首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Altered hypothalamic-pituitary-adrenal (HPA) function has been shown to be associated with changes in mood and behavior. The enzyme phosphoinositide-specific phospholipase C (PI-PLC), an important component of the PI signal transduction system, plays a major role in mediating various physiological functions. In the present study, we investigated the effects of a single dose and of repeated administration (0.5 or 1.0 mg/kg for 10 days) of dexamethasone (DEX), a synthetic glucocorticoid, on PI-PLC activity and on expression of PLC isozymes (beta1, delta1, and gamma1) in rat brain. Repeated administration of DEX (1.0 mg/kg) caused a significant increase in PI-PLC activity and in protein expression of the PLC beta1 isozyme in both membrane and cytosol fractions of cortex and hippocampus; however, the repeated administration of a smaller dose of DEX (0.5 mg/kg) caused these changes only in hippocampus but not in cortex. The increase in PLC beta1 protein was associated with an increase in its mRNA level, as measured by competitive RT-PCR. A single administration of DEX (0.5 or 1.0 mg/kg) to rats had no significant effects on PI-PLC activity or on the protein expression of PLC isozymes. These results suggest that DEX up-regulates PI-PLC in rat brain, which presumably is due to a selective increase in expression of the PLC beta1 isozyme, and that these changes in PI-PLC may be related to HPA axis-mediated changes in mood and behavior.  相似文献   

2.
Our previous work demonstrated that both polymorphonuclear leukocytes (PMNs) and protein fractions released from PMNs induced de novo synthesis of fibroblast growth factor 2 (FGF-2), which in turn becomes the direct mediator of endothelial mesenchymal transformation observed in corneal endothelial cells (CECs). To identify the protein factor, we used ProteinChip Array technology. Protein fractions obtained from the conditioned medium released by PMNs were resolved by two-dimensional electrophoresis with immobilized pH gradient strips. Most of the protein spots, with molecular masses of 17 kDa, were sequentially subjected to in-gel trypsin digestion and mass spectrometry. The 17-kDa peptide band was identified as interleukin-1 beta (IL-1 beta). Biological activities of IL-1 beta were further determined; IL-1 beta altered the shape of CECs from polygonal to fibroblastic morphologies in a time- and dose-dependent manner, whereas neutralizing IL-1 beta antibody, neutralizing antibody to FGF-2, and LY294002 blocked the action of IL-1 beta. IL-1 beta greatly increased the levels of FGF-2 mRNA in a time- and dose-dependent manner; IL-1 beta stimulated expression of all isoforms of FGF-2. IL-1 beta initially induced nuclear accumulation of FGF-2 and facilitated translocation of FGF-2 to plasma membrane and extracellular matrix. IL-1 beta activated phosphatidylinositol (PI) 3-kinase, the enzyme activity of which was greatly stimulated after a 5-min exposure to IL-1 beta. This early and rapid activation of PI 3-kinase greatly enhanced FGF-2 production in CECs; pretreatment with LY294002 hampered the induction activity of IL-1 beta. These observations suggest that IL-1 beta takes part in endothelial to mesenchymal transformation of CECs through its inductive potential on FGF-2 via the action of PI 3-kinase.  相似文献   

3.
4.
5.
Upadhyay D  Chang W  Wei K  Gao M  Rosen GD 《FEBS letters》2007,581(2):248-252
We studied the effects of fibroblast growth factor (FGF-10) on H2O2-induced alveolar epithelial cell (AEC) G1 arrest and the role of G1 cyclins. FGF-10 prevented H2O2-induced AEC G1 arrest. FGF-10 induced 2-4-fold increase in cyclin E, cyclin A and CDKs (2,4) alone and in AEC treated with H2O2. H2O2 downregulated cyclin D1; FGF-10 blocked these effects. FGF-10 prevented H2O2-induced upregulation of CDK inhibitor, p21. SiRNAp21 blocked H2O2-induced downregulation of cyclins, CDKs and AEC G1 arrest. Accordingly, we provide first evidence that FGF-10 regulates G1 cyclins and CDKs, and prevents H2O2-induced AEC G1 arrest.  相似文献   

6.
We investigated the molecular mechanisms by which treatment of the human osteoblast-like cell line MG-63 with interleukin 1beta (IL-1) and/or fibroblast growth factor 1 (FGF-1) elicited prostaglandin biosynthesis. IL-1 induced a 5-fold increase in PGE(2) production compared to controls. While treatment with FGF-1 alone did not affect PGE(2) biosynthesis, it enhanced the formation of PGE(2) by IL-1 by an additional 3- to 5-fold. IL-1-induced PGE(2) biosynthesis accompanied increases in steady-state levels of mRNAs encoding cPLA(2) (10- to 15-fold) and PGHS-2 (>3-fold) and concomitant increases in cPLA(2) protein (>3-fold) and PGHS-2 protein (>1. 5-fold). FGF-1 treatment did not affect PGHS-2 gene expression, but enhanced the effect of IL-1 on PGHS-2 expression by an additional 2- to 3-fold. FGF-1 alone enhanced cPLA(2) expression (5-fold), and the combined effects of FGF-1 and IL-1 on cPLA(2) expression were additive. There was no measurable effect of either agonist on PGHS-1 expression. We also discovered that induction of PGE(2) biosynthesis in response to IL-1 or IL-1/FGF-1 was affected by the density of MG-63 cells in culture. Subconfluent cultures displayed a 3- to 10-fold greater response to IL-1 or IL-1/FGF-1 than confluent cultures. The decreased PGE(2) induction by IL-1 in confluent cultures was associated with reduced IL-1 receptor expression. We conclude that the signaling pathways resulting in PGE(2) biosynthesis in response to proinflammatory agents like IL-1 are subject to complex regulation by additional soluble mediators as well as cell-cell or cell-extracellular matrix interactions.  相似文献   

7.
FGF-16 has been reported to be preferentially expressed in the adult rat heart. We have investigated the expression of FGF-16 in the perinatal and postnatal heart and its functional significance in neonatal rat cardiac myocytes. FGF-16 mRNA accumulation was observed by quantitative RT-PCR between neonatal days 1 and 7, with this increased expression persisting into adulthood. FGF-2 has been shown to increase neonatal rat cardiac myocyte proliferative potential via PKC activation. Gene array analysis revealed that FGF-16 inhibited the upregulation by FGF-2 of cell cycle promoting genes including cyclin F and Ki67. Furthermore, the CDK4/6 inhibitor gene Arf/INK4A was upregulated with the combination of FGF-16 and FGF-2 but not with either factor on its own. The effect on Ki67 was validated by protein immunodetection, which also showed that FGF-16 significantly decreased FGF-2-induced Ki67 labeling of cardiac myocytes, although it alone had no effect on Ki67 labeling. Inhibition of p38 MAPK potentiated cardiac myocyte proliferation induced by FGF-2 but did not alter the inhibitory action of FGF-16. Receptor binding assay showed that FGF-16 can compete with FGF-2 for binding sites including FGF receptor 1. FGF-16 had no effect on activated p38, ERK1/2, or JNK/SAPK after FGF-2 treatment. However, FGF-16 inhibited PKC-alpha and PKC-epsilon activation induced by FGF-2 and, importantly, IGF-1. Collectively, these data suggest that expression and release of FGF-16 in the neonatal myocardium interfere with cardiac myocyte proliferative potential by altering the local signaling environment via modulation of PKC activation and cell cycle-related gene expression.  相似文献   

8.
9.
Lingual epithelial cells, including those of the taste buds, are regularly replaced by proliferative stem cells. We found that integrin beta(1), a keratinocyte stem cell marker, was expressed at the basal layer and taste buds of adult mouse tongue epithelium. We purified and cultured integrin beta(1)-positive cells (termed KT-1 cells), whose growth was stimulated by epidermal growth factor (EGF) and basic fibroblast growth factor (FGF-2). FGF-2 stimulation induced translocation of the FGF type I receptor (FGFR1) into nuclei, suggesting that the growth-stimulating effect of FGF-2 was mediated through FGFR1. EGF and FGF-2 also regulated cell surface expression of the neural cell adhesion molecule (N-CAM) in KT-1 cells. Anti-N-CAM antibody immunoreactivity was restricted to the gustatory epithelium and the nerves in the tongue epithelium, giving rise to the possibility that KT-1 may contain gustatory epithelial cells. KT-1 cells may thus be useful for analyzing the factors that regulate the growth and differentiation of lingual and gustatory epithelial cells in vitro.  相似文献   

10.
ATP, acting via P2Y, G protein-coupled receptors (GPCRs), is a mitogenic signal and also synergistically enhances fibroblast growth factor-2 (FGF-2)-induced proliferation in astrocytes. Here, we have examined the effects of ATP and FGF-2 cotreatment on the main components of the extracellular-signal regulated protein kinase (ERK) cascade, cRaf-1, MAPK/ERK kinase (MEK) and ERK, key regulators of cellular proliferation. Surprisingly, ATP inhibited activation of cRaf-1 by FGF-2 in primary cultures of rat cortical astrocytes. The inhibitory effect did not diminish MEK and ERK activation; indeed, cotreatment resulted in a greater initial activation of ERK. ATP inhibition of cRaf-1 activation was not mediated by an increase in cyclic AMP levels or by protein kinase C activation. ATP also inhibited the activation of cRaf-1 by other growth factors, epidermal growth factor and platelet-derived growth factor, as well as other MEK1 activators stimulated by FGF-2, MEK kinase 1 (MEKK1) and MEKK2. Serotonin, an agonist of another GPCR coupled to ERK, did not inhibit FGF-2-induced cRaf-1 activation, thereby indicating specificity in the ATP-induced inhibitory cross-talk. These findings suggest that ATP stimulates an inhibitory activity that lays upstream of MEK activators and inhibits growth factor-induced activation of cRaf-1 and MEKKS: Such a mechanism might serve to integrate the actions of receptor tyrosine kinases and P2Y-GPCRS:  相似文献   

11.
1alpha,25(OH)(2)D(3) activates protein kinase C (PKC) in rat growth plate chondrocytes via mechanisms involving phosphatidylinositol-specific phospholipase C (PI-PLC) and phospholipase A(2) (PLA(2)). The purpose of this study was to determine if 1alpha,25(OH)(2)D(3) activates PI-PLC directly or through a PLA(2)-dependent mechanism. We determined which PLC isoforms are present in the growth plate chondrocytes, and determined which isoform(s) of PLC is(are) regulated by 1alpha,25(OH)(2)D(3). Inhibitors and activators of PLA(2) were used to assess the inter-relationship between these two phospholipid-signaling pathways. PI-PLC activity in lysates of prehypertrophic and upper hypertrophic zone (growth zone) cells that were incubated with 1alpha,25(OH)(2)D(3), was increased within 30s with peak activity at 1-3 min. PI-PLC activity in resting zone cells was unaffected by 1alpha,25(OH)(2)D(3). 1beta,25(OH)(2)D(3), 24R,25(OH)(2)D(3), actinomycin D and cycloheximide had no effect on PLC in lysates of growth zone cells. Thus, 1alpha,25(OH)(2)D(3) regulation of PI-PLC enzyme activity is stereospecific, cell maturation-dependent, and nongenomic. PLA(2)-activation (mastoparan or melittin) increased PI-PLC activity to the same extent as 1alpha,25(OH)(2)D(3); PLA(2)-inhibition (quinacrine, oleyloxyethylphosphorylcholine (OEPC), or AACOCF(3)) reduced the effect of 1alpha,25(OH)(2)D(3). Neither arachidonic acid (AA) nor its metabolites affected PI-PLC. In contrast, lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) activated PI-PLC (LPE>LPC). 1alpha,25(OH)(2)D(3) stimulated PI-PLC and PKC activities via Gq; GDPbetaS inhibited activity, but pertussis toxin did not. RT-PCR showed that the cells express PLC-beta1a, PLC-beta1b, PLC-beta3 and PLC-gamma1 mRNA. Antibodies to PLC-beta1 and PLC-beta3 blocked the 1alpha,25(OH)(2)D(3) effect; antibodies to PLC-delta and PLC-gamma did not. Thus, 1alpha,25(OH)(2)D(3) regulates PLC-beta through PLA(2)-dependent production of lysophospholipid.  相似文献   

12.
AMP-activated protein kinase (AMPK) is recognized as a regulator of energy homeostasis. We have previously reported that basic fibroblast growth factor (FGF-2) stimulates vascular endothelial growth factor (VEGF) release through the activation of p44/p42 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of AMPK in FGF-2-stimulated VEGF release in these cells. FGF-2 time-dependently induced the phosphorylation of AMPK α-subunit (Thr-172). Compound C, an AMPK inhibitor, which suppressed the FGF-2-induced phosphorylation of AMPK, significantly inhibited the VEGF release stimulated by FGF-2. The AMPK inhibitor also reduced the mRNA expression of VEGF induced by FGF-2. The FGF-2-induced phosphorylation of both p44/p42 MAP kinase and SAPK/JNK was attenuated by compound C. These results strongly suggest that AMPK positively regulates the FGF-2-stimulated VEGF synthesis via p44/p42 MAP kinase and SAPK/JNK in osteoblasts.  相似文献   

13.
Mounting experimental evidence has suggested that the trophic environment of cells in culture is an important determinant of their vulnerability to the cytotoxic effects of reactive oxidants such as peroxynitrite (ONOO(-)). However, acidic fibroblast growth factor (FGF-1)-induced signaling renders some cells more sensitive and others resistant to the cytotoxic effects of ONOO(-). To determine whether alternatively spliced fibroblast growth factor receptor (FGFR-1) isoforms are responsible for this differential response, we have stably transfected FGFR-negative rat brain-derived resistant vessel endothelial cells (RVEC) with human cDNA sequences encoding either FGFR-1 alpha or FGFR-1 beta. FGF-1 treatment of RVEC(R-1 alpha) transfectants enhanced ONOO(-)-mediated cell death in a manner dependent upon FGFR-1 tyrosine kinase, MEK/Erk 1/2 kinase, and p38 MAP kinase activities and independent of Src-family kinase (SFK) activity. FGF-1 treatment of RVEC(R-1 beta) transfectants inhibited the cytotoxic effects of ONOO(-) in a manner dependent upon FGFR-1 tyrosine kinase, MEK/Erk 1/2 kinase, and SFK activities and independent of p38 MAP kinase activity. FGF-1-induced preactivation of both FGFR-1 tyrosine and Erk 1/2 kinases was detected in both RVEC(R-1 alpha) and RVEC(R-1 beta) transfectants. FGF-1-induced preactivation of p38 MAPK was restricted to RVEC(R-1 alpha) transfectants, whereas, ligand-induced preactivation of SFK was limited to RVEC(R-1 beta) transfectants. Collectively, these results both reemphasize the role of extracellular trophic factors and their receptor-mediated signaling pathways during cellular responses to oxidant stress and provide a first indication that the alternatively spliced FGFR-1 isoforms induce differential signal transduction pathways.  相似文献   

14.
Because the left ventricular (LV) hypertrophy due to volume overload induced by arteriovenous (AV) shunt was associated with an increase in phospholipase C (PLC) isozyme mRNA levels, PLC is considered to be involved in the development of cardiac hypertrophy. Since the renin-angiotensin system (RAS) is activated in cardiac hypertrophy, the role of RAS in the stimulation of PLC isozyme gene expression in hypertrophied heart was investigated by inducing AV shunt in Sprague-Dawley rats. The animals were treated with or without losartan (20 mg/kg, daily) for 3 days as well as 1, 2 and 4 weeks, and atria, right ventricle (RV) and LV were used for analysis. The increased muscle mass as well as the mRNA levels for PLC beta1 and beta3 in atria and RV, unlike PLC beta3 gene expression in LV, at 3 days of AVshunt were attenuated by losartan. The increased gene expression for PLC beta1 at 2 weeks in atria, at 1 and 4 weeks in RV, and at 2 and 4 weeks in LV was also depressed by losartan treatment. Likewise, the elevated mRNA levels for PLC beta3 in RV at 1 week and in LVat 4 weeks of cardiac hypertrophy were decreased by losartan. On the other hand, the increased levels of mRNA for PLC gamma1 in RV and LV at 2 and 4 weeks of inducing hypertrophy, unlike in atria at 4 weeks were not attenuated by losartan treatment. While the increased mRNA level for PLC delta1 in LV was reduced by losartan, gene expression for PLC delta1 was unaltered in atria and decreased in RV at 3 days of inducing AV shunt. These results suggest that changes in PLC isozyme gene expression were chamber specific and time-dependent upon inducing cardiac hypertrophy due to AV shunt. Furthermore, partial attenuation of the increased gene expression for some of the PLC isozymes and no effect of losartan on others indicate that both RAS dependent and independent mechanisms may be involved in hypertrophied hearts due to volume overload.  相似文献   

15.

Background

Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated.

Methodology/Principal Findings

Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume.

Conclusions/Significance

TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the stimulation protocol for the optimal chondrogenic differentiation of synovial explants.  相似文献   

16.
Nuclear lipid metabolism is involved in the regulation of cell proliferation. Modulation of the expression and activity of nuclear PI-phospholipase C (PI-PLC) has been reported during liver regeneration after partial hepatectomy, although it has not been determined whether different PLC isoforms play specific roles in the regulation of cell cycle progression. Here, we report evidence that the increased activity of nuclear PLCs in regenerating rat liver occurs before the peak of DNA replication and involves the enzyme activity associated to the chromatin and not that associated to the nuclear membrane. Immunocytochemical analyses indicate that PI-PLC beta(1) isoform is exclusively localized at the chromatin level, PI-PLC beta(1) co-localizes with DNA replication sites much more than PI-PLC gamma(1), which is also present at the nuclear envelope. These findings and the increased amount of PI-PLC gamma(1) occurring after the peak of DNA replication suggest that PI-PLC beta(1) and gamma(1) play different roles in cell cycle progression during regenerating liver. The increased activity of PI-PLC beta(1) constitutively present within the hepatocyte nucleus, should trigger DNA replication, whereas PI-PLC gamma(1) should be involved in G2/M phase transition through lamin phosphorylation.  相似文献   

17.
18.
The alpha(v)beta(3) integrin is essential for fibroblast growth factor (FGF)-induced angiogenesis in vivo. However, the role of this integrin in FGF-2-mediated cellular responses by cultured endothelial cells is largely unknown. Cyclic RGDfV (cRGDfV) peptide is widely used to inhibit the binding of alpha(v)beta(3) integrin to vitronectin. To investigate the role of this integrin in FGF-2-mediated cellular responses, we used immortalized murine brain capillary endothelial cells, denoted IBE cells. Because IBE cells proliferate and migrate in response to FGF-2-treatment, when cultured on fibronectin-coated surface, we first examined the inhibitory activity of this peptide on the binding of alpha(v)beta(3) integrin to fibronectin as well as vitronectin. Solid phase binding assay revealed that cRGDfV peptide strongly inhibited the binding of purified alpha(v)beta(3) integrin to vitonectin- and fibronectin-coated plastic surfaces at a concentration of 50 microM. cRGDfV peptide at 50 microM inhibited spreading as well as adhesion of IBE cells on vitronectin-coated plastic surface but not on fibronectin. On fibronectin-coated substrata, cRGDfV at 50 microM attenuated FGF-2-mediated chemotaxis, but not FGF-2-induced proliferation, of IBE cells. We have previously demonstrated that mitogen-activated protein kinase (MAPK) activation within focal adhesions through c-Src activity was involved in FGF-2-induced chemotaxis of IBE cells. Treatment of cells with cRGDfV peptide was associated with reduced c-Src activity without tyrosine dephosphorylation. Immunofluorescent staining showed that cRGDfV inhibited redistribution of c-Src into focal adhesions. MAPK activation by FGF-2 within focal adhesions was also attenuated in the presence of cRGDfV peptide. Our results indicated that cRGDfV peptide inhibited redistribution of c-Src into focal adhesions, leading to impaired MAPK activation within focal adhesions and motility in FGF-2-treated endothelial cells.  相似文献   

19.
Signal transduction from plasma membrane to cell nucleus is a complex process depending on various components including lipid signaling molecules, in particular phosphoinositides and their related enzymes, which act at cell periphery and/or plasma membrane as well as at nuclear level. As far as the nervous system may concern the inositol lipid cycle has been hypothesized to be involved in numerous neural as well as glial functions. In this context, however, a precise panel of glial PLC isoforms has not been determined yet. In the present experiments we investigated astrocytic PLC isoforms in astrocytes obtained from foetal primary cultures of rat brain and from an established cultured (C6) rat astrocytoma cell line, two well known cell models for experimental studies on glia. Identification of PLC isoforms was achieved by using a combination of RT-PCR and immunocytochemistry experiments. While in both cell models the most represented PI-PLC isoforms were beta4, gamma1, delta4, and epsilon, isoforms PI-PLC beta2 and delta3 were not detected. Moreover, in primary astrocyte cultures PI-PLC delta3 resulted well expressed in C6 cells but was absent in astrocytes. Immunocytochemistry performed with antibodies against specific PLC isoforms substantially confirmed this pattern of expression both in astrocytes and C6 glioma cells. In particular while some isoenzymes (namely isoforms beta3 and beta4) resulted mainly nuclear, others (isoforms delta4 and epsilon) were preferentially localized at cytoplasmic and plasma membrane level.  相似文献   

20.
Eukaryotic phosphoinositide-specific phospholipases C (PI-PLC) specifically hydrolyze phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)], produce the Ca(2+)-mobilizing agent inositol 1,4,5-trisphosphate, and regulate signaling in multicellular organisms. Bacterial PtdIns-specific PLCs, also present in trypanosomes, hydrolyze PtdIns and glycosyl-PtdIns, and they are considered important virulence factors. All unicellular eukaryotes studied so far contain a single PI-PLC-like gene. In this report, we show that ciliates are an exception, since we provide evidence that Tetrahymena species contain two sets of functional genes coding for both bacterial and eukaryotic PLCs. Biochemical characterization revealed two PLC activities that differ in their phosphoinositide substrate utilization, subcellular localization, secretion to extracellular space, and sensitivity to Ca(2+). One of these activities was identified as a typical membrane-associated PI-PLC activated by low-micromolar Ca(2+), modestly activated by GTPγS in vitro, and inhibited by the compound U73122 [1-(6-{[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino}hexyl)-1H-pyrrole-2,5-dione]. Importantly, inhibition of PI-PLC in vivo resulted in rapid upregulation of PtdIns(4,5)P(2) levels, suggesting its functional importance in regulating phosphoinositide turnover in Tetrahymena. By in silico and molecular analysis, we identified two PLC genes that exhibit significant similarity to bacterial but not trypanosomal PLC genes and three eukaryotic PI-PLC genes, one of which is a novel inactive PLC similar to proteins identified only in metazoa. Comparative studies of expression patterns and PI-PLC activities in three T. thermophila strains showed a correlation between expression levels and activity, suggesting that the three eukaryotic PI-PLC genes are functionally nonredundant. Our findings imply the presence of a conserved and elaborate PI-PLC-Ins(1,4,5)P(3)-Ca(2+) regulatory axis in ciliates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号