首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Two cDNA clones for maize cytosolic glyceraldehyde-3-phosphate dehydrogenase are described. One is about 97% similar in coding capacity to a previously published clone [Brinkmann et al. (1987). J. Mol. Evol. 26, 320-328], while the other shows only 88% similarity. Evidence points toward the three cDNAs being the products of three genes, to be called Gpc1, Gpc2, and Gpc3. When the least similar clone, corresponding to Gpc3, was used to analyze RNA gel blots, anaerobic treatment for 6 hours induced RNA accumulation in the shoots 15.6-fold, while a 1-hour shift from 28 degrees C to 40 degrees C increased accumulation 5.1-fold. Roots had a higher basal level of expression, leading to a 6.0-fold anaerobic induction, and a 2.4-fold heat stress induction. RNA gel blot analysis using the clone corresponding to Gpc2 showed decreased RNA accumulation within 6 hours of anaerobiosis, while analysis with the previously published clone, corresponding to Gpc1, showed a decrease within 24 hours. Neither Gpc1 nor Gpc2 showed heat stress induction, while some other known anaerobic genes did. Through the use of hybrid selection, in vitro translation, and immune precipitation, the relative expression of the three genes is shown. The role of the observed changes in gene expression is discussed in relation to stress physiology.  相似文献   

3.
The cytosolic glyceraldehyde-3-phosphate dehydrogenase (GapC) gene family of maize is differentially expressed in response to anaerobic stress. While GapC1 and GapC2 are downregulated, GapC3 and GapC4 are anaerobically induced. We have sequenced and analyzed a 3073 bp promoter fragment of GapC4. The promoter confers anaerobic induction of a reporter gene construct in a transient gene expression system in maize. Deletion analysis of the GapC4 promoter revealed a 270 bp long DNA region required for anaerobic induction. This region contains sequence motifs resembling the cis-acting sequences of the anaerobically induced maize Adh1 and Adh2 genes. Furthermore, the 3073 bp GapC4 promoter fragment displays homology to long terminal repeats of maize retrotransposons and to the 3 region of the maize anthocyanin regulatory locus C1.  相似文献   

4.
Summary In order to analyze expression of the maize alcohol dehydrogenase 1 gene (Adh1), its promoter was fused with the gusA reporter gene and introduced into rice by protoplast transformation. Histochemical analysis of transgenic plants and their progeny showed that the maize Adh1 promoter is constitutively expressed in root caps, anthers, anther filaments, pollen, scutellum, endosperm and shoot and root meristem of the embryo. Induction of expression by the Adh1 promoter was examined using seedlings derived from selfed progeny of the transgenic plants. The results showed that expression of the Adh1 promoter was strongly induced (up to 81-fold) in roots of seedlings after 24 h of anaerobic treatment, concomitant with an increase in the level of gusA mRNA. 2,4-D also induced Adh1 promoter-directed expression of gusA to a similar extent. In contrast, little induction by anaerobic treatment was detected in transformed calli, leaves or roots of primary transformants or shoots of seedlings. A detailed examination of seedling roots during anaerobic treatment revealed that the induction started first at the meristem and after 3 h there was strong induction in the elongation zone which is located 1–2 mm above the meristem; the induction then progressed upward from this region. Our results suggest that transgenic rice plants carring the gusA reporter gene fused with promoters are useful for the study of anaerobic regulation of genes derived from graminaceous species.  相似文献   

5.
6.
Hanson  A. D.  Brown  A. H. D. 《Biochemical genetics》1984,22(5-6):495-515
Barley (Hordeum vulgare) and its wild progenitor (H. spontaneum) have three loci for alcohol dehydrogenase (EC 1.1.1.1; ADH). The Adh1 locus is constitutively expressed in seed tissues, whereas expression of the loci Adh2 and Adh3 requires anaerobic induction. The Adh3 gene is well expressed in aleurone and embryo tissues kept under N2 for 2–3 days. Using N2-treated embryos, a diverse collection of H. spontaneum was screened in starch gels for electrophoretic variants at the Adh3 locus. Four variants were found: two were conventional mobility variants (Adh3 S, Adh3 V); one was a null variant (Adh3 n); and the fourth (Adh3 I) variant lacked active homodimers and showed reduced heterodimer activity. The 35S-labeled monomers induced under N2 in the lines homozygous for Adh1, Adh2, or Adh3 variants were immunoprecipitated with antiserum raised against maize ADH. Fluorography after separation by SDS-PAGE and by urea-isoelectric focusing indicated that the Adh3 n allele was CRM- and that the Adh3 I gene product was smaller than normal. The Adh1 and Adh3 variants showed independent segregation.  相似文献   

7.
Protoplasts isolated from embryogenic callus cultures derived from immature embryos ofZea mays L. are suitable for analysis of transient gene expression using electroporation-mediated DNA transfer. Expression of introduced genes is comparable to the levels obtained with protoplasts from Black Mexican Sweet suspension cultures. Two different promoters, that directing synthesis of the 35S RNA of cauliflower mosaic virus and the maizeAdh1 promoter were placed in front of the luciferase reporter gene to assess protoplast gene expression and the impact of an intron on expression level.Abbreviations 35S promoter isolated from CaMV - CaMV cauliflower mosaic virus - Adh1 maize gene encoding Alcohol dehydrogenase-1 enzyme - BMS suspension cultures of the Black Mexican Sweet maize variety  相似文献   

8.
Utilizing yeast strains containing insertion mutations in each of the three glyceraldehyde-3-phosphate dehydrogenase structural genes, the level of expression of each gene was determined in logarithmically growing cells. The contribution of the TDH1, TDH2, and TDH3 gene products to the total glyceraldehyde-3-phosphate dehydrogenase activity in wild type cells is 10-15, 25-30, and 50-60%, respectively. The relative proportions of expression of each gene is the same in cells grown in the presence of glucose or ethanol as carbon source although the total glyceraldehyde-3-phosphate dehydrogenase activity in cells grown in the presence of glucose is 2-fold higher than in cells grown on ethanol. The polypeptides encoded by each of the structural genes were identified by two-dimensional polyacrylamide gel electrophoresis. The TDH3 structural gene encodes two resolvable forms of glyceraldehyde-3-phosphate dehydrogenase which differ by their net charge. The apparent specific activity of glyceraldehyde-3-phosphate dehydrogenase encoded by the TDH3 structural gene is severalfold lower than the enzymes encoded by TDH1 or TDH2. The polypeptides encoded by the TDH2 or TDH3 structural genes form catalytically active homotetramers. The apparent Vmax for the homotetramer encoded by TDH3 is 2-3-fold lower than the homotetramer encoded by TDH2. Evidence is presented that isozymes of glyceraldehyde-3-phosphate dehydrogenase exist in yeast cells, however, the number of different isozymes formed was not established. These data confirm that the three yeast glyceraldehyde-3-phosphate dehydrogenase genes encode catalytically active enzyme and that the genes are expressed at different levels during logarithmic cell growth.  相似文献   

9.
Hänsch R  Kurz T  Schulze J  Mendel RR  Cerff R  Hehl R 《Planta》2003,218(1):79-86
The maize (Zea mays L.) glyceraldehyde-3-phosphate dehydrogenase gene 4 (GapC4) promoter confers anaerobic gene expression in tobacco (Nicotiana tabacum L.), potato (Solanum tuberosum L.) and Arabidopsis thaliana (L.) Heynh. Here we have investigated its expression in hybrid poplar (Populus tremula × P. alba). Our results show that the promoter is not expressed in leaves and stems under normoxic conditions while anaerobiosis induces reporter gene expression in leaves up to a level observed for the STLS-1 promoter from potato that is shown to confer leaf-specific gene expression in transgenic poplar. Anaerobic induction is cell autonomous and requires a CO2 atmosphere and light. As in tobacco, the GapC4 promoter in poplar is wound inducible. The induction by CO2 and light may reflect a natural situation because flooding, a natural cause of anaerobiosis, is often accompanied by high CO2 concentrations in the floodwater. Our results show that the GapC4 promoter is suitable as an anaerobic reporter and as an inducible gene expression system in poplar.Abbreviations CaMV cauliflower mosaic virus - GapC4 glyceraldehyde-3-phosphate dehydrogenase gene 4 - GUS -glucuronidase - 4-MU methylumbelliferone - STLS-1 stem- and leaf-specific promoter 1  相似文献   

10.
Pearl millet produces three ADH isozymes, Sets I, II, and III. Naturally occurring ADH electrophoretic variants affecting Sets I and II isozymes but not III have been previously described. Analysis of such variants led to the identification of the Adh1 structural gene. The existence of a second Adh structural gene was inferred from dissociation-reassociation studies of Set II. In the present report, a naturally occurring variant affecting the electrophoretic mobility of Sets III and II but not Set I is described. Analysis of this variant confirms the existence of a second structural gene, Adh2. Crosses utilizing this Adh2 marker reveal a dissimilarity with maize and other plants such as sunflower and narrow-leafed lupins. Adh1 and Adh2 of pearl millet do not segregate independently; indeed, no recombinants have been observed. This is the first major difference encountered in an otherwise remarkably similar genetic and environmental control of the ADH isozymes in maize and millet. The organization of the Adh genes of pearl millet may reflect a more primitive arrangement than that of maize.This work was supported by a PHS National Research Service Award Training Grant in Genetics to the Biology Department of the University of Oregon.  相似文献   

11.
Alcohol dehydrogenase (Adh) is the key enzyme in alcohol fermentation. We analyzed Adh expression in order to clarify the role of Adh of soybeans (Glycine max) to flooding stress. Proteome analysis confirmed that expression of Adh is significantly upregulated in 4-day-old soybean seedlings subjected to 2 days of flooding. Southern hybridization analysis and soybean genome database search revealed that soybean has at least 6 Adh genes. The GmAdh2 gene that responded to flooding was isolated from soybean cultivar Enrei. Adh2 expression was markedly increased 6 h after flooding and decreased 24 h after floodwater drainage. In situ hybridization and Western blot indicated that flooding strongly induces Adh2 expression in RNA and protein levels in the root apical meristem. Osmotic, cold, or drought stress did not induce expression of Adh2. These results indicate that Adh2 is a flooding-response specific soybean gene expressed in root tissue.  相似文献   

12.
13.
A yeast glyceraldehyde-3-phosphate dehydrogenase gene has been isolated from a collection of Escherichia coli transformants containing randomly sheared segments of yeast genomic DNA. Complementary DNA, synthesized from partially purified glyceraldehyde-3-phosphate dehydrogenase messenger RNA, was used as a hybridization probe for cloning this gene. The isolated hybrid plasmid DNA has been mapped with restriction endonucleases and the location of the glyceraldehyde-3-phosphate dehydrogenase gene within the cloned segment of yeast DNA has been established. There are approximately 4.5 kilobase pairs of DNA sequence flanking either side of the glyceraldehyde-3-phosphate dehydrogenase gene in the cloned segment of yeast DNA. The isolated hybrid plasmid DNA has been used to selectively hybridize glyceraldehyde-3-phosphate dehydrogenase messenger RNA from unfractionated yeast poly(adenylic acid)-containing messenger RNA. The nucleotide sequence of a portion of the isolated hybrid plasmid DNA has been determined. This nucleotide sequence encodes 29 amino acids which are at the COOH terminus of the known amino acid sequence of yeast glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

14.
15.
16.

Genome sequence of the hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0632, annotated as glyceraldehyde-3-phosphate dehydrogenase, which is partially overlapped with phosphoglycerate kinase. In the phylogenetic tree, Pcal_0632 clustered with phosphorylating glyceraldehyde-3-phosphate dehydrogenases characterized from hyperthermophilic archaea and exhibited highest identity of 54% with glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus tokodaii. To examine biochemical function of the protein, Pcal_0632 gene was expressed in Escherichia coli and the gene product was purified. The recombinant enzyme catalyzed the conversion of glyceraldehyde 3-phosphate and inorganic phosphate into 1,3-bisphosphoglycerate utilizing both NAD and NADP as cofactor with a marked preference for NADP. The enzyme was highly stable against temperature and denaturants. Half-life of the enzyme was 60 min at 100 °C. It retained more than 60% of its activity even after an incubation of 72 h at room temperature in the presence of 6 M urea. High thermostability and resistance against denaturants make Pcal_0632 a novel glyceraldehyde-3-phosphate dehydrogenase.

  相似文献   

17.
Koksharova  O. A.  Brandt  U.  Cerff  R. 《Microbiology》2004,73(3):326-329
The cloning and sequencing of the gap1 operon, which encodes the glycolytic NAD-specific glyceraldehyde-3-phosphate dehydrogenase in the cyanobacterium Synechococcus PCC 7942, showed that the gap1 gene is closely linked to the glgP gene encoding glycogen phosphorylase (an enzyme that catalyzes the first step of glycogen degradation). Northern blotting experiments showed that the gap1 and glgP genes are coexpressed and organized in a bicistronic operon, whose expression is enhanced under anaerobic conditions. The nucleotide sequence of the operon has been submitted to GenBank under accession number AF428099.  相似文献   

18.
Glyceraldehyde-3-phosphate dehydrogenase is a multifunctional protein possessing numerous cytoplasmic and nuclear functions associated with cellular proliferation. Despite the emerging role of glyceraldehyde-3-phosphate dehydrogenase in regulating the proliferative process, there is a paucity of data regarding its expression and intracellular distribution in non-malignant proliferating hepatocytes. Thus the aim of the present study was to document the intracellular distribution of glyceraldehyde-3-phosphate dehydrogenase protein in proliferating hepatocytes derived from regenerating rat livers, and glyceraldehyde-3-phosphate dehydrogenase gene expression in fasted and re-fed rats following partial hepatectomy (PHx). Glyceraldehyde-3-phosphate dehydrogenase mRNA and protein expression were documented by Northern and Western blot analyses, respectively, at various times following 70% PHx in adult Sprague-Dawley rats. At 24 h post-surgery, glyceraldehyde-3-phosphate dehydrogenase mRNA expression was significantly increased in both PHx and sham operated rats (P < 0.001), respectively. Despite the increase in glyceraldehyde-3-phosphate dehydrogenase mRNA expression in both groups, only PHx rats had a significant increase in the nuclear fraction of glyceraldehyde-3-phosphate dehydrogenase protein (threefold increase compared to sham and baseline levels, P < 0.01), cytoplasmic levels of glyceraldehyde-3-phosphate dehydrogenase protein remained unaltered in both groups. In terms of the effects of feeding and fasting on rats there were no significant differences in glyceraldehyde-3-phosphate dehydrogenase mRNA levels, whether fasted or refed, in rats that had undergone PHx, 8 h earlier. On the other hand, glyceraldehyde-3-phosphate dehydrogenase mRNA levels were significantly increased in refed compared to fasted sham operated rats 8 h following surgery. Serum insulin concentrations were higher in the refed PHx and sham groups compared to their fasted counterparts. The results of this study indicate that although glyceraldehyde-3-phosphate dehydrogenase mRNA are altered to the same extent in PHx and sham-operated rats following surgery, increases in the nuclear fraction of glyceraldehyde-3-phosphate dehydrogenase protein only occur in PHx rats. The results also indicate that glyceraldehyde-3-phosphate dehydrogenase expression is affected by the nutritional status of animals undergoing abdominal sham surgery.  相似文献   

19.
Gene imprinting is a widely observed epigenetic phenomenon in maize endosperm; however, whether it also occurs in the maize embryo remains controversial. Here, we used high‐throughput RNA sequencing on laser capture microdissected and manually dissected maize embryos from reciprocal crosses between inbred lines B73 and Mo17 at six time points (3–13 days after pollination, DAP) to analyze allelic gene expression patterns. Co‐expression analysis revealed sequential gene activation during maize embryo development. Gene imprinting was observed in maize embryos, and a greater number of imprinted genes were identified at early embryo stages. Sixty‐four strongly imprinted genes were identified (at the threshold of 9:1) on manually dissected embryos 5–13 DAP (more imprinted genes at 5 DAP). Forty‐one strongly imprinted genes were identified from laser capture microdissected embryos at 3 and 5 DAP (more imprinted genes at 3 DAP). Furthermore, of the 56 genes that were completely imprinted (at the threshold of 99:1), 36 were not previously identified as imprinted genes in endosperm or embryos. In situ hybridization demonstrated that most of the imprinted genes were expressed abundantly in maize embryonic tissue. Our results shed lights on early maize embryo development and provide evidence to support that gene imprinting occurs in maize embryos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号