首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system   总被引:14,自引:0,他引:14  
In addition to its role in calcium and skeletal homeostasis, there is increasing evidence that the hormonal form of vitamin D, 1, 25-dihydroxyvitamin D(3), appears to serve as a modulator of the immune system. We have determined the level of the 1, 25-dihydroxyvitamin D(3) receptor (VDR) in resting and activated lymphocytes by immuno- and ligand-binding assays. As expected from previous work, the total T lymphocyte population contains VDR whose levels are increased when activated and treated with 1, 25-dihydroxyvitamin D(3). Surprisingly, the highest concentrations of VDR are found in CD8 lymphocytes, although significant amounts are also present in CD4 lymphocytes. Furthermore, B lymphocytes do not contain detectable amounts of VDR. Cells of the monocyte/macrophage lineage possess small amounts of VDR that are not affected by activation but are increased by treatment with 1, 25-dihydroxyvitamin D(3). These results suggest that CD8 lymphocytes may be a major site of 1,25-dihydroxyvitamin D(3) action, while B lymphocytes are likely not directly regulated by 1, 25-dihydroxyvitamin D(3).  相似文献   

3.
The growing interest in1α,25(OH)(2)D(3), the hormonally active form of vitamin D(3), has prompted numerous efforts to synthesize vitamin D analogs as potential therapeutic agents, and some of these are already on the market and in clinical development. Although most vitamin D preparations developed thus far have focused on side-chain modifications, providing many useful analogues with high potency and selectivity, in recent years, modifications of the A-ring has attracted much attention because it can afford useful analogues exhibiting unique activity profiles as well. In this review we will focus on the current understanding of the relationship between selected modifications in the A-ring of the 1α,25(OH)(2)D(3) molecule, such as epimerization and/or substitution at C-1 and C-3, substitution at C-2, and removal of the 10,19-exocyclic methylene group, and their effect on biological potency and selectivity. Finally, suggestions for the structure-based design of therapeutically valuable A-ring vitamin D analogs will conclude the review.  相似文献   

4.
Vitamin D and 1,25-dihydroxyvitamin D3 as modulators in the immune system   总被引:4,自引:0,他引:4  
Treatment from weaning until old age with 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)) prevents diabetes in NOD mice. It is mainly through its actions on dendritic cells (DCs), that 1,25(OH)(2)D(3) changes the function of potentially autoreactive T lymphocytes. In contrast, early life treatment (from 3 to 70 days of age) of NOD mice with vitamin D or 1,25(OH)(2)D(3) did not influence final diabetes incidence at 200 days of age. Also in spontaneous diabetic BB rats, diabetes could not be prevented by early life treatment (from 3 to 50 days of age) with vitamin D (1000 IU per day) or 1,25(OH)(2)D(3) (0.2 microg/kg per day or 1 microg/kg per 2 days). However, when NOD mice were made vitamin D deficient in early life (until 100 days of age), diabetes onset occurred earlier and final incidence was increased. These data further support a role for vitamin D and its metabolites in the pathogenesis of type 1 diabetes in NOD mice.  相似文献   

5.
Objective: We have previously shown 1α,25‐dihydroxyvitamin D3 [1α,25‐(OH)2D3] to inhibit mitochondrial uncoupling protein 2 (UCP2) expression in adipocytes and that in vivo suppression of calcitriol levels with calcium‐rich diets increases UCP2 expression. Because UCP2 plays a significant role in the clearance of reactive oxygen species (ROS), we studied the effect of calcitriol on ROS production and ROS‐induced adipocyte proliferation. Research Methods and Procedures: ROS production in human and murine adipocytes was stimulated by high glucose (30 mM) or H2O2 (100 nM). Results: Both approaches resulted in increased ROS production by 27% to 100% (p < 0.05) and increased cell proliferation by 15% to 39% (p < 0.03). These effects were augmented by the addition of mitochondrial uncoupling inhibitor guanosine 5′‐diphosphate (GDP; 100 μM) or 1α,25‐(OH)2D3 (10 nM) and attenuated by UCP2 overexpression, suggesting that inhibition of mitochondrial uncoupling suppresses clearance of ROS and increases adipocyte proliferation. The addition of α ± tocopherol (1 μM) inhibited cell proliferation in adipocytes treated with either H2O2 or high glucose, indicating that ROS plays a major role in the regulation of cell proliferation in adipocytes. Moreover, stimulation of ROS with high glucose and H2O2 resulted in a 2‐ to 5‐fold increase in adipocyte intracellular calcium ([Ca2+]i; p < 0.001), and calcium channel antagonism (nifedipine, 10 μM) suppressed ROS induced calcium influx and cell proliferation, indicating that [Ca2+]i may also regulate ROS production and exert a mitogenic effect in adipocytes. Discussion: These data support a role of 1α,25‐(OH)2D3, UCP2, and [Ca2+]i in the regulation of adipocyte ROS production.  相似文献   

6.
A new fluoro analog of 1,25-dihydroxyvitamin D3, i.e., 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3, has been compared with the native hormone, 1,25-dihydroxyvitamin D3, in its biological potency, duration of action, and binding to the vitamin D transport protein and intestinal receptor protein. The fluoro analog is about 5 times more active than the native hormone in healing rickets and elevating serum inorganic phosphorus levels of rachitic rats. It is about 10 times more active than 1,25-dihydroxyvitamin D3 in increasing intestinal calcium transport and bone calcium mobilization of vitamin D-deficient rats fed a low-calcium diet. Furthermore, the higher biopotency is manifested in animals after oral dosing. Of great importance is that the action of the fluoro analog is longer lasting than that of 1,25-dihydroxyvitamin D3. This is especially apparent in the elevation of serum phosphorus and bone mineralization responses. The fluoro analog is only slightly less competent than 1,25-dihydroxyvitamin D3 in binding to the vitamin D transport protein in rat blood, and is one-third as competent as 1,25-dihydroxyvitamin D3 in binding to the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. These results suggest that the basis for increased potency of this analog is likely the result of less rapid metabolism.  相似文献   

7.
Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 alpha-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with increasing doses of vitamin D3, whereas it did not change in rats on a low-phosphorus diet given increasing doses of vitamin D3. In concert with these results, the 25-hydroxyvitamin D 1 alpha-hydroxylase activity was markedly increased by vitamin D3 administration to rats on a low-calcium diet, whereas the same treatment of rats on a low-phosphorus diet had no effect and actually suppressed the 1 alpha-hydroxylase in rats fed an adequate-calcium/adequate-phosphorus diet. The administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats on a low-calcium diet also increased the renal 25-hydroxy-vitamin D 1 alpha-hydroxylase activity. These results demonstrate that the regulatory action of 1,25-dihydroxyvitamin D3 on the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is complex and not simply a suppressant of this system.  相似文献   

8.
9.
10.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) from its precursor, 25-dihydroxyvitamin D(3) (25(OH)D(3)), is catalyzed by the mitochondrial cytochrome P450 enzyme 25-hydroxyvitamin D(3)-1alpha-hydroxylase (1alpha-hydroxylase). It has been generally assumed that 1,25(OH)(2)D(3) inhibits the activity of this enzyme by regulating its expression at the genomic level. We confirmed that 1,25(OH)(2)D(3) reduced the apparent conversion of 25(OH)D(3) to 1,25(OH)(2)D(3) while stimulating the conversion of 1,25(OH)(2)D(3) and 25(OH)D(3) to 1,24,25(OH)(3)D(3) and 24,25(OH)(2)D(3), respectively. However, 1,25(OH)(2)D(3) failed to reduce the abundance of its mRNA or its encoded protein in human keratinocytes. Instead, when catabolism of 1,25(OH)(2)D(3) was blocked with a specific inhibitor of the 25-hydroxyvitamin D(3)-24-hydroxylase (24-hydroxylase) all apparent inhibition of 1alpha-hydroxylase activity by 1,25(OH)(2)D(3) was reversed. Thus, the apparent reduction in 1alpha-hydroxylase activity induced by 1,25(OH)(2)D(3) is due to increased catabolism of both substrate and product by the 24-hydroxylase. We believe this to be a unique mechanism for autoregulation of steroid hormone synthesis.  相似文献   

11.
The 24-hydroxylase is the enzyme responsible for the first step in the catabolism of 1,25-dihydroxyvitamin D3, the active form of vitamin D. This enzyme was shown to be upregulated by 1,25-dihydroxyvitamin D3 itself and downregulated by parathyroid hormone (PTH). Upregulation of 24-hydroxylase by 1,25-dihydroxyvitamin D3 has been characterized; however, the mechanism by which PTH acts to downregulate 24-hydroxylase expression remains unknown. Here we report the cloning of the porcine 24-hydroxylase, and show that 1,25-dihydroxyvitamin D3-stimulated 24-hydroxylase mRNA and activity are repressed by PTH in AOK-B50 cells, a porcine kidney proximal tubule cell line with stably transfected opossum PTH receptors. Forskolin mimicked the effects of PTH consistent with in vivo data, and suppression by PTH was not due to changes in VDR levels. The first 1400 bp of the 24-hydroxylase promoter were not able to mediate the effects of PTH on a reporter gene. In view of the above findings we concluded that AOK-B50 cells are a suitable model for further studying the mechanism of action of PTH on 24-hydroxylase mRNA.  相似文献   

12.
13.
Ketoconazole (an inhibitor of vitamin D-24 hydroxylase) was used to study the role of self-induced 1,25-dihydroxyvitamin D3 (1,25-D3) metabolism on cellular responsiveness to 1,25-D3. Eighteen hours of treatment with 1,25-dihydroxy-[26,27-methyl-3H]vitamin D3 (1,25-[3H]D3) increased total 1,25-D3 receptors (VDR) from 60 to 170 fmol mg/protein. In cells treated with both 1,25-[3H]D3 and ketoconazole, up-regulation of VDR was increased by 40% over that observed with cells receiving 1,25-[3H]D3 alone. Ketoconazole alone had no agonistic activity. Treatment of cells with 1 nM 1,25-[3H]D3 plus increasing doses of ketoconazole (0-30 microM) resulted in a dose-dependent increase in occupied VDR and total VDR. This up-regulation was associated with reduced 1,25-[3H]D3 catabolism. 1,25-[3H]D3-induced up-regulation of VDR typically peaked at 14 h and declined thereafter. Ketoconazole lengthened the time to reach peak VDR up-regulation to 20 h. The ability of ketoconazole to increase cell responsiveness (VDR up-regulation) was the result of both increased and prolonged occupancy of VDR by 1,25-[3H]D3. The t1/2 of occupied VDR was 2 h in the absence of ketoconazole and greater than 7 h when ketoconazole was present. Collectively, these results suggested that self-induced catabolism of 1,25-D3 is an important regulator of VDR occupancy and therefore cellular responsiveness to hormone. These data also demonstrate the usefulness of ketoconazole as an inhibitor of vitamin D hydroxylases in intact cells.  相似文献   

14.
Immunomodulatory role of 1,25-dihydroxyvitamin D3.   总被引:5,自引:0,他引:5  
The active vitamin D metabolite 1,25-dihydroxyvitamin D3 [1,25-D3] is thought to promote many of its actions through interaction with a specific intracellular receptor. The discovery of such receptors in monocytes and activated lymphocytes has led investigators to evaluate the role of the hormone on the immune system. The sterol inhibits lymphocyte proliferation and immunoglobulin production in a dose-dependent fashion. At a molecular level, 1,25-D3 inhibits the accumulation of mRNA for IL-2, IFN-gamma, and GM-CSF. At a cellular level, the hormone interferes with T helper cell (Th) function, reducing Th-induction of immunoglobulin production by B cells and inhibiting the passive transfer of cellular immunity by Th-clones in vivo. The sterol promotes suppressor cell activity and inhibits the generation of cytotoxic and NK cells. Class II antigen expression on lymphocytes and monocytes is also affected by the hormone. When given in vivo, 1,25-D3 has been particularly effective in the prevention of autoimmune diseases such as experimental autoimmune encephalomyelitis and murine lupus but its efficacy has been limited by its hypercalcemic effect. Synthetic vitamin D3 analogues showing excellent 1,25-D3-receptor binding but less pronounced hypercalcemic effects in vivo have recently enhanced the immunosuppressive properties of the hormone in autoimmunity and transplantation.  相似文献   

15.
Interleukin (IL)-2 knockout (KO) mice, which spontaneously develop symptoms of inflammatory bowel disease similar to ulcerative colitis in humans, were made vitamin D deficient (D-) or vitamin D sufficient (D+) or were supplemented with 1,25-dihydroxyvitamin D(3) (1,25D3). 1,25-Dihydroxyvitamin D3 supplementation, but not vitamin D supplementation, reduced the early mortality of IL-2 KO mice. However, colitis severity was not different in D-, D+, or 1,25D3 IL-2 KO mice. Cells from D- IL-2 KO mice produced more interferon (IFN)-gamma than cells from all other mice. Con A-induced proliferation was upregulated in IL-2 KO mice and downregulated in wildtype (WT) mice fed 1,25D3. All other measured immune responses in cells from IL-2 KO mice were unchanged by vitamin D status. In vitro addition of 1,25-dihydroxyvitamin D3 significantly reduced the production of IL-10 and IFN-gamma in cells from D- and D+ WT mice. Conversely, IFN-gamma and IL-10 production in cells from IL-2 KO mice were refractory to in vitro 1,25-dihydroxyvitamin D3 treatments. In the absence of IL-2, vitamin D was ineffective for suppressing colitis and ineffective for the in vitro downregulation of IL-10 or IFN-gamma production. One target of 1,25-dihydroxyvitamin D3 in the immune system is the IL-2 gene.  相似文献   

16.
17.
18.
Evidence is presented here that organomercurial binding to a reactive sulfhydryl group is capable of altering the DNA-binding characteristics of the 1,25-dihydroxyvitamin D receptor (D-receptor). Accordingly, hormone-free receptor (Ro) binding to DNA-cellulose is inhibited in a concentration-dependent fashion with both HgCl2 and p-chloromercuribenzene sulfonate (pCMBS) with complete inhibition evident at 1.0 mM. Further, low concentrations (0.5 mM) of mercurials are also capable of dissociating preformed DNA-receptor complexes, a process reversible with excess thiol reagent such as monothioglycerol. These findings are in contrast to alkylating reagents such as iodoacetamide, which is capable of only partially inhibiting the formation of the receptor-DNA duplex (37% at 25 mM). Once created, however, the duplex is completely insensitive to dissociation (even at 25 mM). These results imply that in addition to the association of a cysteine(s) moiety in or near the sterol binding site, modification of a similarly reactive group(s) can also alter the D-receptor's DNA-binding domain.  相似文献   

19.
The effect of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] on 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] metabolism was examined in rats fed on a low-calcium diet. These rats exhibit hypocalcaemia, high urinary cyclic AMP excretion, a markedly elevated serum 1,25(OH)2D concentration and low serum concentrations of both 24,25(OH)2D and 25(OH)D. When the rats are treated orally with 1, 5 or 10 micrograms of 24,25(OH)2D3/100 g every day, there is a dramatic decrease in serum 1,25(OH)2D concentration in a dose-dependent manner concomitant with an increase in serum 24,25(OH)2D concentration. Serum calcium concentration and urinary cyclic AMP excretion are not significantly affected by the 24,25(OH)2D3 treatment, which suggests that parathyroid function is not affected by the 24,25(OH)2D3 treatment. The 25(OH)D3 1 alpha-hydroxylase activity measured in kidney homogenates is markedly elevated in rats on a low-calcium diet but is not affected by any doses of 24,25(OH)2D3. In contrast, recovery of intravenously injected [3H]1,25(OH)2D3 in the serum is decreased in 24,25(OH)2D3-treated rats. Furthermore, when [3H]1,25(OH)2D3 is incubated in vitro with kidney or intestinal homogenates of 24,25(OH)2D3-treated rats there is a decrease in the recovery of radioactivity in the total lipid extract as well as in the 1,25(OH)2D3 fraction along with an increase in the recovery of radioactivity in the water-soluble phase. These results are consistent with the possibility that 24,25(OH)2D3 has an effect on 1,25(OH)2D3 metabolism, namely that of enhancing the degradation of 1,25(OH)2D3. However, because a considerable proportion of the injected 24,25(OH)2D3 is expected to be converted into 1,24,25(OH)3D3 by renal 1 alpha-hydroxylase in 24,25(OH)2D3-treated rats, at least a part of the decrease in serum 1,25(OH)2D concentration may be due to a competitive inhibition by 24,25(OH)2D3 of the synthesis of 1,25(OH)2D3 from 25(OH)D3. Thus the physiological importance of the role of 24,25(OH)2D3 in regulating the serum 1,25(OH)2D concentration as well as the mechanism and metabolic pathway of degradation of 1,25(OH)2D3 remain to be clarified.  相似文献   

20.
Exposure of the 60 kDa chick intestinal 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) receptor to carboxypeptidase A resulted in a time dependent decrease in receptor hormone-binding; after 2 h, there was no detectable macro-molecular-bound 1,25(OH)2[3H]D3. Upon DNA-cellulose chromatography of this preparation, a 56 kDa protein adsorbed to the column and eluted as a function of para-chloromercuribenzene sulfonate (a sulfhydryl blocking reagent). The 56 kDa fragment was detected by anti-receptor monoclonal antibodies via immunoblot technology. The 1,25(OH)2[3H]D3 eluted in the fall through fractions of the column. Thus, cleavage of up to 40 amino acids from the carboxy-terminus of the 1,25(OH)2D3 receptor results in a protein which no longer binds to hormone, but retains its capacity to interact with DNA-cellulose and monoclonal antibody. These results represent novel biochemical evidence that allows us to orient the 1,25(OH)2D3 binding domain near the C-terminus of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号