首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurotrophic factors have been widely suggested as a treatment for multiple diseases including motorneuron pathologies, like Amyotrophic Lateral Sclerosis. However, clinical trials in which growth factors have been systematically administered to Amyotrophic Lateral Sclerosis patients have not been effective, owing in part to the short half-life of these factors and their low concentrations at target sites. A possible strategy is the use of the atoxic C fragment of the tetanus toxin as a neurotrophic factor carrier to the motorneurons. The activity of trophic factors should be tested because their genetic fusion to proteins could alter their folding and conformation, thus undermining their neuroprotective properties. For this purpose, in this paper we explored the Brain Derived Neurotrophic Factor (BDNF) activity maintenance after genetic fusion with the C fragment of the tetanus toxin. We demonstrated that BDNF fused with the C fragment of the tetanus toxin induces the neuronal survival Akt kinase pathway in mouse cortical culture neurons and maintains its antiapoptotic neuronal activity in Neuro2A cells.  相似文献   

2.
The amino acid sequence of the first 30 residues of fragment C of tetanus toxin was determined, and a mixture of 32 complementary oligonucleotides, each 17 bases long, was synthesized. A 2-kilobase (kb) EcoI fragment of Clostridium tetani DNA was identified by Southern blotting and was cloned into the Escherichia coli plasmid vector pAT153 with the 32P-labeled oligonucleotide mixture as a probe. A second 3.2-kb Bg/II fragment was identified and cloned with the 2-kb EcoRI fragment as a probe. The nucleotide sequence of 1.8 kb of this DNA was determined and was shown to encode the entire fragment C and a portion of fragment B of tetanus toxin. The tetanus DNA was expressed in E. coli with pWRL507, a plasmid vector containing the trp promoter and a portion of the trpE gene. The trpE-tetanus fusion proteins were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were shown to react with anti-fragment C antibody.  相似文献   

3.
The fate of tetanus toxin (mol wt 150,000) subsequent to its retrograde axonal transport in peripheral sympathetic neurons of the rat was studied by both electron microscope autoradiography and cytochemistry using toxin-horseradish peroxidase (HRP) coupling products, and compared to that of nerve growth factor (NGF), cholera toxin, and the lectins wheat germ agglutinin (WGA), phytohaemagglutinin (PHA), and ricin. All these macromolecules are taken up by adrenergic nerve terminals and transported retrogradely in a selective, highly efficient manner. This selective uptake and transport is a consequence of the binding of these macromolecules to specific receptive sites on the nerve terminal membrane. All these ligands are transported in the axons within smooth vesicles, cisternae, and tubules. In the cell bodies these membrane compartments fuse and most of the transported macromolecules are finally incorporated into lysosomes. The cell nuclei, the parallel golgi cisternae, and the extracellular space always remain unlabeled. In case the tetanus toxin, however, a substantial fraction of the labeled material appears in presynaptic cholinergic nerve terminals which innervate the labeled ganglion cells. In these terminals tetanus toxin-HRP is localized in 500-1,000 A diam vesicles. In contrast, such a retrograde transsynaptic transfer is not at all or only very rarely detectable after retrograde transport of cholera toxin, NGF, WGA, PHA, or ricin. An atoxic fragment of the tetanus toxin, which contains the ganglioside-binding site, behaves like intact toxin. With all these macromolecules, the extracellular space and the glial cells in the ganglion remain unlabeled. We conclude that the selectivity of this transsynaptic transfer of tetanus toxin is due to a selective release of the toxin from the postsynaptic dendrites. This release is immediately followed by an uptake into the presynaptic terminals.  相似文献   

4.
Tetanus toxin is a fascinating, multifunctional protein that binds to peripheral neurons, undergoes retrograde transport and trans-synaptic transfer to central inhibitory neurons where it blocks transmitter release, thereby, causing spastic paralysis. As a pre-requisite for exploiting its unique trafficking properties, a novel recombinant single chain was expressed at a high level in Escherichia coli as a soluble, easily purifiable protein. It could be activated with enterokinase to produce a dichain that matched native toxin in terms of proteolytic and neuroinhibitory activities, as well as induction of spastic paralysis in mice. Importantly, nicking was not essential for protease activity. Substitution of Glu(234) by Ala created a protease-deficient atoxic form, which blocked the neuroparalytic action of tetanus toxin in vitro, with equal potency to its heavy chain; but, the mutant proved >30-fold more potent in preventing tetanus in mice. This observation unveils differences between the intoxication processes resulting from retrograde transport of toxin in vivo and its local uptake into peripheral or central nerves in vitro, dispelling a popularly held belief that the heavy chain is the sole determinant for efficient trafficking. Thus, this innocuous mutant may be a useful vehicle, superior to the heavy chain, for drug delivery to central neurons.  相似文献   

5.
中枢神经系统靶向性CuZn—SOD的构建和表达   总被引:1,自引:0,他引:1  
SOD对中风等由氧自由基毒性引起的神经性紊乱有保护作用,但因血脑屏障使血液中的SOD不能进入中枢神经系统。靶向性SOD可能是进入该系统的途径之一。将人CuZn-SODcDNA与破伤风毒素C部分基因融合,分别整合进pET-22b(+)及pFastBacHTb载体中,并分别在E.coli及粉纹夜蛾Tn-5B1-4细胞中表达。表达产物分子量为68kD,与理论计算值。蛋白质印迹实验证实,其表达产物能与人CuZn-SOD多克隆抗人本及抗破伤毒素全毒互抗体有免疫反应。在Tn细胞中高效表达,表达产物占可溶性总蛋白质的20%,表达产物有SOD活性,且具有逆行轴突运输的能力。这为靶向性SOD的进一步应用创造了条件。  相似文献   

6.
This study describes the expression, purification, and characterization of a recombinant fusion toxin, DAB(389)TTC, composed of the catalytic and membrane translocation domains of diphtheria toxin (DAB(389)) linked to the receptor binding fragment of tetanus toxin (C-fragment). As determined by its ability to inhibit cellular protein synthesis in primary neuron cultures, DAB(389)TTC was approximately 1,000-fold more cytotoxic than native diphtheria toxin or the previously described fusion toxin, DAB(389)MSH. The cytotoxic effect of DAB(389)TTC on cultured cells was specific toward neuronal-type cells and was blocked by coincubation of the chimeric toxin with tetanus antitoxin. The toxicity of DAB(389)TTC, like that of diphtheria toxin, was dependent on passage through an acidic compartment and ADP-ribosyltransferase activity of the DAB(389) catalytic fragment. These results suggest that a catalytically inactive form of DAB(389)TTC may be useful as a nonviral vehicle to deliver exogenous proteins to the cytosolic compartment of neurons.  相似文献   

7.
Tetanus toxin was digested with papain, yielding one major polypeptide (Fragment C) with a molecular weight corresponding to 47,000 +/- 5%, thus comprising about one-third of the toxin molecule. Fragment C was antigenically active, atoxic, and stimulated the formation of antibodies neutralizing the lethal action of tetanus toxin in vivo. Furthermore, a second split product (Fragment B) was isolated from the papain digest, containing two polypeptide chains linked together via a disulfide bond. Fragment B (Mr = 95,000 +/- 5%) was atoxic and showed a reaction of nonidentity with Fragment C on immunodiffusion analysis against tetanus antitoxin. The basic two-chain structure (heavy and light chain polypeptide, cf. Matsuda, M., and Yoneda, M. (1975) Infect. Immun. 12, 1147-1153) of tetanus toxin has been confirmed and the relationship between Fragments B and C within this framework has been established. Fragment C was distinguished from the light chain by electrophoresis in sodium dodecyl sulfate and by immunodiffusion analysis, indicating that this fragment constitutes a portion of the heavy chain polypeptide. Fragment B showed a reaction of partial identity with the light as well as the heavy chain from tetanus toxin. Reduction of Fragment B with dithiothreitol followed by gel chromatography yielded a fraction which was indistinguishable from the light chain portion of the toxin molecule. It is concluded that Fragment B comprises the complementary portion of the heavy chain (remaining after scission of the polypeptide bond(s) releasing Fragment C) linked to the light chain by a disulfide bond.  相似文献   

8.
The non-toxin 50 kD C-terminus peptide of the heavy chain of tetanus H(c) contains the ganglioside binding domain of tetanus toxin (TTX). H(c) retains much of the capacity of tetanus toxin for binding internalization and transport by neurons. For this reason tetanus H(c) has been studied as a vector for delivery of therapeutic proteins to neurons. We directly compared H(c) and TTX in the capacity to bind and be internalized by neurons by ELISA. Primary cultures of dissociated fetal cortical neurons were incubated with equimolar amounts of TTX or H(c). Neuronal associated tetanus protein was 4-8 fold greater on a molar basis with tetanus toxin compared to H(c) (1 h incubation). This increase in neuronal tetanus protein was evident with incubation in concentrations from 0.1 microM to 2 microM. There were greater amounts of TTX delivered to the cultured cells at both 0 degrees C (representing membrane bound tetanus protein) and 37 degrees C (bound and internalized tetanus protein). Unlike H(c), TTX showed significant continued accumulation of protein with increasing incubation durations. Neuronal associated TTX increased 2-3 fold over incubation times ranging from 1 to 8 h. Tetanus toxin appears to be clearly superior to the ganglioside binding fragment (H(c)) in the capacity for neuronal binding and internalization. Atoxic tetanus proteins containing additional molecular domains as well as H(c) may be more suitable vectors for linkage with therapeutic proteins and delivery to neurons.  相似文献   

9.
Many inherited neurological diseases and cancers could potentially benefit from efficient targeted gene delivery to neurons of the central nervous system. The nontoxic fragment C (HC) of tetanus toxin retains the specific nerve cell binding and transport properties of tetanus holotoxin. The HC fragment has previously been used to promote the uptake of attached proteins such as horseradish peroxidase, beta-galactosidase and superoxide dismutase into neuronal cells in vitro and in vivo. We report the use of purified recombinant HC fragment produced in yeast and covalently bound to polylysine [poly(K)] to enable binding of DNA. We demonstrate that when used to transfect cells, this construct results in nonviral gene delivery and marker gene expression in vitro in N18 RE 105 cells (a neuroblastoma x glioma mouse/rat hybrid cell line) and F98 (a glioma cell line). Transfection was dependent on HC and was neuronal cell type specific. HC may prove a useful targeting ligand for future neuronal gene therapy.  相似文献   

10.
The uptake of macromolecules by nerve terminals which is followed by retrograde axonal transport seems to occur by two different mechanisms, a specific and a nonspecific one. The nonspecific uptake depends on the presence of macromolecules (e.g., horseradish peroxidase) in the vicinity of the nerve terminals at very high concentrations and is enhanced by neuronal activity. In contrast, the specific uptake and subsequent retrograde axonal transport becomes apparent at much lower concentrations of the appropriate macromolecules, depends on the affinity of these ligands for specific binding sites on the surface of the neuronal membrane, and is independent of neuronal activity. The fact that lectins and some bacterial toxins bind to specific membrane glycoproteins or glycolipids allows conclusions to be drawn regarding qualitative and even quantitative aspects of the composition of the plasma membrane of the nerve terminals. 125I-labelled nerve growth factor (NGF), tetanus toxin, cholera toxin, wheat germ agglutinin (WGA), ricin II, phytohemagglutinin (PHA), and concanavalin A (ConA) were injected into the anterior eye chamber of rats where they were taken up by adrenergic nerve terminals and transported retrogradely to the superior cervical ganglion. The saturation of the uptake-transport found for NGF, WGA, choleragenoid and an atoxic binding-fragment of tetanus toxin indicates that limited numbers of binding sites, which showed also different affinites, are present for each ligand on the membrane of the nerve terminals. Competition experiments showed that the binding sites for the ligands investigated are largely independent. Two different classes of binding sites (high affinity-low capacity and intermediate affinity-intermediate capacity) seem to be involved in the saturable retrograde axonal transport of NGF. In contrast, WGA seems to have only a single class of binding-uptake sites with high capacity and relatively low affinity. Strong evidence for positive cooperativity was obtained for the uptake and subsequent transport of the tetanus toxin fragment.  相似文献   

11.
To improve protein delivery to the CNS following intracerebroventricular administration, we compared the distribution of a human Cu/Zn superoxide dismutase:tetanus toxin fragment C fusion protein (SOD1:TTC) in mouse brain and spinal cord with that of tetanus toxin fragment C (TTC) or human SOD1 (hSOD1) alone, following continuous infusion into the lateral ventricle. Mice infused with TTC or SOD1:TTC showed intense anti-TTC or anti-hSOD1 labeling, respectively, throughout the CNS. In contrast, animals treated with hSOD1 revealed moderate staining in periventricular tissues. In spinal cord sections from animals infused with SOD1:TTC, the fusion protein was found in neuron nuclear antigen-positive (NeuN+) neurons and not glial fibrillary acidic protein-positive (GFAP+) astrocytes. The percentage of NeuN+ ventral horn cells that were co-labeled with hSOD1 antibody was greater in mice treated with SOD1:TTC (cervical cord = 73 +/- 8.5%; lumbar cord = 62 +/- 7.7%) than in mice treated with hSOD1 alone (cervical cord = 15 +/- 3.9%; lumbar cord = 27 +/-4.7%). Enzyme-linked immunosorbent assay for hSOD1 further demonstrated that SOD1:TTC-infused mice had higher levels of immunoreactive hSOD1 in CNS tissue extracts than hSOD1-infused mice. Following 24 h of drug washout, tissue extracts from SOD1:TTC-treated mice still contained substantial amounts of hSOD1, while extracts from hSOD1-treated mice lacked detectable hSOD1. Immunoprecipitation of SOD1:TTC from these extracts using anti-TTC antibody revealed that the recovered fusion protein was structurally intact and enzymatically active. These results indicate that TTC may serve as a useful prototype for development as a non-viral vehicle for improving delivery of therapeutic proteins to the CNS.  相似文献   

12.
Clostridium perfringens iota toxin consists of two unlinked proteins. The binding component (Ib) is required to internalize into cells an enzymatic component (Ia) that ADP-ribosylates G-actin. To characterize the Ia domain that interacts with Ib, fusion proteins were constructed between the C. botulinum C3 enzyme, which ADP-ribosylates Rho, and various truncated versions of Ia. These chimeric molecules retained the wild type ADP-ribosyltransferase activity specific for Rho and were recognized by antibodies against C3 enzyme and Ia. Internalization of each chimera into Vero cells was assessed by measuring the disorganization of the actin cytoskeleton and intracellular ADP-ribosylation of Rho. Fusion proteins containing C3 linked to the C terminus of Ia were transported most efficiently into cells like wild type Ia in an Ib-dependent manner that was blocked by bafilomycin A1. The minimal Ia fragment that promoted translocation of Ia-C3 chimeras into cells consisted of 128 central residues (129-257). These findings revealed that iota toxin is a suitable system for mediating the entry of heterologous proteins such as C3 into cells.  相似文献   

13.
Enzymatic breakdown of tetanus toxin   总被引:3,自引:0,他引:3  
Treatment of tetanus toxin with papain at 55°C resulted in breakdown of the molecule to yield an atoxic fraction with a molecular weight of approximately 40 000. The highly purified material exhibited partial immunological identity with the parent toxin, showed no toxicity and elicited the formation of neutralizing antibodies against tetanus.  相似文献   

14.
Louch HA  Buczko ES  Woody MA  Venable RM  Vann WF 《Biochemistry》2002,41(46):13644-13652
The carboxyl-terminal region of the tetanus toxin heavy chain (H(C) fragment) binds to di- and trisialylgangliosides on neuronal cell membranes. To determine which amino acids in tetanus toxin are involved in ganglioside binding, homology modeling was performed using recently resolved X-ray crystallographic structures of the tetanus toxin H(C) fragment. On the basis of these analyses, two regions in tetanus toxin that are structurally homologous with the binding domains of other sialic acid and galactose-binding proteins were targeted for mutagenesis. Specific amino acids within these regions were altered using site-directed mutagenesis. The amino acid residue tryptophan 1288 was found to be critical for binding of the H(C) fragment to ganglioside GT1b. Docking of GD1b within this region of the toxin suggested that histidine 1270 and aspartate 1221 were within hydrogen bonding distance of the ganglioside. These two residues were mutagenized and found also to be important for the binding of the tetanus toxin H(C) fragment to ganglioside GT1b. In addition, the H(C) fragments mutagenized at these residues have reduced levels of binding to neurites of differentiated PC-12 cells. These studies indicate that the amino acids tryptophan 1288, histidine 1270, and aspartate 1221 are components of the GT1b binding site on the tetanus toxin H(C) fragment.  相似文献   

15.
The atoxic C-terminal fragment of tetanus neurotoxin or TTC fragment presents similar retrograde and transsynaptic properties to that of holotoxin. Detection of this fragment is easier when it is associated with a fluorescent marker or with beta-galactosidase activity by genetic fusion or chemical conjugation. Thus, these tracers have been used to study and analyse the synaptic connections of a neural network. In this article, we shortly review the various methods used with this aim including: injection of the fusion protein, adenovirus in vivo expression and transgenesis. Since neural activity is essential for neuronal TTC binding and internalization, the functionality of connections can be also evaluated. Moreover, modifications of the retrograde transport can be detected by using this fragment. Thus, TTC fragment is an excellent tracer to analyse the connectivity and functionality of a neural network. The TTC fragment was also soon proposed as potential therapeutic vector to transport and to deliver a biological activity or gene in a neural network. With this aim, the efficiency of a translocation domain to induce the cytosolic release of the associated activity has been evaluated. The use of the TTC fragment to target specifically a neurotrophic factor to neurons and thus avoid secondary effects has been tested with interesting results.  相似文献   

16.
Glial cell line-derived neurotrophic factor (GDNF) has potent survival-promoting effects on CNS motor neurons in experimental animals. Its therapeutic efficacy in humans, however, may have been limited by poor bioavailability to the brain and spinal cord. With a view toward improving delivery of GDNF to CNS motor neurons in vivo, we generated a recombinant fusion protein comprised of rat GDNF linked to the non-toxic, neuron-binding fragment of tetanus toxin. Recombinant GDNF:TTC produced from insect cells was a soluble homodimer like wild-type GDNF and was bi-functional with respect to GDNF and TTC activity. Like recombinant rat GDNF, the fusion protein increased levels of immunoreactive phosphoAkt in treated NB41A3-hGFRα-1 neuroblastoma cells. Like TTC, GDNF:TTC bound to immobilized ganglioside GT1b in vitro with high affinity and selectivity. These results support further testing of recombinant GDNF:TTC as a non-viral vector to improve delivery of GDNF to brain and spinal cord in vivo.  相似文献   

17.
Summary Purified filtrate tetanus toxin was subjected to limited digestion with papain and the resulting fragments were separated by gel exclusion chromatography and characterized. One atoxic fragment was shown to react with antiserum against tetanus toxoid and was capable of inducing antibodies in rabbits that neutralized native tetanus toxin. The fragment had an estimated molecular weight of 56,000 by SDS polyacrylamide gel electrophoresis and 62,000 by sedimentation equilibrium. In the presence of a reducing agent, the fragment yielded two components with approximatec molecular weights of 23,000 and 32,000. Thus, it appears that the atoxic, immunogenic fragment is composed of two peptides joined by at least one disulfide bond. The fragment was examined by circular dichroism and data analysis indicated the presence of considerable -structure, but little, if any, -helicity. This is significantly different from the estimates for filtrate toxin, 29% -helicity and 23% -structure. Above 250 nm, the circular dichroic spectrum of the fragment was also distinct from that of intact toxin.Portions of this workwere presented at the 1977 Federation Meeting, Chicago, April 4, 1977 (Fed. Proc. 36, 2099, 1977).Recipient of a Research Career Development Award AM-00055.  相似文献   

18.
The toxigenicity of Clostridium botulinum type C1 is mediated by specific bacteriophages. DNA was extracted from one of these phages. Two DNA fragments, 3 and 7.8 kb, which produced the protein reacting with antitoxin serum were cloned by using bacteriophage lambda gt11 and Escherichia coli. Both DNA fragments were then subcloned into pUC118 plasmids and transferred into E. coli cells. The nucleotide sequences of the cloned DNA fragments were analyzed by the dideoxy chain termination method, and their gene products were analyzed by Western immunoblot. The 7.8-kb fragment coded for the entire light chain component and the N terminus of the heavy chain component of the toxin, whereas the 3-kb fragment coded for the remaining heavy chain component. The entire nucleotide sequence for the light chain component was determined, and the derived amino acid sequence was compared with that of tetanus toxin. It was found that the light chain component of C1 toxin possessed several amino acid regions, in addition to the N terminus, that were homologous to tetanus toxin.  相似文献   

19.
The toxigenicity of Clostridium botulinum type C1 is mediated by specific bacteriophages. DNA was extracted from one of these phages. Two DNA fragments, 3 and 7.8 kb, which produced the protein reacting with antitoxin serum were cloned by using bacteriophage lambda gt11 and Escherichia coli. Both DNA fragments were then subcloned into pUC118 plasmids and transferred into E. coli cells. The nucleotide sequences of the cloned DNA fragments were analyzed by the dideoxy chain termination method, and their gene products were analyzed by Western immunoblot. The 7.8-kb fragment coded for the entire light chain component and the N terminus of the heavy chain component of the toxin, whereas the 3-kb fragment coded for the remaining heavy chain component. The entire nucleotide sequence for the light chain component was determined, and the derived amino acid sequence was compared with that of tetanus toxin. It was found that the light chain component of C1 toxin possessed several amino acid regions, in addition to the N terminus, that were homologous to tetanus toxin.  相似文献   

20.
Two lambda gt11 clones of the toxin gene of Clostridium botulinum type B were identified by the monoclonal antibody specific to the heavy chain of type B toxin. Neither of the expressed fusion proteins from the lysates of lysogenic E. coli Y1089 showed any botulinal toxic activity. One of the clones hybridized to the oligonucleotide probe which was synthesized according to the amino acid sequence of N-terminus of heavy chain. The sequence analysis revealed that highly homologous regions in N-terminus of heavy chain exist among botulinum neurotoxins (type A, B) and tetanus toxin on the amino acid sequence level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号