describe cytoplasmic calcium binding, calcium occlusion in the membrane and lumenal calcium dissociation. A channel-like structure is discussed and related to structural data on the membranous domain of the Ca2+-ATPase.Abbreviations SR Sarcoplasmic Reticulum - AMPPNP adenylyl-imidodiphosphate - AMPPCP adenylyl (,-methylene)-diphosphonate - FITC fluorescein 5-isothiocyanate - NBD 4-nitrobenzo-2-oxa-1,3-diazole - DCCD dicyclohexylcarbodiimide  相似文献   

18.
In recent years, expression of rabbit sarcoplasmic reticulum (SR) Ca2+-ATPase in heterologous systems has been a widely used strategy to study altered enzymes generated by site-directed mutagenesis. Various eukaryotic expression systems have been tested, all of them yielding comparable amounts of recombinant protein. However, the relatively low yield of recombinant protein obtained so far suggests that novel purification techniques will be required to allow further characterization of this enzyme based on direct ligand-binding measurements.  相似文献   

19.
Ca2+ uptake into the endoplasmic reticulum (ER) is mediated by Ca2+ ATPase isoforms, which are all selectively inhibited by nanomolar concentrations of thapsigargin. Using ATP/Mg2+-dependent 45Ca2+ transport in rat brain microsomes, tissue sections, and permeabilized cells, as well as Ca2+ imaging in living cells we distinguish two ER Ca2+ pools in the rat CNS. Nanomolar levels of thapsigargin blocked one component of brain microsomal 45Ca2+ transport, which we designate as the thapsigargin-sensitive pool (TG-S). The remaining component was only inhibited by micromolar thapsigargin, and thus designated as thapsigargin resistant (TG-R). Ca2+ ATPase and [32P]phosphoenzyme assays also distinguished activities with differential sensitivities to thapsigargin. The TG-R Ca2+ uptake displayed unique anion permeabilities, was inhibited by vanadate, but was unaffected by sulfhydryl reduction. Ca2+ sequestered into the TG-R pool could not be released by inositol-1,4,5-trisphosphate, caffeine, or cyclic ADP-ribose. The TG-R Ca2+ pool had a unique anatomical distribution in the brain, with selective enrichment in brainstem and spinal cord structures. Cell lines that expressed high levels of the TG-R pool required micromolar concentrations of thapsigargin to effectively raise cytoplasmic Ca2+ levels. TG-R Ca2+ accumulation represents a distinct Ca2+ buffering pool in specific CNS regions with unique pharmacological sensitivities and anatomical distributions.  相似文献   

20.
Experiments were performed in which two batches of sarcoplasmic reticulum were isolated from rabbit hind leg muscle, one in the presence of dithiothreitol, the other in the absence of reducing agent. A comparative study was made of some of the properties of the two preparations, in particular, the Arrhenius behavior of the Ca2+-ATPase. The Ca2+-ATPase isolated in the absence of dithiothreitol is thermally unstable with the result that a triphasic Arrhenius plot was obtained. This triphasic behavior is largely the consequence of an uncoupling of the hydrolytic machinery from the calcium pump. In contrast, the sarcoplasmic reticulum preparation obtained in the presence of dithiothreitol is thermally stable and yields a linear Arrhenius plot. The difference in the Arrhenius behavior shown by the two preparations was abolished when the measurements of Ca2+-ATPase activity were made in the presence of the calcium ionophore, A23187.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号