首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Beta-cyclodextrin (beta-CD) polymers are used for the removal of various dyes from aqueous solutions. Three insoluble polymers with different degrees of beta-CD were used. Results of adsorption experiments showed that these polymers exhibited high sorption capacities toward dyes. The mechanism of adsorption was both physical adsorption and hydrogen bonding due to the polymer and the formation of an inclusion complex due to the beta-CD molecules through host-guest interactions.  相似文献   

2.
Two series of crosslinked starch polymers were tested for their ability to adsorb organic pollutants in aqueous solutions. The polymers were prepared by a crosslinking reaction of starch-enriched flour using epichlorohydrin as the crosslinking agent, without and in the presence of NH(4)OH. These polymers were used as sorbent materials for the removal of phenolic derivatives from wastewater. The influence of several parameters (kinetics, pH and polymer structure) on the sorption capacity was evaluated using the batch and the open column methods. Results of adsorption experiments showed that the starch-based materials exhibited high sorption capacities toward phenolic derivatives. The study of the kinetics of pollutant uptake revealed that the adsorbents presented a relatively fast rate of adsorption. The experimental data were examined using the Langmuir and Freundlich models and it was found that the Freundlich model appeared to fit the isotherm data better than the Langmuir model.  相似文献   

3.
Depending upon their structure, azo- and anthraquinonic dyes are the two major classes and together represent 90% of all organic colorants. Adsorption of dye molecules onto a sorbent can be an effective, low-cost method of color removal. Most of the techniques used for removal of dyes are of high production cost, and the regeneration also makes them uneconomical. There is much interest in the development of cheaper and effective newer materials for use as adsorbents. Molecular imprinting is a new kind of materials that can be alternative adsorbents. In this study, molecularly imprinted polymers of three textile dyes (Cibacron Orange P-4R, Cibacron Red P-4B, Cibacron Black PSG) were prepared. Methacrylic acid was used as a monomer for red and orange dyes and acrylamide was used for black dye. Methanol:acetonitrile was used as a porogen. The selective recognition ability of the molecularly imprinted polymers was studied by an equilibrium–adsorption batch method. The adsorption data are for Cibacron Black PSG 65% and nonimprinted polymer (NIP) 25%; Cibacron Red P-4B 72% and NIP 18%; and Cibacron Orange P-4R 45% and NIP 10%, respectively. Dye-imprinted polymers were used as a solid-phase extraction material for selective adsorption from wastewater of textile factory.  相似文献   

4.
Depending upon their structure, azo- and anthraquinonic dyes are the two major classes and together represent 90% of all organic colorants. Adsorption of dye molecules onto a sorbent can be an effective, low-cost method of color removal. Most of the techniques used for removal of dyes are of high production cost, and the regeneration also makes them uneconomical. There is much interest in the development of cheaper and effective newer materials for use as adsorbents. Molecular imprinting is a new kind of materials that can be alternative adsorbents. In this study, molecularly imprinted polymers of three textile dyes (Cibacron Orange P-4R, Cibacron Red P-4B, Cibacron Black PSG) were prepared. Methacrylic acid was used as a monomer for red and orange dyes and acrylamide was used for black dye. Methanol:acetonitrile was used as a porogen. The selective recognition ability of the molecularly imprinted polymers was studied by an equilibrium-adsorption batch method. The adsorption data are for Cibacron Black PSG 65% and nonimprinted polymer (NIP) 25%; Cibacron Red P-4B 72% and NIP 18%; and Cibacron Orange P-4R 45% and NIP 10%, respectively. Dye-imprinted polymers were used as a solid-phase extraction material for selective adsorption from wastewater of textile factory.  相似文献   

5.
Five 14C-radiolabeled azo dyes and sulfanilic acid were synthesized and used to examine the relationship between dye substitution patterns and biodegradability (mineralization to CO2) by a white-rot fungus and an actinomycete. 4-Amino-[U-14C]benzenesulfonic acid and 4-(3-sulfo-4-aminophenylazo)-[U-14C]benzenesulfonic acid were used as representative compounds having sulfo groups or both sulfo and azo groups. Such compounds are not known to be present in the biosphere as natural products. The introduction of lignin-like fragments into the molecules of 4-amino-[U-14C]benzenesulfonic acid and 4-(3-sulfo-4-aminophenylazo)-[U-14C]benzenesulfonic acid by coupling reactions with guaiacol (2-methoxyphenol) resulted in the formation of the dyes 4-(3-methoxy-4-hydroxyphenylazo)-[U-14C]benzenesulfonic acid and 4-(2-sulfo-3'-methoxy-4'-hydroxy-azobenzene-4-azo)-[U-14C]benzenesulf oni c acid, respectively. The synthesis of acid azo dyes 4-(2-hydroxy-1-naphthylazo)-[U-14C]benzenesulfonic acid and 4-(4-hydroxy-1-naphthylazo)-[U-14C]benzenesulfonic acid also allowed the abilities of these microorganisms to mineralize these commercially important compounds to be evaluated. Phanerochaete chrysosporium mineralized all of the sulfonated azo dyes, and the substitution pattern did not significantly influence the susceptibility of the dyes to degradation. In contrast, Streptomyces chromofuscus was unable to mineralize aromatics with sulfo groups and both sulfo and azo groups. However, it mediated the mineralization of modified dyes containing lignin-like substitution patterns. This work showed that lignocellulolytic fungi and bacteria can be used for the biodegradation of anionic azo dyes, which thus far have been considered among the xenobiotic compounds most resistant to biodegradation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Five 14C-radiolabeled azo dyes and sulfanilic acid were synthesized and used to examine the relationship between dye substitution patterns and biodegradability (mineralization to CO2) by a white-rot fungus and an actinomycete. 4-Amino-[U-14C]benzenesulfonic acid and 4-(3-sulfo-4-aminophenylazo)-[U-14C]benzenesulfonic acid were used as representative compounds having sulfo groups or both sulfo and azo groups. Such compounds are not known to be present in the biosphere as natural products. The introduction of lignin-like fragments into the molecules of 4-amino-[U-14C]benzenesulfonic acid and 4-(3-sulfo-4-aminophenylazo)-[U-14C]benzenesulfonic acid by coupling reactions with guaiacol (2-methoxyphenol) resulted in the formation of the dyes 4-(3-methoxy-4-hydroxyphenylazo)-[U-14C]benzenesulfonic acid and 4-(2-sulfo-3'-methoxy-4'-hydroxy-azobenzene-4-azo)-[U-14C]benzenesulf oni c acid, respectively. The synthesis of acid azo dyes 4-(2-hydroxy-1-naphthylazo)-[U-14C]benzenesulfonic acid and 4-(4-hydroxy-1-naphthylazo)-[U-14C]benzenesulfonic acid also allowed the abilities of these microorganisms to mineralize these commercially important compounds to be evaluated. Phanerochaete chrysosporium mineralized all of the sulfonated azo dyes, and the substitution pattern did not significantly influence the susceptibility of the dyes to degradation. In contrast, Streptomyces chromofuscus was unable to mineralize aromatics with sulfo groups and both sulfo and azo groups. However, it mediated the mineralization of modified dyes containing lignin-like substitution patterns. This work showed that lignocellulolytic fungi and bacteria can be used for the biodegradation of anionic azo dyes, which thus far have been considered among the xenobiotic compounds most resistant to biodegradation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Removal of basic and reactive dyes using ethylenediamine modified rice hull   总被引:6,自引:0,他引:6  
Ong ST  Lee CK  Zainal Z 《Bioresource technology》2007,98(15):2792-2799
Wastewaters from textile industries may contain a variety of dyes that have to be removed before their discharge into waterways. Rice hull, an agricultural by-product, was modified using ethylenediamine to introduce active sites on its surface to enable it to function as a sorbent for both basic and reactive dyes. The sorption characteristics of Basic Blue 3 (BB3) and Reactive Orange 16 (RO16) by ethylenediamine modified rice hull (MRH) were studied under various experimental conditions. Sorption was pH and concentration dependent. Simultaneous removal of BB3 and RO16 occurred at pH greater than 4. The kinetics of dye sorption fitted a pseudo-second order rate expression. Increase in agitation rate had no effect on the sorption of BB3 but increased uptake of RO16 on MRH. Decreasing particle size increased the uptake of dyes in binary dye solutions. Equilibrium data could be fitted into both the Langmuir and Freundlich isotherms. Maximum sorption capacities calculated from the Langmuir model are 14.68 and 60.24 mg/g for BB3 and RO16, respectively in binary dye solutions. This corresponds to an enhancement of 4.5 and 2.4 fold, respectively, compared to single dye solutions. MRH therefore has the potential of being used as an efficient sorbent for the removal of both dyes in textile wastewaters.  相似文献   

8.
In this paper, the preparation, characterization and dye adsorption properties of nanocomposite (calcium alginate/organophilic montmorillonite) (CA/OMMT) were investigated. A new nanocomposite consisting of alginate and OMMT was prepared by polymerization using γ-rays irradiation as initiator. Physical characteristics of CA/OMMT were studied using X-ray diffraction (XRD), infrared spectrophotometery (IR), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). Two textile dyes, acid green B and direct pink 3B, were used as model anionic dye. Factors affecting dye sorption, such as pH, sorbent concentration and temperature of each dye solution were extensively investigated. It was found from the study that the sorption of dyes by the nanocomposite is pH-dependent and maximum sorption was obtained at pH 2. The thermodynamic data showed that dye adsorption onto alginate was spontaneous, exothermic, and a physisorption reaction. On the basis of the data of the present investigation, one could conclude that the as-prepared adsorbents exhibited excellent affinity for the dye, and can be applied to treat wastewater containing anionic dyes.  相似文献   

9.
花生壳粉生物吸附水溶液中阴离子染料的研究   总被引:1,自引:1,他引:0  
An untried,low cost, locally available biosorbent for its anionic dye removal capacity from aqueous solution was investigated. Powder prepared from peanut hull had been used for hiosorption of three anionic dyes, amaranth (Am), sunset yellow (SY) and fast green FCF (FG). The effects of various experimental parameters (e.g.initial pH and dye concentration, sorbent dosage, particle size, ion strength, contact time etc.) were examined and optimal experimental conditions were decided. At initial pH 2.0, three dyes studied could be removed effectively.When the dye concentration was 50 mg" L-1 the percentages of dyes sorbed was 95.5 % in Am, 91.3 % in SY and 94.98 % in FG, respectively. The ratios of dyes sorbed had neared maximum values in all three dyes whensorbent dose of 5.0 g·L^-1 and the sorbent particle size in 80—100 mesh was used. The increasing the ion strength of solution caused the decrease in biosorption percentages of dyes. The equilibrium values arrived at about 36 hour for all three dyes. The isothermal data of biosorption followed the Langmuir and Freundlich models. The biosorption processes conformed the pseudo-first-order rate kinetics. The results indicated that powdered peanut hull was an attractive candidate for removing anionic dyes from dye wastewater.  相似文献   

10.
Summary Chitosan is an amino-polysaccharide with highly efficient properties for the binding of metal ions and anionic dyes. Uptake may occur through chelation on free amino functions (at near-neutral pH) or by electrostatic attraction on protonated amino groups (in acidic solutions). The polymer is soluble in acidic solutions and its binding properties can be used in both solid form (sorption) and liquid form (ultrafiltration coupled with chelation, coagulation–flocculation). These properties have been used for the recovery of mercury from dilute solutions at initial pH 5 (which reveals the most efficient pH in the range pH 4–6) and for the recovery of Reactive Black 5 (RB5, anionic dye) at pH 3. While in the case of mercury binding saturation of the biopolymer is only slightly higher when chitosan is used in the liquid form compared to solid-state adsorption, in the case of the coagulation–flocculation of RB5 (using the liquid-form of chitosan) the saturation of the polymer (calculated on the basis of molar ratio of dye vs. amino groups of the polymer) is reached at a significantly greater value than when the polymer is used for the solid-state binding of the dye. There is a much more efficient use of amino groups when chitosan is used in the liquid-form due to a better availability of amino groups (less hydrogen bonds between the chains of the polymer) and to a better accessibility to internal sorption sites (lower diffusion control).  相似文献   

11.
Partial decolorization of two azo dyes (orange G and amaranth) and complete decolorization of two triphenylmethane dyes (bromophenol blue and malachite green) was achieved by cultures in submerged liquid culture producing laccase as the sole phenoloxidase. Enzyme production could be correlated with dye decolorization, with sorption of dye to mycelia accounting for less than 3% of dye removal.  相似文献   

12.
Shan X J  Jin X S  Zhou Z P  Dai F Q 《农业工程》2012,32(5):240-243
Anthropogenic activities and environmental changes have had a significant effect on the fishery ecosystem, biological characteristics, and population dynamics of marine fishes. Overfishing threatens the sustainability of many populations. We evaluated changes in the biological characteristics, distribution, and abundance of Cleisthenes herzensteini using bottom trawl survey data collected from 1985 to 2010 in the central and southern Yellow Sea. The dominant body length of C. herzensteini during spring was 80–160 mm in 1986, 60–160 mm in 1998, and 41–80 mm and 111–170 mm in 2010. During summer, the dominant body length was 80–180 mm and 130–169 mm in 2000 and 2007, respectively. During autumn, the dominant body length was 60–160 mm, 100–180 mm, and 90–149 mm in 1985, 2000, and 2009, respectively. During winter, the dominant body length was 80–200 mm, 120–220 mm, and 100–200 mm in 1985, 1999, and 2010, respectively. The dominant body length decreased gradually from 1985 to 2010 (excluding spring, 2010), illustrating the “miniaturization” of the C. herzensteini population. Growth was significantly different between male and female individuals, with male individuals forming a “smaller-size type”. The sex ratio of C. herzensteini was relatively stable during spring and summer, but significantly different during autumn and winter. The diet of C. herzensteini also changed significantly from 1985 to 2010. During 1985–1986, the diet consisted primarily of Crangon affinis, Eualus sinensis and Gammaridae species. C. affinis, Engraulis japonicus, and Ammodytes personatus were dominant during 1998–2000, whereas C. affinis was the dominant prey species during 2009–2010. Thus, there was a clear decrease in dietary diversity, with a shift to benthos shrimp, particularly C. affinis, which accounted for 82.58% of the total diet (by weight) in 2010. The gastric vacuous rate also decreased in every season and the gonad developmental stage changed with each season. The distribution of C. herzensteini shifted northward and offshore and became more concentrated. The average catch per haul of C. herzensteini decreased in spring and autumn. The average catch per haul ranged from 1.44 kg h-1 to 0.14 kg h-1 in spring and the percentage by weight ranged from 6.53% to 1.28%. The average catch per haul ranged from 3.03 kg h-1 to 0.26 kg h-1 in autumn and the percentage by weight ranged from 8.00% to 0.60%. The average catch per haul increased significantly during summer, ranging from 0.18 kg h-1 to 0.58 kg h-1, with a percentage by weight of 0.03–0.80%. The average catch per haul was relatively stable in winter (around 1.00 kg h-1), but the percentage by weight gradually increased during 1985–2010. Taken together, our results suggested that the population structure, diet composition, and distribution of C. herzensteini had been altered during the last three decades. To address this, it is essential to initiate measures to conserve the C. herzensteini resource.  相似文献   

13.
The vertical biomass allocation patterns of roots grown under standardised conditions were determined for species representing the major New Zealand indigenous grass genera Chionochloa and Festuca. Ten ramets, each of 2–3 tillers from garden collections of each species were grown in irrigated vertical sand columns in a glasshouse, and harvested after 168 days. Chionochloa teretifolia, Chionochloa macra, and Chionochloa crassiusucula, characteristic of alpine environments failed to produce new roots and died. However, most of the Chionochloa taxa (Chionochloa beddiei, Chionochloa pallens, Chionochloa rigida ssp. rigida, Chionochloa rubra ssp. cuprea, Chionochloa vireta), developed extensive new roots that reached the base of the one metre sand column. Roots of Chionochloa cheesemanii and Chionochloa conspicua reached 80–90 cm depth. Two Festuca taxa (Festuca actae, Festuca luciarum) had roots to 1 m depth, and roots of Festuca coxii, Festuca matthewsii ssp. latifundii, Festuca matthewsii ssp. matthewsii, Festuca multinodis, and Festuca novae-zelandiae grew to 70–90 cm depth. The edaphic specialists (Festuca deflexa, Chionochloa spiralis, Chionochloa defracta) were all shallow rooting.Species of Festuca maintained at least 40% of the root mass in the upper 10 cm of the column and most of the Chionochloa taxa had less than 40% of root mass in the upper zone. Genotype level variation in root mass less than 10 cm deep was greater in Chionochloa than in Festuca, and least in the edaphic specialist grasses.  相似文献   

14.
This communication describes preparation, characterization, and the evaluation of sorption properties of a calix[4]arene-based chitosan polymer (C[4]BCP). C[4]BCP was used to sorption studies of some heavy metal cations (Co(2+), Ni(2+), Cu(2+), Cd(2+)(,) Hg(2+) and Pb(2+)) and dichromate anions (Cr(2)O(7)(2-)/HCr(2)O(7)(-)) as sorbent material. Also the supporting material (chitosan) was used for comparison in these experiments. The results for heavy metal cations showed that C[4]BCP was excellent sorbent and the effect of chitosan was low. In the sorption studies of dichromate anions, C[4]BCP was highly effective sorbent at pH 1.5.  相似文献   

15.
Tetraethylenepentamine (TEPA) modified sugarcane bagasse (SB), a novel biosorbent (TEPA-MSB), was proved to be an effective adsorbent for anionic dyes due to the introduced functional amino groups. FTIR, TG and DSC analysis were employed to characterize the sorbent. The effects of pH, temperature, contact time and initial concentration of dye on the adsorption of eosin Y were investigated. The experimental data fit very well to the Langmuir model, giving a maximum sorption capacity of 399.04 mg/g at 25 °C. And the kinetic data were well described by the pseudo-second-order kinetic model. pH 6 was the optimal pH for eosin Y adsorption, and the maximum adsorption capacity of TEPA-MSB calculated by Langmuir model was 18 times higher than that of SB.  相似文献   

16.
Biomass-based filtration media are of interest as an economical means to remove pollutants and nutrients found in stormwater runoff. Refined aspen wood fiber samples treated with iron salt solutions demonstrated limited capacities to remove (ortho)phosphate from test solutions. To provide additional sites for iron complex formation, and thereby impart a greater capacity for phosphate removal, a fiber pretreatment with an aqueous solution of a non-toxic anionic polymer, carboxymethyl cellulose (CMC), was evaluated. Problems with excessive viscosities during the screening of commercially available CMC products led to the selection of an ultra low viscosity CMC product that was still usable at a 4% concentration in water. Soxhlet extractions of chipped aspen wood and refined aspen wood fiber samples showed a higher extractives content for the refined material. Analysis of these extracts by FTIR spectroscopy suggested that the higher extractives content for the refined material resulted from the fragmentation of cell wall polymers (e.g., lignin, hemicelluloses) normally insoluble in their native states. Spectroscopic analysis of CMC and ferrous chloride treated fibers showed that the complex formed was sufficiently stable to resist removal during subsequent water washes. Equilibrium sorption data, which fit better with a Freundlich isotherm model than a Langmuir isotherm model, showed that phosphate removal could be enhanced by the CMC pretreatment. Results suggest that the process outlined may provide a facile means to improve the phosphate removal capacity of biomass-based stormwater filtration media.  相似文献   

17.
Mixed anaerobic bacterial consortia have been show to reduce azo dyes and batch decolourisation tests have also demonstrated that predominantly methanogenic cultures also perform azo bond cleavage. The anaerobic treatment of wool dyeing effluents, which contain acetic acid, could thus be improved with a better knowledge of methanogenic dye degradation. Therefore, the decolourisation of two azo textile dyes, a monoazo dye (Acid Orange 7, AO7) and a diazo dye (Direct Red 254, DR254), was investigated in a methanogenic laboratory-scale Upflow Anaerobic Sludge Blanket (UASB), fed with acetate as primary carbon source. As dye concentration was increased a decrease in total COD removal was observed, but the acetate load removal (90%) remained almost constant. A colour removal level higher than 88% was achieved for both dyes at a HRT of 24h. The identification by HPLC analysis of sulfanilic acid, a dye reduction metabolite, in the treated effluent, confirmed that the decolourisation process was due mainly to azo bond reduction. Although, HPLC chromatograms showed that 1-amino-2-naphthol, the other AO7 cleavage metabolite, was removed, aeration batch assays demonstrated that this could be due to auto-oxidation and not biological mineralization. At a HRT of 8h, a more extensive reductive biotransformation was observed for DR254 (82%) than for AO7 (56%). In order to explain this behaviour, the influence of the dye aggregation process and chemical structure of the dye molecules are discussed in the present work.  相似文献   

18.
Spectrophotometric and spectrofluorometric titrations of two strongly aggregating dyes, 1,9-dimethylmethylene blue (DMMB) and acridine orange (AO), by three anionic biopolymers, chondroitin sulphate A, DNA and teichoic acid (TA), have been described. Though the three polymers differ in their dye binding efficiencies and TA is a weak chromotrope, the equivalent weights of the polymers can be estimated accurately by these methods using the two dyes. Results show DMMB to be the preferred dye for spectrophotometric titration. The titrations can be used to estimate the equivalent weights of anionic polymers, and also for the quantitative estimation of such polymers of known equivalent weights.  相似文献   

19.
Non-conventional low-cost adsorbents for dye removal: a review   总被引:60,自引:0,他引:60  
Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those that are not easily biodegradable. Dyes represent one of the problematic groups. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred sorbent for color removal, its widespread use is restricted due to high cost. As such, alternative non-conventional sorbents have been investigated. It is well-known that natural materials, waste materials from industry and agriculture and biosorbents can be obtained and employed as inexpensive sorbents. In this review, an extensive list of sorbent literature has been compiled. The review (i) presents a critical analysis of these materials; (ii) describes their characteristics, advantages and limitations; and (iii) discusses various mechanisms involved. It is evident from a literature survey of about 210 recent papers that low-cost sorbents have demonstrated outstanding removal capabilities for certain dyes. In particular, chitosan might be a promising adsorbent for environmental and purification purposes.  相似文献   

20.
New hydrophilic polymer sorbents comprising reactionary sites which are complementary to a molecule of antibiotic erythromycin were synthesized by the method of molecular imprinting. A series of similar sorbents without reactionary sites was used for comparison of sorption characteristics. Sorption of erythromycin on both types of polymer sorbents synthesized was studied in a wide range of pH and ionic strength. Selectivity of erythromycin sorption on molecularly imprinted cross-linked polymers was shown to depend on the specific interaction of target molecule with polymer matrix. This type of sorbent is perspective for the development of antibiotic purification directly from a culture medium Saccharopolyspora erythreus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号