首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate if severe malarial anemia is associated with specific cytokine overproduction, we evaluated serum levels of soluble Fas ligand (sFasL), tumor necrosis factor (TNF-alpha) and interleukin-10 (IL-10) from three groups of young children with Plasmodium falciparum infection (asymptomatic cases, uncomplicated malaria cases and severe malarial anemia cases), in a hyperendemic area of Gabon. In uncomplicated cases, only TNF levels were significantly (p < 0.001) increased in comparison to asymptomatic cases with P. falciparum infection. High levels of sFasL, TNF-alpha and IL-10 were associated with low hemoglobin concentrations, sFasL levels were significantly higher in children with severe malarial anemia (p < 0.001) as compared to both other groups. The parasite density was positively correlated with IL-10, TNF-alpha and sFasL levels. TNF-alpha and sFasL, but not IL-10 or parasitemia, were independent predictors of hemoglobin concentrations. These results suggest that, in malaria, a specific dysregulation of the cytokine balance may lead to complications such as severe anemia.  相似文献   

2.
Immune complex formation during Plasmodium berghei infection of OF1 mice was investigated. Circulating immune complexes (CIC) were detected by the Clg-binding assay and the conglutinin-binding solid-phase assay in lethal or drug-limited infections. CIC appeared on day 9 of infection, peaked on day 11, and disappeared only after complete cure of the infection. Analysis of the immune complexes detected by the Clq-binding assay revealed the following characteristics: sedimentation coefficients of 13S to 21S, resistance to DNAse, and selective removal by filtration through protein A bound to Sepharose. Glomerular deposits of IgM preceded the appearance of CIC, whereas deposits of IgG and C3 were concomitant with the appearance of CIC. Tissue-bound immunoglobulins were also found in the choroid plexus. The appearance of anti-malarial antibodies and malarial antigens in the serum was closely associated with a depression of C3 levels and the presence of CIC. Drug treatment was followed by normalization of C3 levels, and clearance of both CIC and malarial antigens.  相似文献   

3.
The effects of Plasmodium berghei infection on liver function and plasma orosomucoid metabolism were investigated in Wistar rats. Infected rats with 20-25% parasitaemia manifested increased serum transaminase levels, hypoalbuminaemia and hypoproteinaemia. In spite of such indications of deranged liver function, the hepatic synthesis rate (as measured by 14C-amino acid incorporation) of seromucoids predominantly orosomucoid or alpha 1-acid glycoprotein) was increased by 73%. The circulating levels of this glycoprotein were also doubled in infected animals. The albumin synthesis rate was not increased. This preferential synthesis and increase in circulating levels of orosomucoid may have in vivo significance in malarial infection, in view of reports that orosomuocid has influence on in vitro invasion of red cells by malarial parasites.  相似文献   

4.
The gene encoding the Pseudomonas aeruginosa phosphate-specific porin OprP was subjected to both linker and epitope insertion mutageneses. Nine of the 13 linker mutant genes expressed protein at levels comparable to those obtained with the wild-type gene. These mutant proteins were shown, by indirect immunofluorescence with an OprP-specific antiserum, to be properly exposed at the cell surface. Four of the linker mutant genes expressed protein at reduced levels which were not detectable at the cell surface. A foreign epitope from the circumsporozoite form of the malarial parasite Plasmodium falciparum was cloned into the linker sites of 12 of the 13 mutant genes. Seven of the resultant epitope insertion mutant genes expressed surface-exposed protein. Two of these mutant genes presented the foreign epitope at surface-accessible regions as assessed by indirect immunofluorescence with a malarial epitope-specific monoclonal antibody. The data from these experiments were used to create a topological model of the OprP monomer.  相似文献   

5.
Pseudomonas aeruginosa OprM is a protein involved in multiple-antibiotic resistance as the outer membrane component for the MexA-MexB-OprM efflux system. Planar lipid bilayer experiments showed that OprM had channel-forming activity with an average single-channel conductance of only about 80 pS in 1 M KCl. The gene encoding OprM was subjected to insertion mutagenesis by cloning of a foreign epitope from the circumsporozoite form of the malarial parasite Plasmodium falciparum into 11 sites. In Escherichia coli, 8 of the 11 insertion mutant genes expressed proteins at levels comparable to those obtained with the wild-type gene and the inserted malarial epitopes were surface accessible as assessed by indirect immunofluorescence. When moved to a P. aeruginosa OprM-deficient strain, seven of the insertion mutant genes expressed proteins at variable levels comparable to that of wild-type OprM and three of these reconstituted MIC profiles resembling those of the wild-type protein, while the other mutant forms showed variable MIC results. Utilizing the data from these experiments, in conjunction with multiple sequence alignments and structure predictions, an OprM topology model with 16 beta strands was proposed.  相似文献   

6.
Heat-inactivated serum from chickens with transmission-blocking immunity to Plasmodium gallinaceum prevented the in vitro development of oökinetes from gametocytes of P. gallinaceum only when present during the period between the initiation of gametogeriesis and the release of the microgametes. When added after this time immune serum failed to suppress oökinete development. Immune serum did not prevent the formation of gametes from gametocytes. These results are interpreted to indicate that immune serum contains factors which prevent fertilization of the malarial gametes but which do not affect the development of the zygote once fertilization has taken place. Two distinct reactions of malarial gametes with serum from chickens with transmission-suppressing immunity are described—the gamete-agglutination (AG) reaction and the microgamete surface-fixation (SF) reaction. Both reactions were associated with the immunoglobulin fraction of immune serum. The presence of SF antibodies during a blood infection correlated closely with effective transmission-blocking immunity in vivo; AG antibodies, on the other hand, were present in various circumstances in the absence of transmission-blocking immunity. AG and SF antibodies occurred not only in birds immunized with P. gallinaceum-gamete preparations but also during or following infections in unimmunized birds; SF antibodies appeared only following the peak of asexual infection in unimmunized birds and were of low titer. In immunized birds blood infections following live challenge invariably boosted low levels of SF antibodies. The results of immunization of chickens and Rhesus monkeys with gametes of their respective malaria parasites, P. gallinaceum and P. knowlesi, are compared.  相似文献   

7.
Malaria is one of the most prevalent infectious diseases worldwide with more than 250 million cases and one million deaths each year. One of the well-characterized malarial-related molecules is hemozoin (HZ), which is a dark-brown crystal formed by the parasite and released into the host during the burst of infected red blood cells. HZ has a stimulatory effect on the host immune system such as its ability to induce pro-inflammatory mediators responsible for some of the malaria related clinical symptoms such as fever. However, the host serum proteins interacting with malarial HZ as well as how this interaction modifies its recognition by phagocytes remained elusive. In the actual study, using proteomic liquid chromatographic mass spectrometry (LC-MS/MS) and immunochemical approaches, we compared the serum protein profiles of malaria patients and healthy individuals. Particularly, we utilized the malarial HZ itself to capture serum proteins capable to bind to HZ, enabling us to identify several proteins such as apolipoprotein E (ApoE), serum amyloid A (SAA), gelsolin, complement factor H and fibrinogen that were found to differ among healthy and malaria individual. Of particular interest is LPS binding protein (LBP), which is reported herein for the first time in the context of malaria. LBP is usually produced during innate inflammatory response to gram-negative bacterial infections. The exact role of these biomarkers and acute phase responses in malaria in general and HZ in particular remains to be investigated. The identification of these inflammation-related biomarkers in malaria paves the way to potentially utilize them as diagnostic and therapeutic targets.  相似文献   

8.
Plasmodium yoelii-infected erythrocytes were injected into mice with or without 6.5 Gy irradiation. This irradiation suppressed erythropoiesis and induced severe immunosuppression. However, these mice showed a rather delayed infection, suggesting that fresh erythrocytes may become malarial targets. In other words, malarial infection did not persist without newly generated erythrocytes in mice. We then examined erythropoiesis in the liver and bone marrow of mice with malaria. Surprisingly, erythropoiesis began in the liver. At this time, the serum level of erythropoietin (EPO) was prominently elevated and the EPO mRNA also became detectable in the kidney. Many clusters of red blood cells appeared de novo in the parenchymal space of the liver. These results revealed that malarial infection had a potential to induce the onset of hepatic erythropoiesis in mice.  相似文献   

9.
Ugandans with high malarial antibody titres have been found also to have higher IgM levels. Patients with active nephrotic syndrome have higher IgM and malarial antibody levels than both controls and nephrotics in remission, an extreme increase in these factors being found in patients in whom immune complexes were present.  相似文献   

10.
Antigen preparations of Plasmodium chabaudi parasites enriched in merozoites and schizonts, obtained from in vitro culture, and combined with saponin protected C57BL/6J mice from P. chabaudi infection as judged by reduced primary parasitemias and recrudescences. Sera passively transferred from immunized and untreated mice after a challenge infection were more protective in recipients than serum from normal mice. Mice treated with antilymphocyte serum during immunization did not develop as strong an immunity to infection as did controls treated with normal serum. Immunized mice had depressed delayed-type hypersensitivity reactions to malarial antigen but increased serum titers of malarial antibody (measured by imniunofluorescence) after challenge with P. chabaudi when compared to immunized mice which remained unchallenged. The protective activity of sera from various groups of mice did not necessarily correlate with the serum antibody titers.  相似文献   

11.
We have cloned genes encoding three enzymes of the de novo pyrimidine pathway using genomic DNA from Plasmodium falciparum and sequence information from the Malarial Genome Project. Genes encoding dihydroorotase (reaction 3), orotate phosphoribosyltransferase (reaction 5), and OMP decarboxylase (reaction 6) have been cloned into the plasmid pET 3a or 3d with a thrombin cleavable 9xHis tag at the C-terminus and the enzymes were expressed in Escherichia coli. To overcome the toxicity of malarial OMP decarboxylase when expressed in E. coli, and the unusual codon usage of the malarial gene, a hybrid plasmid, pMICO, was constructed which expresses low levels of T7 lysozyme to inhibit T7 RNA polymerase used for recombinant expression, and extra copies of rare tRNAs. Catalytically-active OMP decarboxylase has been purified in tens of milligrams by chromatography on Ni-NTA. The gene encoding orotate phosphoribosyltransferase includes an extension of 66 amino acids from the N-terminus when compared with sequences for this enzyme from other organisms. We have found that other pyrimidine enzymes also contain unusual protein inserts. Milligram quantities of pure recombinant malarial enzymes from the pyrimidine pathway will provide targets for development of novel antimalarial drugs.  相似文献   

12.
The profound changes in the morphology, antigenicity, and functional properties of the host erythrocyte membrane induced by intraerythrocytic parasites of the human malaria Plasmodium falciparum are poorly understood at the molecular level. We have used mouse mAbs to identify a very large malarial protein (Mr approximately 300,000) that is exported from the parasite and deposited on the cytoplasmic face of the erythrocyte membrane. This protein is denoted P. falciparum erythrocyte membrane protein 2 (Pf EMP 2). The mAbs did not react with the surface of intact infected erythrocytes, nor was Pf EMP 2 accessible to exogenous proteases or lactoperoxidase-catalyzed radioiodination of intact cells. The mAbs also had no effect on in vitro cytoadherence of infected cells to the C32 amelanotic melanoma cell line. These properties distinguish Pf EMP 2 from Pf EMP 1, the cell surface malarial protein of similar size that is associated with the cytoadherent property of P. falciparum-infected erythrocytes. The mAbs did not react with Pf EMP 1. In one strain of parasite there was a significant difference in relative mobility of the 125I-surface-labeled Pf EMP 1 and the biosynthetically labeled Pf EMP 2, further distinguishing these proteins. By cryo-thin-section immunoelectron microscopy we identified organelles involved in the transit of Pf EMP through the erythrocyte cytoplasm to the internal face of the erythrocyte membrane where the protein is associated with electron-dense material under knobs. These results show that the intraerythrocytic malaria parasite has evolved a novel system for transporting malarial proteins beyond its own plasma membrane, through a vacuolar membrane and the host erythrocyte cytoplasm to the erythrocyte membrane, where they become membrane bound and presumably alter the properties of this membrane to the parasite's advantage.  相似文献   

13.
Lye YM  Chan M  Sim TS 《FEBS letters》2006,580(26):6083-6092
The canonical mitogen-activated protein kinase (MAPK) signal cascade was previously suggested to be atypical in the malaria parasite. This raises queries on the existence of alternative mediators of plasmodial MAPK pathways. This study describes, Pfnek3, a malarial protein kinase belonging to the NIMA (Never in Mitosis, Aspergillus) family. Endogenous Pfnek3 is expressed during late asexual to gametocyte stages and lacks some classical protein kinase sequence motifs. Moreover, Pfnek3 is phylogenetically distant from mammalian NIMA-kinases. Recombinant Pfnek3 was able to phosphorylate and stimulate a malarial MAPK (Pfmap2). Contrastingly, this was not observed with two other kinases, Pfmap1 and human MAPK1, suggesting that the Pfnek3-Pfmap2 interaction may be specific for Pfmap2 regulation. In summary, our data reveal a malarial NIMA-kinase with the potential to regulate a MAPK. Possessing biochemical properties divergent from classical mammalian NIMA-kinases, Pfnek3 could potentially be an attractive target for parasite-selective anti-malarials.  相似文献   

14.
We have previously reported that erythropoiesis commences in the liver and spleen after malarial infection, and that newly generated erythrocytes in the liver are essential for infection of malarial parasites as well as continuation of infection. At this time, erythropoietin (EPO) is elevated in the serum. In the present study, we administered EPO or anti-EPO antibody into C57BL/6 (B6) mice to modulate the serum level of EPO. When mice were infected with a non-lethal strain (17NXL) of Plasmodium yoelii (blood-stage infection of 10(4) parasitized erythrocytes per mouse), parasitemia continued for 1 month, showing a peak at day 17. Daily injection of EPO (200 IU/day per mouse) from day five to day 14 prolonged parasitemia, whereas injection of anti-EPO antibody (1.5 mg/day per mouse) every second day from day five to day 28 decreased it. Erythropoiesis was confirmed in the liver, spleen and bone marrow by the appearance of nucleated erythrocytes (TER119+). When anti-EPO antibody was injected by the same protocol into mice infected with a lethal strain (17XL) of P. yoelii, all mice showed decreased parasitemia and recovered from the infection. These results suggest that the use of anti-EPO antibody after malarial infection may be of therapeutic value in severe cases of malaria.  相似文献   

15.
Malaria is a pathogenic infection caused by protozoa of the genus plasmodium. It is mainly confined to sub-Saharan Africa, Asia and South America. This disease claims the life of over 1.5 to 2.7 million people per year. Owing to such a high incidence of malarial infections, there is an urgent need for the development of suitable vaccines. For the development of ideal vaccines, it is essential to understand the molecular mechanisms of malarial pathogenesis and the factors that lead to malaria infection. Genetic factors have been proposed to play an important role in malarial pathogenesis. Complement receptor 1 (CR1) is an important host red blood cell protein involved in interaction with malarial parasite. Various polymorphic forms of CR1 have been found to be involved in conferring protection or increasing susceptibility to malaria infections. Low-density allele (L) of CR1 gave contradictory results in different set of studies. In addition, Knops polymorphic forms Sl (a(+)) and McC (a) have been found to contribute more towards the occurrence of cerebral malaria in malaria endemic regions compared to individuals with Sl (a(-)) / McC (a/b) genotype. This article reviews the research currently going on in this area and throws light on as yet unresolved mysteries of the role of CR1 in malarial pathogenesis.  相似文献   

16.
Infection of human erythrocytes by the malarial parasite, Plasmodium falciparum, results in complex membrane sorting and signaling events in the mature erythrocyte. These events appear to rely heavily on proteins resident in erythrocyte lipid rafts. Over the past five years, we and others have undertaken a comprehensive characterization of major proteins present in erythrocyte detergent-resistant membrane lipid rafts and determined which of these proteins traffic to the host-derived membrane that bounds the intraerythrocytic parasite. The data suggest that raft association is necessary but not sufficient for vacuolar recruitment, and that there is likely a mechanism of active uptake of a subset of erythrocyte detergent-resistant membrane proteins. Of the ten internalized proteins, few have been evaluated for a role in malarial entry. The beta(2)-adrenergic receptor and heterotrimeric G protein G(s) signaling pathway proteins regulate invasion. The implications of these differences are discussed. In addition, the latter finding indicates that erythrocytes possess important signaling pathways. These signaling cascades may have important influences on in vivo malarial infection, as well as on erythrocyte membrane flexibility and adhesiveness in sickle cell anemia. With respect to malarial infection, host signaling components alone are not sufficient to induce formation of the malarial vacuole. Parasite proteins are likely to have a major role in making the intraerythrocytic environment conducive for vacuole formation. Such interactions should be the focus of future efforts to understand malarial infection of erythrocytes since host- and parasite-targeted interventions are urgently needed to combat this terrible disease.  相似文献   

17.
Sharma L  Kaur J  Shukla G 《PloS one》2012,7(3):e32694
Placental malaria is a common clinical complication during pregnancy and is associated with abortion, premature delivery, intrauterine growth retardation and low birth weight. The present study was designed to delineate the underlying mechanism of placental pathology during malarial infection with special reference to oxidative stress and apoptosis. Experimentally, pregnant BALB/c mice were infected with Plasmodium berghei infected red blood cells on gestation day 10. The presence of malarial infection in placenta was confirmed by histopathological studies. It was observation that infected placenta had plugged placental sinusoids with parasitized red blood cells and malarial pigments. Interestingly, we found significant increase in the level of malondialdehyde, the index of oxidative stress and decreased activity of catalase, the antioxidant in infected placenta. Furthermore, in infected placenta the oxidative stress mediated apoptosis was determined by DNA fragmentation assay, ethidium bromide/acridine orange staining and caspase activity. It was observed that oxidative stress begin after second day of malarial infection. Interestingly, it was observed that there was down regulation of anti-apoptotic protein Bcl-2 and up regulation of pro-apoptotic protein Bax in infected placenta, suggesting the involvement of mitochondrial pathway of apoptosis which was further confirmed by activation of caspase 9. However, no change in the expression of Fas gene and caspase 8 activity, indicated the absence of death receptor pathway. Thus, it can be concluded that the placental pathology during malarial infection is mediated by mitochondrial pathway of apoptosis occurring due to augmented lipid peroxidation which may in turn jeopardise the materno-fetal relationship.  相似文献   

18.
Mice were fed ad libitum with a normal diet (25% protein) or low-protein diets (0-12.5% protein) for a wk and then infected with a nonlethal or lethal strain of Plasmodium yoelii, that is, blood stage infection. The same diet was continued until recovery. Mice fed with a normal diet showed severe parasitemia during nonlethal infection, but survived the infection. They died within 2 wk in the case of lethal infection. However, all mice fed with low-protein diets survived without apparent parasitemia (there were small peaks of parasitemia) in cases of both nonlethal and lethal strains. These surviving mice were found to have acquired potent innate immunity, showing the expansion of NK1.1 -TCRint cells and the production of autoantibodies during malarial infection. Severe combined immunodeficiency (scid) mice, which lack TCRint cells as well as TCRhigh cells, did not survive after malarial infection of lethal strain of P. yoelii, even when low-protein diets were given. These results suggest that low-protein diets enhanced innate immunity and inversely decreased conventional immunity, and that these immunological deviations rendered mice resistant against malaria. The present outcome also reminds us of our experience in the field study of malaria, in which some inhabitants eventually avoided contracting malaria even after apparent malarial infection.  相似文献   

19.
Malaria is a life-threatening disease of global concern. The role of nitric oxide in the clearance of malarial parasites is still under debate. Several reports suggest a possible role for nitric oxide in the protection during initial stages of malarial infection. In the present study, we demonstrate that the nitric oxide in combination with low concentrations of chloroquine controls the parasitaemia in vitro. Activated peritoneal macrophages co-cultured with lipopolysaccharide+interferon-gamma or extracts from Tenospora cordifolia as an immunomodulator promoted nitric oxide production by macrophages. The high concentration of nitric oxide in combination with sub-optimal chloroquine suppressed the parasitaemia in the chloroquine resistant malarial infection. Further, the nitric oxide synthase inhibitor, N(G)-mono-methyl-l-arginine, downregulated nitric oxide production by peritoneal macrophages and the resulting levels of parasitaemia were higher, similar to those of untreated controls. These findings support the proposition that nitric oxide has a crucial role in the control of parasitaemia at the initial periods of blood stage malarial infection.  相似文献   

20.
ABSTRACT. Protein phosphorylation events may play important roles in the replication and differentiation of the malarial parasite. Investigations into the lability of a Plasmodium protein kinase revealed that a 34 kDa parasite phosphoprotein is rapidly converted into a 19 kDa fragment. Coincident with this conversion is a nearly total loss of a protein kinase activity, as determined from the phosphorylation of endogenous protein substrates. Both the conversion of the 34 kDa protein to the 19 kDa protein and the loss of protein kinase activity are inhibited by thio-protease inhibitors. The presence of low levels of the intact 34 kDa protein restores the protein kinase activity to almost maximum levels. However, it was not possible to demonstrate protein kinase activity associated with the 34 kDa protein, thus suggesting that the 34 kDa protein is probably an activator or regulator of the protein kinase activity and not a protein kinase. The conversion to the 19 kDa fragment also occurs in vivo and only during the schizont stage prior to the appearance of ring forms. During this same period the protein kinase activity decreases suggesting that the proteolytic processing of the 34 kDa protein may be a physiological regulator of the protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号