首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary InNitella cells with low pump activity, the electrical characteristics of membrane transport are mainly determined by K+ transport. Current-voltage curves were measured at outside K+ concentrations ranging from 0.1 to 100 mol m–3. Above 1 mol m–3, current saturated at positive and at very negative potentials. It was found that theseI–V curves could be fitted by a Class 1, case 1 reaction kinetic model, which is a cyclic reaction scheme with one pair of rate constants sensitive to membrane potential (Class I) and neutral transporter (or electrically charged substrate-transporter complex, case I). The analysis revealed the relative rate constants of a 3-state model. From the linear dependence of the rate constant of substrate binding (k 32) on [K+] a the stoichiometry of 1 K+/cycle was obtained. The complex transporter substrate is very unstable (very high value ofK 23) resulting in a very low density of this state and in what can be called Mitchellian behavior; namely, the driving forces resulting from the electrical and from the concentration gradient can hardly be distinguished.  相似文献   

2.
The controlling effect of ATP, K+ and Na+ on the rate of (Na+ + K+)-ATPase inactivation by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) is used for the mathematical modelling of the interaction of the effectors with the enzyme under equilibrium conditions.
1. 1. Of a series of conceivable interaction models, designed without conceptual restrictions to describe the effector control of inactivation kinetics, only one fits the experimental data described in a preceding paper.
2. 2. The model is characterized by the coexistence of two binding sites for ATP and the coexistence of two separate binding sites for K+ and Na+ on the enzyme-ATP complex. On the basis of this model, the effector parameters fitting the experimental data most closely are estimated by means of nonlinear least-squares fits.
3. 3. The apparent dissociation constants for ATP of the enzyme-ATP complex or of the enzyme-(ATP)2 complex are computed to lie near 0.0024 mM and 0.34 mM, respectively, irrespective of whether K+ and Na+ were absent or K+ and K+ plus Na+, respectively, were present in the experiments.
4. 4. The origin of the high and the low affinity site for binding of ATP to the (Na+ + K+)-ATPase molecule is traced back to the coexistence of two catalytic centres which, although primarily equivalent as to the reactivity of their thiol groups with NBD-Cl, are induced into anticooperative communication by ATP binding and thus show an induced geometric asymmetry.
Keywords: (Na+ + K+)-ATPase; SH-group alkylation; Inactivation kinetics; Mathematical modelling; Substrate affinity  相似文献   

3.
Xie XL  Chen QX  Gong M  Wang Q  Shi Y 《The protein journal》2005,24(5):267-273
The effects of guanidinium chloride (GuHCl) on the activity of Penaeus vannamei β-N-acetyl-d-glucosaminidase (NAGase) have been studied. The results show that GuHCl, at appropriate concentrations, can lead to reversible inactivation of the enzyme, and the IC50 is estimated to be 0.6 M. Changes of activity and conformation of the enzyme in different concentrations of GuHCl have been studied by measuring the fluorescence spectra and its relative activity after denaturation. The fluorescence intensity of the enzyme decreases distinctly with increasing GuHCl concentrations, and the emission peaks appear red-shifted (from 339.4 to 360 nm). Changes in the conformation and catalytic activity of the enzyme are compared. The extent of inactivation is greater than that of conformational changes, indicating that the active site of the enzyme is more flexible than the whole enzyme molecule. The kinetics of inactivation has been studied using the kinetic method of the substrate reaction. The rate constants of inactivation have been determined. The value of k+0 is larger than that of k+0 which suggests that the enzyme is protected by substrate to a certain extent during guanidine denaturation.  相似文献   

4.
Summary The current-voltage (I/V) technique was employed to investigate the different electrophysiological states of theChara plasmalemma and their interaction under a range of conditions. In K+ state the membrane became very permeable (conductances >20 S m 2) as [K+]0 increased to 10mm. As the cells were then easily damaged by the voltage-clamp procedures, it was difficult to determine the saturation K+ conductance. TEA (tetraethylammonium chloride) reversibly blocked the K+ channels, but had no effect on theI/V curve of the pump state, indicating that the K+ channels were not participating in this state. Acid pH0 (4.5) diminished the K+ conductance, but did not alter the response of the K+ channels to change in [K+]0. Alkaline pH0 (11.0) madeChara resting PD bistable: the PD either stayed near the estimatedE K and theI/V curve showed a negative conductance region typical of the K+ state, or it hyperpolarized and the near-linearI/V profile of the proton-permeable state was observed.  相似文献   

5.
L. D. Polley  D. D. Doctor 《Planta》1985,163(2):208-213
Putative potassium-transport-deficient mutant strains of Chlamydomonas reinhardtii Dang. were induced by ultra-violet mutagenesis and were identified by their dependence on abnormally high concentrations of potassium for growth. Potassium transport studies employing 86Rb as a tracer were carried out with wild-type cells and with three independently isolated KDP (potassium-dependent phenotype) clones. Wildtype cells exhibit two transport activities. Transport activity A was expressed when cells were grown in medium supplemented with 10 mM KCl. The transporter with type-A activity does not discriminate between either Rb+ or K+ as a substrate and has a Km for Rb+ equal to 1 mM and a Vmax equal to 31 nmol Rb+ h-1 10-6 cells. Transport activity B was expressed when cells were starved of potassium for 24 h. The transporter with type-B activity prefers K+ to Rb+ as a substrate; it has a Km for Rb+ equal to 2.5 mM and a Vmax equal to 210 nmol Rb+ h-1 10-6 cells. All three mutant clones exhibit transport activity comparable to type-A when grown in 10 mM KCl. When starved of potassium for 24 h, two KDP clones demonstrate no transport activity and the third clone continues to exhibit only type-A activity.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DES diethylstilbesterol - KDP potassium-dependent phenotype  相似文献   

6.
An immobilized d-hydantoinase was characterized and employed to produce n-carbamoyl-d-p-hydroxyphenylglycine (CpHPG) in a repeated batch process. The Vmax and Km of the immobilized d-hydantoinase at 50°C were 6.28 mm min−1 g−1 biocatalyst and 71.6 mm, respectively. The product CpHPG did not inhibit the activity of d-hydantoinase. Optimal reaction temperature was 60°C. A decrease in activity of immobilized d-hydantoinase due to thermal inactivation could be described as first-order decay; the deactivation energy was 23.97Kcal mol−1. Under process conditions (50°C, 10% w/v substrate, and pH 8.5), the half-life of the immobilized d-hydantoinase was eight batches. The attrition of immobilized d-hydantoinase particles with a large amount of insoluble substrate particles during stirring resulted in fine biocatalyst particles. In addition to the thermal inactivation, the loss of fine biocatalyst particles during the recovery step contributed to the low operational stability.  相似文献   

7.
Summary The sigmoidal current-voltage curve (i p -V curve) of the electrogenic H+-pump of theChara membrane was simulated satisfactorily with a simple reaction kinetic model which assumed consecutive changes in state of H+-ATPase. Four rate constants, i.e., forward and backward ones in voltage-dependent and-independent steps could be evaluated from the data. The emf of the pump (E p ), the voltage at which the pump current changes its sign, varies only slightly with temperature. However, the pump current (i p ) is highly temperature dependent, and there-fore the conductance (g p ) of the pump, calculated as the chord conductance from thei p-V curve, is also highly voltage dependent having a peak at a level somewhat less negative than the resting potential. In contrast tog p , the conductance (i p ) of the passive channel does not change appreciably with temperature. Arrhenius plots ofg p and also of the rate constants showed a clear bend at about 19°C. Great temperature dependence of the kinetic parameters offers useful information on the pumping mechanism of theChara membrane.  相似文献   

8.
Summary Guard cells of higher plants control transpirational water loss and gas exchange for photosynthesis by opening and closing pores in the epidermis of the leaf. To power these turgordriven movements, guard cells accumulate (and lose) 200 to 400mm (1 to 3 pmol/cell) K+, fluxes thought to pass through K+ channels in the guard cells plasma membrane. Steady-state current-voltage (I–V) relations of intactVicia guard cells frequently show large, outward-going currents at potentials approaching 0 mV. Since this current could be carried by K+ channels, its pharmacology and dependence on external K+ (K v + ) has been examined under voltage clamp over an extended potential range. Measurements were carried out on cells which showed little evidence of primary electrogenic transport, thus simplifying analyses. Clamping these cells away from the free-running membrane potential (V m ) revealed an outward-rectifying current with instantaneous and time-dependent components, and sensitive to the K+ channel blocker tetraethylammonium chloride. The current declined also under metabolic blockade with NaCN and in the presence of diethylstilbesterol, responses which were attributed to secondary effects of these inhibitors. The putative K+ current rose with voltage positive toV m but it decayed over two voltage ranges, one negative toV m and one near +100 mV, to give steady-stateI–V relations with two regions of negative (slope) conductance. Voltage-dependent and kinetic characteristics of the current were affected by K v + and followed the K+ equilibrium potential. Against a (presumably) low background of primary ion transport, the K+ current contributed appreciably to charge balance atV m in 0.1mm as well as in 1 to 10mm K v + . Thus, gating of these K+ channels compensates for the prevailing K+ conditions to ensure net K+ movement out of the cell.  相似文献   

9.
Summary The yeastRhodotorula gracilis accumulated glucuronate by an H+/symport. The transport was electroneutral, driven by the chemical gradient of protons pH. The observed stoichiometry amounted to 1 proton per molecule glucuronate. At pH 4, the half-saturation constantK T was at its lowest value (K T =8mm), whereas the maximal velocityV T reached a maximum (V T =15 nmol/min×mg dry wt). Monosaccharides competitively inhibited the uptake of glucuronate and vice versa. Hence, the two substrates share the same transport system. The steady-state accumulation of glucuronate reflected the course of the pH gradient. It is concluded that glucuronate is transported as an anionic substrate by the protonated carrier, the driving force being the chemical gradient of the H+ (pH). The ternary carrier/H+/glc-COOO-complex is electroneutral and independent of the membrane potential. Simultaneous uptake of organic acids (acetic or propionic acid) which is also energized by the pH gradient led to a noncompetitive inhibition of glucuronate transport. Thus, manipulation of the driving force, pH, reducedV T without affectingK T . Kinetic and energetic arguments are presented which stronly suggest that only the protonated carrier is catalytically active inR. gracilis.  相似文献   

10.
The two-microelectrode voltage clamp technique was used to examine the kinetics and substrate specificity of the cloned renal Na+/myo-inositol cotransporter (SMIT) expressed in Xenopus oocytes. The steady-state myo-inositol-induced current was measured as a function of the applied membrane potential (V m ), the external myo-inositol concentration and the external Na+ concentration, yielding the kinetic parameters: K 0.5 MI , K 0.5 Na , and the Hill coefficient n. At 100 mM NaCl, K 0.5 MI was about 50 m and was independent of V m . At 0.5 mm myo-inositol, K 0.5 Na ranged from 76 mm at V m =–50 mV to 40 mm at V m =–150 mV. n was voltage independent with a value of 1.9±0.2, suggesting that two Na+ ions are transported per molecule of myo-inositol. Phlorizin was an inhibitor with a voltage-dependent apparent K I of 64 m at V m =–50 mV and 130 m at V m = –150 mV. To examine sugar specificity, sugar-induced steady-state currents (at V m =–150 mV) were recorded for a series of sugars, each at an external concentration of 50 mm. The substrate selectivity series was myo-inositol, scyllo-inositol > l-fucose > l-xylose > l-glucose, d-glucose, -methyl-d-glucopyranoside > d-galactose, d-fucose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose > d-xylose. For comparison, oocytes were injected with cRNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) and sugar-induced steady-state currents (at V m =–150 mV) were measured. For oocytes expressing SGLT1, the sugar selectivity was: d-glucose, -methyl-d-glucopyranoside, d-galactose, d-fucose, 3-O-methyl-d-glucose > d-xylose, l-xylose, 2-deoxy-d-glucose > myo-inositol, l-glucose, l-fucose. The ability of SMIT to transport glucose and SGLT1 to transport myo-inositol was independently confirmed by monitoring the Na+-dependent uptake of 3H-d-glucose and 3H-myo-inositol, respectively. In common with SGLT1, SMIT gave a relaxation current in the presence of 100 mm Na+ that was abolished by phlorizin (0.5 mm). This transient current decayed with a voltage-sensitive time constant between 10 and 14 msec. The presteady-state current is apparently due to the reorientation of the cotransporter protein in the membrane in response to a change in V m . The kinetics of SMIT is accounted for by an ordered six-state nonrapid equilibrium model. Present address: W.M. Keck Biotechnology Resource Laboratory, Boyer Center for Molecular Medicine, Rm, 305A, Yale University, 295 Congress Ave., New Haven, Connecticut 06536-0812 Present address: National Institute for Physiological Sciences, Department of Cell Physiology, Okazaka, 444, JapanContributed equally to this workWe thank John Welborn for the HPLC analysis of the sugar substrates. This work was supported by grants from the National Institutes of Health DK19567, DK42479 and NS25554.  相似文献   

11.
The effects of thyroidectomy (Tx) and subsequent treatment with 3,5,3′-triiodothyronine (T3) or combined replacement therapy (TR) with T3 and thyroxine (T4) on the substrate and temperature kinetics properties of Na+,K+-ATPase and lipid/phospholipid makeup of rat kidney microsomes were examined. Enzyme activity was somewhat high in the hypothyroid (Tx) animals and increased significantly following T3 treatment, while TR treatment caused a decrease. In the Tx and T3 groups enzyme activity resolved in two kinetic components, while in the TR group the enzyme showed allosteric behavior up to 0.5 mm ATP concentration. The K m and V max values of both the components decreased in Tx animals without affecting the catalytic efficiency. T3 treatment caused a significant increase in the V max of both the components, with a significant increase in the catalytic efficiency, while the K m values were not upregulated. The TR regimen lowered the K m and V max of component II but improved the catalytic efficiency. Thyroid status-dependent changes were also noted in the temperature kinetics of the enzyme. Regression analysis revealed that changes in the substrate and temperature kinetics parameters correlated with specific phospholipid components.  相似文献   

12.
Summary We have examined transport and membrane binding of 6-diazo-5-oxo-l-norleucine (DON, a photoactive diazo-analogue of glutamine) and their relationships to glutamine transport in Xenopus laevis oocytes. DON uptake was stereospecific and saturable (V max of 0.44 pmol/oocyte · min and a K m of 0.065 mm). DON uptake was largely Nau+ dependent (80% at 50 m DON) and inhibited (>75%) by glutamine and arginine (substrates of the System B0,+ transporter) at 1 mm. Glutamine and DON show mutual competitive inhibition of Na+-dependent transport. Preincubation of oocytes in medium containing 0.1 mm DON for 24 or 48 hr depressed the V max for System B0,+ transport (as measured by Na+-dependent glutamine uptake), this effect was highly specific (neither d-DON nor the System B0,+ substrates glutamine and d-alanine showed any independent effect) and required Na+ ions. Glutamine (1 mm in preincubation medium) protected transport from inhibition by DON. The possibility that specific inactivation of System B0,+ by DON reflects attachment of DON to the transporter was tested by examining the binding of [14C]DON to Xenopus oocyte membranes. Oocytes incubated in 100 mm NaCl in the presence of [14C]DON for up to 48 hr showed 2.4-fold higher 14C-binding to membranes than oocytes incubated in choline chloride. Na+-dependent DON binding (31 ± 11 fmol/g membrane protein) was suppressed by external glutamine, arginine or alanine and was largely confined to a membrane protein fraction of 48–65 kDa (as assessed by SDS-polyacrylamide gel electrophoresis). The present studies indicate that DON and glutamine uptake in oocytes are both mediated by System B0,+ and demonstrate that DON binding to a particular membrane protein fraction is associated with inactivation of the transporter, offering the prospect of using [14C]DON as a covalent label for the transport protein in order to facilitate its isolation and subsequent biochemical characterization.This work was supported by The Wellcome Trust, Action Research for the Crippled Child, Ajinomoto GmbH, Pfrimmer GmbH, the Rank Prize Funds, the Medical Research Council and the University of Dundee. We are grateful to Dr. C.I. Pogson (Wellcome Research Laboratories) and Drs. J.C. Ellory and B. Elford (University of Oxford) for gifts of [14C]DON.  相似文献   

13.
Summary At membrane potentials different fromE K, the temperature effect on membrane potential ofNitella consists of two components. One of them changes its sign atE K, the other one does not. This leads to the assignment of these components to changes in the K+ channel and in the H+ pump, respectively. It is shown that the fast time constant (3 to 30 sec) of the temperature effect on the H+ pump measured as a change in membrane potential and that of the temperature effect on the K+ channel measured as a change in resistance (having about twice the value of that of the pump) are sensitive to light intensity. Both time constants measured inNitella become smaller if light intensity increases from 0 to 15 Wm–2. This supports the suggestion of Fisahn and Hansen (J. Exp. Bot. 37:440–460, 1986) that temperature acts on plasmalemma transport via photosynthesis via the same mechanism as light does.  相似文献   

14.
The molar yields (g cell/mol) forAlcaligenes faecalis, Pseudomonas stutzeri, Paracoccus denitrificans andPseudomonas perfectomarinus batch cultures, under nitrous oxide (N2O) as the electron acceptor, were 11.2, 8.2, 6.1 and 4.4, respectively.Paracoccus denitrificans andPseudomonas perfectomarinus, which had the slowest growth rates, gave the lowest yields. Large maintenance energy costs may be partially responsible for this. The growth efficiencies ofA. faecalis andPs. perfectomarinus on N2O indicate that the numbers of sites for oxidative phosphorylation in the electron transport system associated with N2O reduction are about 49% and 39% of those in the electron transport system associated with O2 respiration, respectively.  相似文献   

15.
Two days after exposure of roots to15N labeled N2, partitioning of biologically fixed N into leaves, stems, peduncles, pods, roots and nodules was measured in the early pod development stage of cowpea (Vigna unguiculata (L.). The experimental objective was to determine the quantity of biologically fixed N that is incorporated into vegetative tissue before being mobilized to pods. For the three varieties of cowpea included in the experiment a maximum of 50% of the N, biologically fixed two days earlier, was contained in the pods. The remaining N was distributed throughout the vegetative portion of the plant with at least 30% in stems and leaves which indicates that much of the newly fixed N must cycle through a N pool in these tissues before reaching the pods.  相似文献   

16.
The reaction of plasma membrane ATPase from yeast with Mg2+ and Mg · ATP was studied in a temperature range of 10 – 30°C. The random mechanism of activation by Mg2+ and the pseudocompetitive inhibition at higher concentrations was not altered when the temperature was varied, nor were the kinetic constants representing substrate binding. However, at low temperature, the affinity of the enzyme for Mg2+ is greatly reduced. The Arrhenius plot of log V vs. 1/T shows straight lines with an inflection point at 24°C, which disappears in the presence of detergent. Calorimetric studies of the plasma membranes show a transition point at the same temperature. From these findings we suppose that Mg2+ is bound at a regulatory site of the ATPase, which is influenced by the surrounding phospholipids.  相似文献   

17.
The maltose transport system of Saccharomyces cerevisiae exists in two forms with Km values of approx. 4 mM and 70 mM, respectively. The Vmax of the high-Km form is about 4-fold greater than the Vmax of the low one. A rapid and irreversible inactivation of both forms is detected on protein synthesis impairment. This inactivation is stimulated by the catabolism of fermentable sugars and prevented during ethanol catabolism. It is concluded that both forms of the maltose transport system are regulated by catabolite inactivation.  相似文献   

18.
Vacuolar proton pumping pyrophosphatase (H+-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PPi hydrolysis. A histidine-specific modifier, diethylpyrocarbonate (DEPC), could substantially inhibit enzymic activity and H+-translocation of vacuolar H+-PPase in a concentration-dependent manner. Absorbance of vacuolar H+-PPase at 240 nm was increased upon incubation with DEPC, demonstrating that an N-carbethoxyhistidine moiety was probably formed. On the other hand, hydroxylamine, a reagent that can deacylate N-carbethoxyhistidine, could reverse the absorption change at 240 nm and partially restore PPi hydrolysis activity as well. The pK a of modified residues of the enzyme was determined to be 6.4, a value close to that of histidine. Thus, we speculate that inhibition of vacuolar H+-PPase by DEPC possibly could be attributed to the modification of histidyl residues on the enzyme. Furthermore, inhibition of vacuolar H+-PPase by DEPC follows pseudo-first-order rate kinetics. A reaction order of 0.85 was calculated from a double logarithmic plot of the apparent reaction constant against DEPC concentration, suggesting that the modification of one single histidine residue on the enzyme suffices to inhibit vacuolar H+-PPase. Inhibition of vacuolar H+-PPase by DEPC changes V max but not K m values. Moreover, DEPC inhibition of vacuolar H+-PPase could be substantially protected against by its physiological substrate, Mg2+-PPi. These results indicated that DEPC specifically competes with the substrate at the active site and the DEPC-labeled histidine residue might locate in or near the catalytic domain of the enzyme. Besides, pretreatment of the enzyme with N-ethylmaleimide decreased the degree of subsequent labeling of H+-PPase by DEPC. Taken together, we suggest that vacuolar H+-PPase likely contains a substrate-protectable histidine residue contributing to the inhibition of its activity by DEPC, and this histidine residue may located in a domain sensitive to the modification of Cys-629 by NEM.  相似文献   

19.
Summary Previous current/voltage (I/V) investigations of theChara K+ state have been extended by increasing the voltage range (up to +200 mV) through blocking the action potential with La3+. A region of negative slope was found in theI/V characteristics at positive PD's, similar to that already observed at PD's more negative than the resting level. These decreases in membrane currents at PD's more negative than –150 mV and at PD's close to 0 or positive are thought to arise from the K+ channel closure. Both the negative slope regions could be reversibly abolished by 0.1mm K+, 20mm Na+, more than 10mm Ca2+ or 5mm tetraethylammonium (TEA). The K+ channels are therefore blocked by TEA, closed by low [K+] o or high [Ca2+] o and are highly selective to K+ over Na+. With the K+ channels closed, the remainingI/V profile was approximately linear over the interval of 400 mV (suggesting a leakage current), but large rectifying currents were observed at PD's more positive than +50 mV. These currents showed a substantial decrease in high [Ca2+] o , sometimes displayed a slight shift to more positive PD's with increasing [K+] o and were unaffected by TEA or changes in [Na+] o . The slope of the linear part of theI/V profile was steeper in low [K+] o than in TEA or high [Na+] o (indicating participation of K+, but not Na+, in the leak current). Diethylstilbestrol (DES) was employed to inhibit the proton pump, but it was found that the leakage current and later the K+ channels were also strongly affected.  相似文献   

20.
Summary A high molecular weight endoxylanase (XylF2) from the solid state culture of Aspergillus fumigatus MKU1 was purified to homogeneity by a combination of tube gel electrophoresis and electroelution methods. The purity was demonstrated by SDS-PAGE and the molecular mass of the XylF2 was found to be 66 kDa. The optimal pH and temperature for activity were 5.0 and 90 °C, respectively. The apparent K m and V max values of XylF2 with oat spelt xylan as substrate were 1.6 mg/ml and 3.25 mmol/min/mg protein respectively. The enzyme showed high activity towards oat spelt xylan while negligible activity was observed on carboxymethylcellulose. The activity of XylF2 was strongly inhibited by Hg2+, Ni2+, Zn2+, SDS and N-bromosuccinimide and stimulated by l-cysteine and iodoacetamide. The hydrolysis of oat spelt xylan by XylF2 released only xylo-oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号