共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
H. J. M. Op Den Camp K. D. Liem P. Meesters J. M. H. Hermans C. Van Der Drift 《Antonie van Leeuwenhoek》1989,55(4):303-311
Ammonia assimilation in Bacillus fastidiosus proceeds via the NADP-dependent glutamate dehydrogenase. The enzyme, purified to homogeneity, is composed of identical subunits with a molecular weight of about 48 000 dalton. Presumably the enzyme is a hexamer. The enzyme is specific for NADP (H). The pH optima for the amination and deamination reactions are 7.7 and 8.6, respectively. The temperature optimum is 60°C. Furthermore, temperature stability and apparent Km values for substrates of both the amination and deamination reactions were determined. Several metabolites were tested for their effect on the enzyme activity. Only malate and fumarate showed some inhibitory effect.Abbreviation GDH
glutamate dehydrogenase 相似文献
3.
Chlorella sorokiniana has seven ammonium-inducible, chloroplastic NADP-specific glutamate dehydrogenase (NADP-GDH) isozymes composed of varying ratios of - and -subunits. Southern blot and allele-specific PCR analyses indicate that the C. sorokiniana genome possesses a single 7178 bp nuclear NADP-GDH gene. cDNA cloning and sequencing, 5-RACE-PCR analysis, and RNase protection analysis identified two NADP-GDH mRNAs that are identical with the exception of a 42 nt sequence located within the 5-coding region of the longer mRNA. The 42 nt sequence, termed an auxon because it serves as an exon or intron, appears to undergo alternative splicing from the precursor mRNA by a process that is regulated by both nutritional and environmental signals. Depending upon whether the auxon is included or excluded in a mature mRNA, the gene can be considered to consist of 22 or 23 exons, respectively. The 2074 and 2116 nt mRNAs encode precursor proteins of 56350 and 57850 Da, respectively. The N-termini of the purified mature - and -subunits were sequenced, identifying full-length subunits of 53501 and 52342 Da, respectively. The sequences of the subunits are identical except for an 11 amino acid extension at the N-terminus of the -subunit. The -subunit has an additional -helical domain at its N-terminus compared with the -subunit. By correlating the abundances of the two mRNAs with the levels (and relative turnover rates) of the - and -subunit antigens during induction in Chlorella, the larger mRNA is proposed to encode the larger subunit. 相似文献
4.
5.
O-Dealkylations of resorufin and coumarin ethers, mediated by microsomal cytochrome P450 mono-oxygenases from animals, plants
and microorganisms, are shown here to be performed also by intact cells of the unicellular green algaeChlorella fusca andChlorella sorokiniana. The activity of theO-dealkylation of these ethers was up to tenfold higher withChlorella sorokiniana. Both algae dealkylated methyl-, ethyl-, and pentylethers of resorufin and coumarin. Dealkylation in vivo indicated efficient
absorption of methoxy- and ethoxyresorufin, confirmed by the respective absorption kinetics. Piperonylbutoxide and 1-aminobenzotriazole,
known inhibitors of plant and mammalian cytochrome P450s, significantly inhibited theO-dealkylase activity of both algal strains. The use of synchronized cultures of both algae revealed that efficiency ofO-dealkylation depends on the stage of the cell cycle: during the growth phase, theO-dealkylase activities increased more than proportional, and the distinct drop in activity during the last hours of the light
period indicated the appearance of an endogenous substrate. 相似文献
6.
Muhamad N Simcock DC Pedley KC Simpson HV Brown S 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2011,159(2):71-77
Like other nematodes, both L(3) and adult Teladosagia circumcincta secrete or excrete NH(3)/NH(4)(+), but the reactions involved in the production are unclear. Glutamate dehydrogenase is a significant source NH(3)/NH(4)(+) in some species, but previous reports indicate that the enzyme is absent from L(3)Haemonchus contortus. We show that glutamate dehydrogenase was active in both L(3) and adult T. circumcincta. The apparent K(m)s of the L(3) enzyme differed from those of the adult enzyme, the most significant of these being the increase in the K(m) for NH(4)(+) from 18mM in L(3) to 49mM in adults. The apparent V(max) of the oxidative deamination reaction was greater than that of the reductive reaction in L(3), but this was reversed in adults. The activity of the oxidative reaction of the L(3) enzyme was not affected by adenine nucleotides, but that of the reductive reaction was stimulated significantly by either ADP or ATP. The L(3) enzyme was more active with NAD(+) than it was with NADP(+), although the activities supported by NADH and NADPH were similar at saturating concentrations. While the activity of the oxidative reaction was sufficient to account for the NH(3)/NH(4)(+) efflux we have previously reported, the reductive amination reaction was likely to be more active. 相似文献
7.
Summary NADP-dependent glutamate dehydrogenase from Dictyostelium discoideum was purified 9300 fold with a yield of 4.6%. The enzyme is a hexamer of apparent molecular weight 294 kDa on Sephacryl S400 and a subunit molecular weight of 52 kDa as determined by SDS gel electrophoresis. The apparent KmS for -ketoglutarate, NADPH and NH
inf4
sup+
are 1.2 mM, 9.7 µM and 2.2 mM respectively, and the purified enzyme has a broad pH optimum with a peak at pH 7.75. GTP has a slight stimulatory effect (22% at 83 µM) as does ADP (11% at 1 mM), and AMP is slightly inhibitory (9% at 1 mM) whereas adenosine, ATP and cAMP have little or no effect. Neither the Zn2+ chelating compound 1,10-phenanthroline nor EDTA have any effect on the enzyme while p-hydroxymercuribenzoic acid inhibits enzyme activity (50% at 80 µM) yet N-ethylmaleimide does not.In addition, the NADP-GDH activity varies little during the various stages of morphogenesis.Abbreviations EDTA
Ethylenediamine Tetraacetic Acid
- Tris
Tris(hydroxymethyl)aminomethane
- Bis-tris
bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane
- TRITON X-100
iso-octylphenoxypoly-ethoxyethanol
-
pHMB
p-Hydroxymercuribenzoic acid 相似文献
8.
We investigated the effects of genetic modification of nitrogen metabolism via the bacterial glutamate dehydrogenase (GDH)
on plant growth and metabolism. The gdhA gene from Escherichia coli encoding a NADPH-GDH was expressed in tobacco plants under the control of the 35 S promoter. The specific activity of GDH
in gdhA plants was 8-fold of that in E. coli. Damage caused by spray application of 1.35 mM of phosphinothricin (PPT) herbicide, a glutamine synthetase (GS) inhibitor,
was less pronounced in gdhA plants as compared with the control plants which suggests that the introduced GDH can assimilate some of the excess ammonium,
at least during GS inhibition. However, gdhA plants were susceptible to 2.7 mM PPT. Biomass production was consistently increased in gdhA transgenic plants grown under controlled conditions and in the field. Total free amino acids and total carbohydrates were
increased in gdhA plants grown in the greenhouse suggesting that both nitrogen and carbon metabolism were altered. We conclude that the modifications
in transgenic plants may result from both increased nitrogen efficiency and altered gene expression and metabolism.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
9.
Rudolf Tischner 《Planta》1984,160(1):1-5
Chlorella sorokiniana possesses two forms of nitrate reductase (EC 1.6.6.1.). One with low activity is present in cells at the end of the light-dark cycle, the other with high activity is present after 1 h of illumination. The two forms can be distinguished by gel electrophoresis, isopycnic centrifugation, assay of the partial reactions and their sensitivity to antibodies, respectively. These differences are discussed with respect to an effect of intracellular nitrate on the activation of nitrate reductase.Abbreviations NAR
nitrate reductase
- FMN
flavine mononucleotide
- MV
methylviologen 相似文献
10.
In Chlorella sorokiniana (211/8k), glucose-6 phosphate dehydrogenase (G6PDH—EC 1.1.1.49) activity is similar in both N-starved cells and nitrate-grown algae when expressed on a PCV basis. A single G6PDH isoform was purified from Chlorella cells grown under different nutrient conditions; the presence of a single G6PDH was confirmed by native gels stained for enzyme activity and by Western blots. The algal G6PDH is recognised only by antibodies raised against higher plants plastidic protein, but not by chloroplastic and cytosolic isoform-specific antisera. Purified G6PDH showed kinetic parameters similar to plastidic isoforms of higher plants, suggesting a different biochemical structure which would confer peculiar regulative properties to the algal G6PDH with respect to higher plants enzymes. The most remarkable property of algal G6PDH is represented by the response to NADPH inhibition. The algal enzyme is less sensitive to NADPH effects compared to higher plants G6PDH: KiNADPH is 103 μM for G6PDH from nitrogen-starved C. sorokiniana, similarly to root plastidic P2-G6PDH. In nitrate-grown C. sorokiniana the KiNADPH decreased to 48 μM, whereas other kinetic parameters remained unchanged. These results will allow further investigations in order to rule out possible modifications of the enzyme, and/or the expression of a different G6PDH isoform during nitrate assimilation. 相似文献
11.
The unicellular cyanobacterium Synechococcus PCC6301 lacks a hybridisable homologue of the strongly conserved gdhA gene of E. coli that encodes NADP-specific glutamate dehydrogenase. This is consistent with the failure to find this enzyme in extracts of the cyanobacterium. The E. coli gdhA gene was transferred to Synechococcus PCC6301 by transformation with an integrative vector. High levels of glutamate dehydrogenase activity, similar to those found in ammonium grown E. coli cells, were found in these transformants. These transformed cyanobacteria displayed an ammonium tolerant phenotype, consistent with the action of their acquired glutamate dehydrogenase activity as an ammonium detoxification mechanism. Minor differences in colony size and in growth at low light intensity were also observed. 相似文献
12.
Escherichia coli mutants, unable to grown on 4-hydroxyphenylacetate, have been isolated and found to be defective in the NAD-dependent succinate semialdehyde dehydrogenase. When the mutants are grown with 4-aminobutyrate as sole nitrogen source an NAD-dependent succinate semialdehyde dehydrogenase seen in the parental strain is absent but, as in the parental strain, an NADP-dependent enzyme is induced. Growth of the mutants is inhibited by 4-hydroxyphenylacetate due to the accumulation of succinate semialdehyde. The mutants are more sensitive to inhibition by exogenous succinate semialdehyde than is the parental strain. Secondary mutants able to grow in the presence of 4-hydroxyphenylacetate but still unable to use it as sole carbon source were defective in early steps of 4-hydroxyphenylacetate catabolism and so did not form succinate semialdehyde from 4-hydroxyphenylacetate. The gene encoding the NAD-dependent succinate semialdehyde dehydrogenase of Escherichia coli K-12 was located at min 34.1 on the genetic map. 相似文献
13.
NAD-specific glutamate dehydrogenase (NAD-GluDH; EC 1.4.1.2) was purified to homogeneity from Sporosarcina ureae DSM 320; the native enzyme (M
r 250,000±25,000) is composed of subunits identical in molecular mass (M
r 42,000±3,000), suggesting a hexameric structure. In cell-free extracts and in its purified form, the enzyme was heat-stable, retaining 50% activity after 15 min incubation at temperatures up to 82°C. When exposed to low temperatures at pH values between 7.0 and 9.0. cell-free extracts and purified preparations lost enzyme activity rapidly and irreversibly. The addition of substrates, glycerol, or sodium chloride improved the stability of the enzyme with respect to cold lability and heat stability.Abbreviation NAD-GluDH
nicotinamide-adenine-dinucleotide-specific glutamate dehydrogenase 相似文献
14.
15.
Previously, we reported that pyruvate production was markedly improved in TBLA-1, an H+-ATPase-defective Escherichia coli mutant derived from W1485lip2, a pyruvate-producing E. coli K-12 strain. TBLA-1 produced more than 30 g/l pyruvate from 50 g/l glucose by jar fermentation, while W1485lip2 produced only 25 g/l pyruvate (Yokota et al. in Biosci Biotechnol Biochem 58:2164–2167, 1994b). In this study, we tested
the ability of TBLA-1 to produce alanine by fermentation. The alanine dehydrogenase (ADH) gene from Bacillus stearothermophilus was introduced into TBLA-1, and direct fermentation of alanine from glucose was carried out. However, a considerable amount
of lactate was also produced. To reduce lactate accumulation, we knocked out the lactate dehydrogenase gene (ldhA) in TBLA-1. This alanine dehydrogenase-expressing and lactate dehydrogenase-defective mutant of TBLA-1 produced 20 g/l alanine
from 50 g/l glucose after 24 h of fermentation. The molar conversion ratio of glucose to alanine was 41%, which is the highest
level of alanine production reported to date. This is the first report to show that an H+-ATPase-defective mutant of E. coli can be used for amino acid production. Our results further indicate that H+-ATPase-defective mutants may be used for fermentative production of various compounds, including alanine. 相似文献
16.
Christine Martin Brigitte Cami Françoise Borne Davis J. Jeenes Dieter Haas Jean-Claude Patte 《Molecular & general genetics : MGG》1986,203(3):430-434
Summary Chlorsulfuron-resistant mutants of Arabidopsis thaliana were isolated by screening for growth of seedlings in the presence of the herbicide. Both whole plants and derived tissue cultures were resistant to concentrations of the herbicide approximately 300-fold higher than that required to prevent growth of the wild-type. The resistance is due to a single dominant nuclear mutation at a locus designated csr which has been genetically mapped to chromosome-3. Acetohydroxy acid synthase activity in extracts from chlorsulfuron-resistant plants was much less-susceptible to inhibition by chlorsulfuron and a structurally related inhibitor than the activity in wild-type extracts. This suggests that the csr locus is the structural gene for acetohydroxy acid synthase. 相似文献
17.
18.
Murine cDNA that encodes neuromodulin, a neurospecific calmodulin binding protein, was inserted into the plasmid pKK223-3 for expression in Escherichia coli. After being transformed into E. coli strain SG20252 (lon-), the expression vector directed the synthesis of a protein that was recognized by polyclonal antibodies raised against bovine neuromodulin. The recombinant protein expressed in E. coli was found to be tightly associated with insoluble cell material and was extractable only with guanidine hydrochloride or sodium dodecyl sulfate. Following solubilization with guanidine hydrochloride, the protein was purified to apparent homogeneity by a single CaM-Sepharose affinity column step with a yield of 0.2 mg of protein/L of E. coli culture. The availability of the purified recombinant neuromodulin made it possible to answer several specific questions concerning the structure and function of the protein. Despite the fact that murine neuromodulin is 12 amino acid residues shorter than the bovine protein and the recombinant protein expressed in E. coli may lack any posttranslational modifications, the two proteins displayed similar biochemical properties in almost all respects examined. They both had higher affinity for CaM-Sepharose in the absence of Ca2+ than in its presence; they were both phosphorylated in vitro by protein kinase C in a Ca2+- and phospholipid-dependent manner; neither form of the proteins was autophosphorylated, and the phosphorylated form of the proteins did not bind calmodulin. The recombinant neuromodulin and neuromodulin purified from bovine brain had similar, but not identical, affinities of calmodulin, indicating that the palmitylation of the protein that occurs in animal cells is not crucial for calmodulin interactions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
NADP-glutamate dehydrogenase (NADP-GDH) and NAD-glutamate dehydrogenase (NAD-GDH) activities from Bipolaris maydis race T (ATCC 36180) were determined by measuring the change in absorbance at 340 nm of either reduced NADP or NAD in a reaction mixture of NH4C1, -ketoglutarate and a cell free extract of the fungus. NADP-GDH activity was high at 48 h, but low at 72 and 96 h when the fungus was incubated on a reciprocal shaker at 28 °C in a mineral salts medium containing 2 g/l glucose and 4 g/l Lasparagine. In contrast, in these cultures NAD-GDH activity was low at 48 h, but high at 72 and 96 h. At 72 and 96 h glucose was not detected in the culture medium. In addition, levels of ammonium and pH increased from 0.0 moles/ml and pH 5.8 at 48 h to 10.6 moles/ml and pH 7.2 at 72 h, and to 23.0 moles/ml and pH 8.4 at 96 h. Fungal mycelia were transferred after 48 h of incubation on media containing 2 g/l glucose and 4 g/l L-asparagine to fresh media containing 0, 2 or 5 g/l glucose with and without 4 g/l L-asparagine. Twenty-four h after transfer to fresh media containing 5 g/l glucose with L-asparagine or 2 or 5 g/l glucose without L-asparagine, NADP-GDH activity was high and NAD-GDH activity was low. Glucose was detected in the culture medium, ammonium was not detected and the pH remained unchanged or decreased. In contrast, 24 h after transfer to fresh media with 0 or 2 g/l glucose with L-asparagine and on media lacking glucose or L-asparagine, NADP-GDH activity was low and NAD-GDH activity was high. Glucose was not detected in the culture medium, ammonium levels were high and the pH increased. Thus, accumulation of ammonium and pH increases accompanying depletion of glucose in a L-asparagine medium could be related to a change in the capacity of B. maydis race T to assimilate and produce ammonium via pathways involving glutamate dehydrogenases. 相似文献
20.
Expression and regulation of the Escherichia coli glutamate dehydrogenase gene (gdh) in Rhizobium japonicum 总被引:2,自引:0,他引:2
The glutamate dehydrogenase (gdh) gene of Escherichia coli was transferred into an ammonium assimilation deficient mutant (Asm-) of Rhizobium japonicum (CJ9) using plasmid pRP301, a broad host range derivative of RP4. Exconjugants capable of growth on ammonia as sole N-source occurred at a frequency of 6.8×10-6. Assimilatory GDH (NADP+) activity was detected in the strain carrying the E. coli gdh gene and the pattern of ammonia assimilation via GDH was similar to that of the Asm+ wild type strain. However, GDH mediated ammonia assimilation was not subject to regulation by l-glutamate. Nitrogenase activity was expressed ex planta in R. japonicum CJ9 harbouring the gdh gene, however, the presence of the gdh gene did not restore symbiotic effectiveness to the CJ9 Asm- strain in nodules. The gdh plasmid was maintained in approximately 90% of the isolates recovered from soybean nodules.Abbreviations
gdh
glutamate dehydrogenase
- Asm- mutant
ammonia assimilation deficient mutant 相似文献