首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: The fatty acid compositions of the brains of a precocial (guinea pig) and a non-precocial (rat) species have been studied as a function of development. In the rat brain the total fatty acid content expressed as mg g wet wt.-1 increased more than fourfold during the period from 5 days after birth to adulthood. However, the percentage composition of this total fatty acid content when expressed per individual fatty acid remained fairly constant, with the exception of nervonic acid (C24:l) which also increased fourfold on a percentage basis. In the guinea pig brain, however, at birth the total fatty acid content, expressed as mg g wet wt.-1, is the same as that of the adult, the concentration doubling during the period from 25 days before birth until birth. Again, if the fatty acid content is analysed and expressed on a percentage basis, the relative concentrations of the individual fatty acids remain fairly constant over the period from 25 days before birth until adulthood, with the exception of nervonic (C24:l) acid which increases about fivefold from 25 days before birth to birth and only marginally (20%) from birth to adulthood. These results are discussed in relationship to the onset of neurological competence in the two species. It is concluded that the increase in fatty acid content (both total and individually) of the brains of these species as a function of the foetal and neonatal development follows a pattern which is similar to the pattern of development of certain key enzymes of energy metabolism and of neurological competence.  相似文献   

2.
Rat, Mouse, and Guinea Pig Brain Development and Microtubule Assembly   总被引:4,自引:3,他引:1  
The development of in vitro microtubule assembly and of tubulin concentration have been studied during brain maturation in the mouse and the rat, two species which have postnatal brain development, and in one species which is mature at birth, the guinea pig. (a) The rate of tubulin assembly is very slow soon after birth in both the mouse and rat; it increases progressively with age until adulthood. In contrast, in the guinea pig this rate is maximal at birth and slower rates are seen only at foetal stages. (b) Postnatal changes in the lag period of assembly and in the minimal concentration of tubulin (Cc) required to obtain in vitro assembly are seen in the mouse and the rat; in contrast these parameters are constant at all postnatal stages in the guinea pig with longer lag periods and lower Cc values being seen only at foetal stages. (c) Maximal rates of assembly, minimal lag periods, and minimal Cc values are restored after addition of microtubule-associated proteins to foetal guinea pig or young mouse and rat preparations, suggesting that the difference in the kinetic parameters of assembly between these species depends on differences in the concentration or activity of these proteins. (d) Maximal tubulin concentrations are observed before birth in the guinea pig and approximately at day 10 in the rat and mouse. Lennon A. M. et al. Rat, mouse, and guinea pig brain development and microtubule assembly. J. Neurochem. 35, 804–813 (1980).  相似文献   

3.
Thyrotropin-releasing hormone (TRH) binding sites were labeled in vitro in mounted brain tissue sections from rat and guinea pig brains with [3H]methyl TRH and localized autoradiographically using 3H-sensitive film. Regional densities of TRH binding sites were measured by computer-assisted microdensitometry. The distribution of sites in both species was highly heterogeneous. In both guinea pig and rat brains, the highest densities of binding sites were seen in the amygdaloid nuclei and the perirhinal cortex. In contrast, in other brain areas, a clear difference between the distribution of sites in rat and guinea pig was found. The temporal cortex, pontine nuclei, and interpeduncular nucleus, which contained high densities of binding in the guinea pig, were scarcely labeled in the rat. The accessory olfactory bulb and the septohippocampal area presented in the rat higher concentrations of binding sites than in the guinea pig. Other brain areas showing intermediate to low densities in both species were accumbens nucleus, bed nucleus of the stria terminalis, dentate gyrus, facial and hypoglossal nuclei, and gelatinosus subnucleus of the trigeminal nerve, among others. The anterior pituitary also presented low to intermediate concentrations of receptors. The distribution of TRH sites here described does not completely correlate with that of endogenous TRH, but is in good agreement with previous biochemical data. The results are discussed in correlation to the physiological effects that appear to be mediated by TRH.  相似文献   

4.
Postnatal Development of Thiamine Metabolism in Rat Brain   总被引:1,自引:0,他引:1  
The activities of thiamine diphosphatase (TDPase), thiamine triphosphatase (TTPase), and thiamine pyrophosphokinase and the contents of thiamine and its phosphate esters were determined in rat brain cortex, cerebellum, and liver from birth to adulthood. Microsomal TTPase activity in the cerebral cortex and cerebellum increased from birth to 3 weeks, whereas that in the liver did not change during postnatal development. Microsomal TDPase activity in the cerebral cortex showed a transient increase at 1-2 weeks, but that in the cerebellum did not change during development. In contrast to the activity of the brain enzyme, that of liver microsomal TDPase increased stepwise after birth. Thiamine pyrophosphokinase activity in the cerebellum increased from birth to 3 weeks and then decreased, whereas that in the cerebral cortex and liver showed less change during development. TDP and thiamine monophosphate (TMP) levels increased after birth and plateaued at 3 weeks whereas TTP and thiamine levels showed little change during development in the cerebral cortex and cerebellum. The contents of thiamine and its phosphate esters in the liver showed more complicated changes during development. It is concluded that thiamine metabolism in the brain changes during postnatal development in a different way from that in the liver and that the development of thiamine metabolism differs among brain regions.  相似文献   

5.
In the developing rat brain, the enzymatic formation of prostaglandin D2 from prostaglandin H2 increased 60-fold from day 12 of gestation to birth. The activity still rose gradually to the highest level (90 nmol/min/g wet tissue) at day 7 after birth. The activities of prostaglandin E2 and F2 alpha synthetases in rat brain were highest at gestational age 19 days (30 nmol/min/g wet tissue), respectively. The specific activity of NADP-dependent 15-hydroxy-prostaglandin D2 dehydrogenase in rat brain was highest at the earliest gestational age we examined (day 12 of gestation). The specific bindings of prostaglandin D2 and E2 to the crude mitochondrial fraction of rat brain were observed from day 16 of gestation and increased to day 7 after birth. Although the activities of the enzymes responsible for prostaglandin metabolism were unchanged postmaturationally, the maximal concentrations of the binding sites on the synaptic membrane for both prostaglandins D2 and E2 decreased with constant affinity to less than one-sixth with age from 1 week to 24 months after birth. These results indicate that prostaglandins may play important roles during maturation and aging in rat brain.  相似文献   

6.
Abstract: Cellular energetic parameters including the intramitochondrial and cytosolic [NAD+]/[NADH] ratios, the cellular [ATP]/[ADP][Pi and [creatine phosphate]/[creatine] ratios, the concentration of cytochrome c and its redox state and the respiratory rate were studied in suspensions of rat brain synapto-somes isolated from nembutal-anesthetized and nonanesthetized animals. The ratio of [3-hydroxybutyrate] to [acetoacetate] was 2.0 in synaptosomes isolated from nonanesthetized rats and 5.55 in those from anesthetized animals. The [lactate]/[pyruvate] ratio was 3.8 in the former and 10.9 in the latter preparation. The [ATP]/[ADP][Pi] was 3838 M−1 in the synaptosomes from anesthetized rats and 840 M−1 in those from nonanesthetized animals and the [creatine phosphate]/[creatine] ratios were 0.79 and 0.39, respectively. Cytochrome c was about 15% reduced in both preparations; however, the mitochon-drial cytochrome concentration was almost twofold higher in the synaptosomes from nonanesthetized animals. Calculations of the free energy relationships between the mitochondrial redox reactions and ATP synthesis showed that in synaptosomes isolated from the brains of nembutal-anesthetized rats the first two sites of oxidative phosphorylation were at near-equilibrium, in agreement with observations for intact cells and tissues. The energetic parameters for synaptosomes from anesthetized rats are very similar to the values for intact whole brain, whereas those for synaptosomes from nonanesthetized rats are lower and suggest that nembutal anesthesia protects against some irreversible damage to the synaptosome during isolation. It is concluded that synaptosomes isolated from brains of nembutal-anesthetized rats can be used as a convenient model system for studies of neuronal metabolism.  相似文献   

7.
Enzymatic hydrolysis of the pyrophosphate bond of CDP-diglyceride (CDP-DG), previously shown to occur in bacteria, is demonstrable in mammalian tissues. Activity was enriched in a lysosomal fraction obtained from guinea pig cerebral cortex and was purified 92-fold relative to the homogenate by a combination of XM-300 ultrafiltration and DEAE-cellulose column chromatography. When incubated with CDP-dipalmitin, the purified enzyme produced stoichiometric amounts of CMP and phosphatidate. dCDP-DG served as a substrate, while ADP-DG was an inhibitor, as were 5'-AMP and 5'-dAMP. CDP-DG hydrolysis was not affected by the presence of excess amounts of CDP-choline, CDP-glycerol, sodium pyrophosphate, or cyclic 3',5'-AMP.  相似文献   

8.
The activities of ATP-citrate lyase in frog, guinea pig, mouse, rat, and human brain vary from 18 to 30 μmol/h/g of tissue, being several times higher than choline acetyltransferase activity. Activities of pyruvate dehydrogenase and acetyl coenzyme A synthetase in rat brain are 206 and 18.4 μmol/h/g of tissue, respectively. Over 70% of the activities of both choline acetyltransferase and ATP-citrate lyase in secondary fractions are found in synaptosomes. Their preferential localization in synaptosomes and synaptoplasm is supported by RSA values above 2. Acetyl CoA synthetase activity is located mainly in whole brain mitochondria (RSA, 2.33) and its activity in synaptoplasm is low (RSA, 0.25). The activities of pyruvate dehydrogenase, citrate synthase, and carnitine acetyltransferase are present mainly in fractions C and Bp. No pyruvate dehydrogenase activity is found in synaptoplasm. Striatum, cerebral cortex, and cerebellum contain similar activities of pyruvate dehydrogenase, citrate synthase, carnitine acetyltransferase, fatty acid synthetase, and acetyl-CoA hydrolase. Activities of acetyl CoA synthetase, choline acetyltransferase and ATP-citrate lyase in cerebellum are about 10 and 4 times lower, respectively, than in other parts of the brain. These data indicate preferential localization of ATP-citrate lyase in cholinergic nerve endings, and indicate that this enzyme is not a rate limiting step in the synthesis of the acetyl moiety of ACh in brain.  相似文献   

9.
Identification of the Adenosine Uptake Sites in Guinea Pig Brain   总被引:3,自引:0,他引:3  
Nitrobenzylthioinosine (NBMPR), a potent and specific inhibitor of nucleoside transport, was employed as a photolabile probe of the adenosine transporter in guinea pig brain membranes. Reversible, high-affinity binding of [3H]NBMPR to a crude preparation of guinea pig brain membranes was demonstrated (apparent KD 0.075 +/- 0.012 nM; Bmax values of 0.24 +/- 0.04 pmol/mg protein). Adenosine, uridine, dipyridamole, and nitrobenzylthioguanosine inhibited high-affinity binding. Low concentrations of cyclohexoadenosine (10-300 nM) had no effect on NBMPR binding. These properties of the high-affinity NBMPR binding sites were consistent with NBMPR binding to the nucleoside transport protein. Exposure of brain membranes in the presence of [3H]NBMPR and dithiothreitol, a free-radical scavenger, to ultraviolet light resulted in covalent incorporation of 3H into polypeptides of apparent MW 66,000-45,000, a value similar to that for the human erythrocyte nucleoside transporter. Covalent attachment of [3H]NBMPR was inhibited by adenosine, dipyridamole, and nitrobenzylthioguanosine.  相似文献   

10.
肥胖症是当今危急人类健康的一大难题.研究肥胖的机制,并达到防御和治疗肥胖症是研究的最终目的.自2001年以来,研究发现,黑色素浓集激素受体2(melanin-concentrating hormone receptor-2, MCHR2) 与肥胖间存在紧密联系.但研究进展缓慢,主要瓶颈是没找到合适的动物模型.本课题通过对多种动物的筛选,首次发现豚鼠大脑中存在MCHR2的高度表达,并运用RT-PCR、Northern印迹和Western 印迹等方法进行了验证.这一结果为将豚鼠作为MCHR2功能研究的动物模型提供了实验依据.  相似文献   

11.
Enzymes of Energy Metabolism in the Mudpuppy Retina   总被引:1,自引:0,他引:1  
Abstract: The distributions of glycogen phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, citrate synthase, malate dehydrogenase, β-hydroxyacyl CoA dehydrogenase, and adenylokinase were determined in the mudpuppy retina. Distinct differences were found in regard to the glycolytic and oxidative capacities of the various layers. In the outer retina, citric acid cycle enzymes were high while glycolytic enzymes were low. Synaptic zones were distinctly enriched in all energy-producing enzymes. Mudpuppy photoreceptors were found to be rich in phosphorylase but poor in glucose-6-phosphate dehydrogenase, suggestive of some evolutionary divergence from mammals in the metabolic machinery which is used to support the visual process.  相似文献   

12.
The rates of synthesis of dolichol-linked oligosaccharide intermediates and protein N-glycosylation increased substantially during a developmental period corresponding to glial differentiation in primary cultures of embryonic rat brain. In this study developmental changes in three enzymes involved in dolichyl phosphate (Dol-P) metabolism have been examined by in vitro assays and correlated with the induction pattern for lipid intermediate synthesis and protein N-glycosylation. Dolichyl pyrophosphate (Dol-P-P) phosphatase activity was relatively low during the first 9 days in culture, but it increased significantly between days 9 and 25. Dol-P-P phosphatase did not change appreciably between days 22 and 30 in culture. A kinetic analysis of the developmental change in Dol-P-P phosphatase activity revealed that the Vmax increased 10-fold between days 4 and 22, and there was also a significant change in the apparent Km for Dol-P-P. Dolichol kinase activity increased during the period (9-15 days) when there was a significant induction in oligosaccharide-lipid synthesis and protein N-glycosylation, and then declined in parallel with lipid intermediate synthesis and protein N-glycosylation. Dol-P phosphatase activity was present at relatively low levels for the first 9 days in culture, but it increased steadily between days 9 and 30. A kinetic comparison of the activity in membrane fractions from brain cells cultured for 9 and 25 days indicated that there was a 10-fold increase in enzyme protein with unaltered affinity for Dol-P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) levels in seven regions of rat brain were estimated by photometric measurement of immunofluorescence in cryostat-cut sections. When compared with basal rates of glucose metabolism in these regions, estimated by the 6-[14C]glucose method, a significant correlation was observed. Thus, hexokinase content reflects metabolic energy demands.  相似文献   

14.
The stoichiometries of glycolysis and pyruvate oxidation were determined in cortical synaptosomes under varying rates of ATP consumption. Glycolysis was measured by using D-3-[3H]glucose as a marker and pyruvate oxidation by using D-3,4-[14C]glucose, which has to be metabolized to 1-[14C]pyruvate before being decarboxylated by the pyruvate dehydrogenase complex of intrasynaptosomal mitochondria. Cytosolic free Ca2+ concentration [( Ca2+]c) was determined in parallel and was manipulated by using EGTA in the incubation. The results show that in nonstimulated synaptosomes glycolysis and pyruvate oxidation are tightly coupled and stoichiometric. In the absence of Ca2+, when [Ca2+]c drops from 260 nM to 40 nM, glucose utilization increases, following the increase in energy demand, which has been shown to be due to elevated Na+ cycling. KCl depolarization, veratridine, and a mitochondrial uncoupler, carbonyl cyanide m-chlorophenylhydrazone, all stimulate glycolysis and pyruvate oxidation stoichiometrically, independently of the presence of external Ca2+. A rise in [Ca2+]c, therefore, is not required to regulate mitochondrial pyruvate metabolism. It is concluded that synaptosomes exhibit a high degree of respiratory control, that they rely on glucose oxidation for their energetics, and that stimulation of energy production can be achieved independently of changes in [Ca2+]c.  相似文献   

15.
An isolated rat brain preparation was perfused using glucose-free (=aglycemic) media. The high-energy phosphates, substrates of the glycolytic pathway, free atnino acids, acetylcholine as well as the intracellular distribution of hexokinase activity were determined in brain tissues. The EEG was evaluated visually. The levels of glycolytic substrates, glutamate, and glutamine in cortical tissue decreased after aglycemic perfusion, whereas the aspartate level increased and the GABA level remained unchanged. The high-energy phosphate content seemed to be unaffected for about 15 min of aglycemic perfusion and fell significantly after 20 min. The EEG of the isolated brain changed rapidly after starting aglycemic perfusion and became isoelectric after 12–15 min. Hyperglycemic perfusion (35 mmol glucose per liter perfusion medium) did not alter the energy metabolism of the isolated brain. The breakdown of cerebral energy metabolism and of EEG activity was postponed when thiopental was added to the perfusion medium. The soluble hexokinase activity measured in cortical tissue was reduced after aglycemic perfusion and was enhanced after thiopental. Hyperglycemic perfusion did not influence the intracellular hexokinase distribution. The acetylcholine level in the striatum of the isolated rat brain was significantly decreased by aglycemia and was increased in hypothalamus by thiopental. It was suggested that hexokinase bound to the mitochondrial membrane may play an important role in the relationship of energy metabolism and neuronal activity.  相似文献   

16.
17.
The activities (Vmax) of several enzymes of purine nucleotide metabolism were assayed in premature and mature primary rat neuronal cultures and in whole rat brains. In the neuronal cultures, representing 90% pure neurons, maturation (up to 14 days in culture) resulted in an increase in the activities of guanine deaminase (guanase), purine-nucleoside phosphorylase (PNP), IMP 5'-nucleotidase, adenine phosphoribosyltransferase (APRT), and AMP deaminase, but in no change in the activities of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), adenosine deaminase, adenosine kinase, and AMP 5'-nucleotidase. In whole brains in vivo, maturation (from 18 days of gestation to 14 days post partum) was associated with an increase in the activities of guanase, PNP, IMP 5'-nucleotidase, AMP deaminase, and HGPRT, a decrease in the activities of adenosine deaminase and IMP dehydrogenase, and no change in the activities of APRT, AMP 5'-nucleotidase, and adenosine kinase. The profound changes in purine metabolism, which occur with maturation of the neuronal cells in primary cultures in vitro and in whole brains in vivo, create an advantage for AMP degradation by deamination, rather than by dephosphorylation, and for guanine degradation to xanthine over its reutilization for synthesis of GMP. The physiological meaning of the maturational increase in these two ammonia-producing enzymes in the brain is not yet clear. The striking similarity in the alterations of enzyme activities in the two systems indicates that the primary culture system may serve as an appropriate model for the study of purine metabolism in brain.  相似文献   

18.
19.
三个品种豚鼠血液蛋白多态性的比较分析   总被引:1,自引:0,他引:1  
目的比较分析白毛黑眼(WHBE)豚鼠和DHP豚鼠、花色豚鼠三个品种豚鼠在13个血液蛋白位点上的多态性。方法采用垂直板浓度和pH均不连续的聚丙烯酰胺凝胶电泳法对WHBE豚鼠、DHP豚鼠和花色豚鼠的66只个体的后白蛋白(Po)、前转铁蛋白1(Prt1)、前转铁蛋白2(Prt2)、转铁蛋白1(Tf1)、转铁蛋白2(Tf2)、后转铁蛋白(Ptf)、慢α球蛋白(Sag)、红细胞酯酶(Es)、血清酯酶1(Est1)、血清酯酶3(Est3)、血红蛋白α(Hbα)、血红蛋白β(Hbβ)和白蛋白(Alb)共13个蛋白位点进行了电泳及染色,再利用电泳图谱对各蛋白位点基因频率、平均杂合度和遗传距离进行计算,然后结合聚类分析。结果 Tf1、Tf2、Ptf、Est1和Es在三个豚鼠品种中表现为多态,其中Tf1可作为识别WHBE豚鼠的遗传标记。Po、Prt1、Prt2、Sag、Est3、Hbα、Hbβ和Alb等位点在三个豚鼠品种中的表型一致。Hardy-Weinberg平衡状态分析表明,Es为DHP豚鼠的高度不平衡位点。Ptf为花色豚鼠的高度不平衡位点。在WHBE豚鼠中,Tf1为高度不平衡位点,Est1为不平衡位点。在三个豚鼠品种中,所检测的13个蛋白位点的平均杂合度的排列顺序为:花色豚鼠(0.350 1)〉WHBE豚鼠(0.339 0)〉DHP豚鼠(0.313 5)。聚类分析结果表明,花色豚鼠和WHBE豚鼠的遗传遗传距离最近(0.064 3),DHP豚鼠与花色豚鼠的遗传距离最远(0.179 2)。结论利用这些蛋白位点可以有效鉴别WHBE豚鼠、DHP豚鼠和花色豚鼠血液蛋白的遗传多态性。  相似文献   

20.
The effect of triethyltin-chloride (TET), a highly neurotoxic compound, on the cellular metabolism of rat brain astrocytes in vitro was examined by nuclear magnetic resonance (NMR) spectroscopy. 5-week-old cultures were exposed to TET (0.2–40 M) either for (1) acute (3h), (2) 24 h, or (3) chronic treatment (8 d). Cells were labeled with 1-13C-glucose, cell extracts were prepared and 31P, 1H, and 13C spectra were analyzed. Cytotoxic effects of TET were assessed by vital dye uptake assay using neutral red (NR) and by exclusion of trypan blue (TB). Cells were examined ultrastructurally by electron microscopy. The data show that the major target of TET at concentrations already causing morphological effects on cultured astrocytes is not the energy metabolism, but that TET rather alters the intracellular concentrations of organic osmolytes, such as myo-inositol, taurine and hypotaurine, which are part of the control of ion and volume regulation and osmotic balance in astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号