首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Malagasy tenrecs belong to the Afrotherian clade of placental mammals and comprise three subfamilies divided in eight genera (Tenrecinae: Tenrec, Echinops, Setifer and Hemicentetes; Oryzorictinae: Oryzorictes, Limnogale and Microgale; Geogalinae: Geogale). The diversity of their morphology and incomplete taxon sampling made it difficult until now to resolve phylogenies based on either morphology or molecular data for this group. Therefore, in order to delineate the evolutionary history of this family, phylogenetic and dating analyses were performed on a four nuclear genes dataset (ADRA2B, AR, GHR and vWF) including all Malagasy tenrec genera. Moreover, the influence of both taxon sampling and data partitioning on the accuracy of the estimated ages were assessed.  相似文献   

2.
The New World family Didelphidae, the basal lineage within marsupials, is commonly viewed as morphologically conservative, yet includes aquatic, terrestrial, scansorial, and arboreal species. Here, I quantitatively estimated the existing variability in size and shape of the Didelphidae scapula (1076 specimens from 56 species) using geometric morphometrics, and compared size and shape differences to evolutionary and ecologic distances. I found considerable variation in the scapula morphology, most of it related to size differences between species. This results in morphologic divergence between different locomotor habits in larger species (resulting from increased mechanical loads), but most smaller species present similarly shaped scapulae. The only exceptions are the water opossum and the short-tailed opossums, and the functional explanations for these differences remain unclear. Scapula size and shape were mapped onto a molecular phylogeny for 32 selected taxa and ancestral size and shapes were reconstructed using squared-changed parsimony. Results indicate that the Didelphidae evolved from a medium- to small-sized ancestor with a generalized scapula, slightly more similar to arboreal ones, but strikingly different from big-bodied present arboreal species, suggesting that the ancestral Didelphidae was a small scansorial animal with no particular adaptations for arboreal or terrestrial habits, and these specializations evolved only in larger-bodied clades.  相似文献   

3.
Members of the order Carnivora display a broad range of locomotor habits, including cursorial, scansorial, arboreal, semiaquatic, aquatic, and semifossorial species from multiple families. Ecomorphological analyses from osteological measurements have been used successfully in prior studies of carnivorans and rodents to accurately infer the locomotor habits of extinct species. This study uses 20 postcranial measurements that have been shown to be effective indicators of locomotor habits in rodents and incorporates an extensive sample of over 300 individuals from more than 100 living carnivoran species. We performed statistical analyses, including analysis of variance (ANOVA) and stepwise discriminant function analysis, using a set of 16 functional indices (ratios). Our ANOVA results reveal consistent differences in postcranial skeletal morphology among locomotor groups. Cursorial species display distal elongation of the limbs, gracile limb elements, and relatively narrow humeral and femoral epicondyles. Aquatic and semiaquatic species display relatively robust, shortened femora and elongate metatarsals. Semifossorial species display relatively short, robust limbs with enlarged muscular attachment sites and elongate claws. Both semiaquatic and semifossorial species have relatively elongate olecranon process of the ulna and enlarged humeral and femoral epicondyles. Terrestrial, scansorial, and arboreal species are characterized by having primarily intermediate features, but arboreal species do show relatively elongate manual digits. Morphological indices effectively discriminate locomotor groups, with cursorial and arboreal species more accurately classified than terrestrial, scansorial, or semiaquatic species. Both within and between families, species with similar locomotor habits converge toward similar postcranial morphology despite their independent evolutionary histories. The discriminant analysis worked particularly well to correctly classify members of the Canidae, but not as well for members of the Mustelidae or Ursidae. Results are used to infer the locomotor habits of extinct carnivorans, including members of several extinct families, and also 12 species from the Pleistocene of Rancho La Brea. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Vertical stratification of the arboreal habitat allows the coexistence of several species in a given area, because the complex arboreal strata can be used in different ways by arboreal and scansorial mammals. The present report experimentally investigated the gait metrics on different arboreal substrates, of three sympatric rodents living in a deciduous forest in Poznań, Poland. Arboreal locomotion was compared between the burrowing striped field mouse, Apodemus agrarius, the scansorial bank vole, Myodes glareolus, and the more arboreal yellow-necked mouse, Apodemus flavicollis. We filmed two wild-caught individuals from each species walking on four different substrate diameters (2 mm, 5 mm, 10 mm, 25 mm) and three different inclinations (45° descending, horizontal, 45° ascending) at 240 fps and collected a set of gait parameters from a total of 273 complete cycles. Our results did not demonstrate clear relationships between arboreal locomotion and the ecology of the three species. Only A. flavicollis exhibited locomotor features partly associated with arboreal competence, including lower velocity and diagonality on narrow substrates and asymmetrical gaits on wider ones. On the other hand, the two Apodemus species, despite their different ecologies, shared a few locomotor similarities, such as velocity regulation primarily by stride frequency, and similar effects of substrate size and inclination on diagonality, duty factor, and duty factor index indicating the possibility of a phylogenetic signal. Because the selected gait parameters provided limited insight into the ability of small mammals to move competently through an arboreal habitat, these findings indicate that the relationship between behaviour and ecology is complex.  相似文献   

5.
The potential for making functional interpretations from a single postcranial element for marsupials was investigated through morphometric analysis of the calcanea of 61 extant species from Australia and New Guinea. Extant species were grouped into locomotor categories and a canonical variates analysis was carried out on measurements of their calcanea. A relationship between measurements of the calcanea and the locomotor behavior of species was found, allowing for prediction of locomotor behavior from calcaneum morphometrics. This was applied to fossil marsupial taxa, from early–late Miocene/?Pliocene deposits at Riversleigh, in an attempt to determine their locomotor behavior. Hopping (saltatorial) taxa are distinguished from quadruped terrestrial taxa and taxa capable of climbing (arboreal and scansorial) by their relatively longer tuber calcis and wider calcaneal head, by their dorso-ventrally thicker calcaneal head, and by their calcaneocuboid facet being less steeply angled antero-posteriorly. Taxa capable of climbing are distinguished from quadruped terrestrial taxa by their shorter tuber calcis relative to the calcaneal head and by their smaller calcaneo-astragalar facet. The locomotor categories distinguished in this study (arboreal/scansorial, quadruped terrestrial, and saltatorial) highlight differences between species in their use of available substrates and thus are informative with regards to the structural components of their habitat. The results of this analysis can be used, in combination with other data, to make inferences about the habitats of paleocommunities at Riversleigh through the Miocene. The calcaneum is a dense and very robust element and, therefore, has a good chance of being preserved. This method provides a quick and easy way of inferring locomotion and has a wide potential for application to many fossil deposits because it requires only a single element.  相似文献   

6.
Abstract:  The anatomy of the mammalian hand is exposed to an intriguing interplay between phylogeny and function, and provides insights on phylogenetic affinities as well as locomotory habits of extinct species. Within the marsupial order Diprotodontia, terrestrial plantigrade quadrupedalism evolved twice, in the mostly extinct vombatiforms and in extant macropodoids. To assess the influence of functional and phylogenetic signal on the manus in these two clades, manual anatomy and digital proportions in specimens of eight extinct and three extant vombatiforms were investigated and compared with extant macropodoids and extant possums. The results reveal extensive parallelisms in the carpal region of vombatiforms and macropodoids, including flattened distal metacarpal facets, reduction of the palmar process of the hamatum, reduction of mid-wrist joint curve, extensive hamatum/scaphoid contact, and absence of a lunatum. These transformations appear to be related to stabilization of the wrist for plantigrade locomotion. Vombatiforms are apomorphic in scaphoid and triquetrum anatomy and their metacarpals are much more gracile than in other Diprotodontia. Manual diversity is greater in vombatiforms than in macropodoids, as probably was locomotor diversity. Digital proportions as well as wrist anatomy divide the extinct vombatiforms into species resembling arboreal diprotodontians, whereas others group with terrestrial quadrupedal kangaroos and wombats. The latter is suggested to be owing to plantigrade locomotion and/or large size. Carpal anatomy and digital proportions suggest that a range of earlier diverging vombatiforms may have been arboreal or scansorial. As such, we propose that the ancestor of extant vombatiforms (koalas and wombats) may have been arboreal, an option that deserves consideration in the reconstruction of vombatiform evolution.  相似文献   

7.

Previous studies of the morphology of the humerus in kangaroos showed that the shape of the proximal humerus could distinguish between arboreal and terrestrial taxa among living mammals, and that the extinct “giant” kangaroos (members of the extinct subfamily Sthenurinae and the extinct macropodine genus Protemnodon) had divergent humeral anatomies from extant kangaroos. Here, we use 2D geometric morphometrics to capture the shape of the distal humerus in a range of extant and extinct marsupials and obtain similar results: sthenurines have humeral morphologies more similar to arboreal mammals, while large Protemnodon species (P. brehus and P. anak) have humeral morphologies more similar to terrestrial quadrupedal mammals. Our results provide further evidence for prior hypotheses: that sthenurines did not employ a locomotor mode that involved loading the forelimbs (likely employing bipedal striding as an alternative to quadrupedal or pentapedal locomotion at slow gaits), and that large Protemnodon species were more reliant on quadrupedal locomotion than their extant relatives. This greater diversity of locomotor modes among large Pleistocene kangaroos echoes studies that show a greater diversity in other aspects of ecology, such as diet and habitat occupancy.

  相似文献   

8.
Investigations of cross-sectional geometry in nonhuman primate limb bones typically attribute shape ratios to qualitative behavioral characterizations, e.g., leaper, slow climber, brachiator, or terrestrial vs. arboreal quadruped. Quantitative positional behavioral data, however, have yet to be used in a rigorous evaluation of such shape-behavior connections. African apes represent an ideal population for such an investigation because their relatedness minimizes phylogenetic inertia, they exhibit diverse behavioral repertoires, and their locomotor behaviors are known from multiple studies. Cross-sectional data from femoral and humeral diaphyses were collected for 222 wild-shot specimens, encompassing Pan paniscus and all commonly recognized African ape subspecies. Digital representations of diaphyseal cross sections were acquired via computed tomography at three locations per diaphysis. Locomotor behaviors were pooled broadly into arboreal and terrestrial categories, then partitioned into quadrupedal walking, quadrumanous climbing, scrambling, and suspensory categories. Sex-specific taxonomic differences in ratios of principal moments of area (PMA) were statistically significant more often in the femoral diaphysis than the humeral diaphysis. While it appears difficult to relate a measure of shape (e.g., PMA ratio) to individual locomotor modes, general locomotor differences (e.g., percentage arboreal vs. terrestrial locomotion) are discerned more easily. As percentage of arboreal locomotion for a group increases, average cross sections appear more circular. Associations between PMA ratio and specific locomotor behaviors are less straightforward. Individual behaviors that integrate eccentric limb positions (e.g., arboreal scrambling) may not engender more circular cross sections than behaviors that incorporate repetitive sagittal movements (e.g., quadrupedal walking) in a straightforward manner.  相似文献   

9.
The functional morphology of the forelimbs of the following African Viverridae was studied, Atilax paludinosus, Bdeogale crassicauda, Civettictis civetta, Genetta genetta, G. tigrina, Helogale parvula, Herpestes ichneumon, H. sanguineus, Ichneumia albicauda, Mungos mungo, Nandinia binotata. Their locomotory behaviour has been previously studied and described and is related to morphological differences. The osteology of all the species and the myology of three species is described. The species have been assigned to primary locomotor categories on the basis of their locomotion. These are 1, climbing, arboreal walking; 2, arboreal and terrestrial walking and jumping; 3, general terrestrial walking and scrambling; and 4, trotting. In the climbing arboreal walking category the most distinctive morphological adaptations are powerful flexors and extensors as well as a flexible plantigrade manus with retractile claws. In the arboreal and terrestrial walking category the shoulder, elbow and carpal joints are flexible and the manus has retractile claws, though the flexor and extensor musculature is insufficiently developed for controlled climbing. The trotting category is characterised by a high humero-radial index and a rigid antibrachium. The foot is digitigrade with the claws short and stout. Species in the general walking and scrambling category show many differences in the morphology of their feet, even though the proximal parts of the forelimb appear similar. Due to the restricted nature of the adaptations, these species have been assigned to secondary locomotor categories. Morphological characters typical of the locomotor categories are summarized in the discussion.  相似文献   

10.
In this study, the forelimb of 12 species of tupaiids was analyzed functionally and compared to that of other archontan mammals. Several differences that relate to differential substrate use were found in the forelimb morphology of tupaiids. These differences included shape of the scapula, length and orientation of the coracoid process, size of the lesser tuberosity, shape of the capitulum, length of the olecranon process, and shape of the radial head and central fossa. The forelimb of the arboreal Ptilocercus lowii, the only ptilocercine, is better adapted for arboreal locomotion, while that of tupaiines is better adapted for terrestrial (or scansorial) locomotion. While the forelimb of the arboreal Ptilocercus appears to be habitually flexed and exhibits more mobility in its joints, a necessity for movement on uneven, discontinuous arboreal supports, all tupaiines are characterized by more extended forelimbs and less mobility in their joints. These restricted joints limit movements more to the parasagittal plane, which increases the efficiency of locomotion on a more even and continuous surface like the ground. Even the most arboreal tupaiines remain similar to their terrestrial relatives in their forelimb morphology, which probably reflects the terrestrial ancestry of Tupaiinae (but not Tupaiidae). The forelimb of Urogale everetti is unique among tupaiines in that it exhibits adaptations for scratch-digging. Several features of the tupaiid forelimb reflect the arboreal ancestry of Tupaiidae and it is proposed that the ancestral tupaiid was arboreal like Ptilocercus. Also, compared to the forelimb character states of tupaiines, those of Ptilocercus are more similar to those of other archontans and it is proposed that the attributes of the forelimb of Ptilocercus are primitive for the Tupaiidae. Hence, Ptilocercus should be considered in any phylogenetic analysis that includes Scandentia.  相似文献   

11.
Evolutionary aspects of primate locomotion   总被引:1,自引:0,他引:1  
Both neontological and phylogenetic studies are necessary to interpret primate locomotion. Reference to palaeoprimatology and palaeocology, for instance, will lead to a fuller understanding of the roots of such gaits as the vertical clinging and leaping of Tarsius, Indri and Propithecus. Evolutionary trends in posture and locomotion are discussed. The postural trend has been towards maintenance of trunk verticality and the locomotor trend towards an increasing dependence on the forelimbs among arboreal primates. Three stages are recognized in the phylogenetic course of arboreal locomotor adaptation: Stage A. Vertical clinging and leaping; Stage B. Quadrupedalism; Stage C. Brachiation. The role of prehensility of the hand in the evolution of locomotor types is discussed in relation to forest morphology and, in particular, to stratification. Finally a scheme of evolution, set in the framework of ecology, for Old World Monkey groups is presented.  相似文献   

12.
Positional behavior was quantitatively studied in identified free-ranging Japanese macaques (Macaca fuscata). Five male and 11 female adults were observed in a forested mountain habitat. Data were analyzed for proportion of bout distance, number and time of each locomotion and postural type. Japanese macaques are semiterrestrial, and mainly walk and run quadrupedally. This supports the notion that Macaca are generally quadrupeds. Sex differences in positional behavior were found in the preference of substrate and types of positional behavior. Males and females tend to be terrestrial and arboreal, respectively. Males leap more frequently and longer in distance than do females when they are feeding in trees. These sex differences are considered to be related to differences in morphology, food choice, social activity, and the nursing of infants. Frequencies of leaping and the distance covered by leaping in Japanese macaques are more than those of long-tailed macaques which are arboreal quadrupeds. However, Japanese macaques leap shorter distances at a time than do long-tailed macaques, which indicates that body size may be related to leaping distance more than the frequency of leaping and the distance covered by leaping. Japanese macaques are not as specialized for terrestrial locomotion as pig-tailed macaques. They use both terrestrial and arboreal supports, and are considered to be semi-terrestrial quadrupeds, somewhere between the arboreal long-tailed macaque and the terrestrial pig-tailed macaque. Electronic Publication  相似文献   

13.
Osteological variation is recorded among and within four of the most distinctive species of the Mexican salamander genus Chiropterotriton. Analysis of the data is consistent with the monophyletic status of the genus and documents previously unrecorded intraspecific and interspecific variation. Most of the recorded variation involves qualitative and quantitative proportional differences, but four fixed differences constitute autapomorphic states that affirm and diagnose some species (C. dimidiatus, C. magnipes). Osteological variation in 15 characters is analyzed with respect to predictions generated from four hypotheses: 1) phylogeny, 2) adaptation to specific habitats (the four species include cave-dwelling, terrestrial, and arboreal forms), 3) size-free shape, and 4) size. High levels of intraspecific variation suggest that the characters studied are not subject to rigid functional constraints in salamanders, regardless of size. The pattern predicted by the hypothesis based on size differences seen among these four Chiropterotriton species matches most closely the observed pattern of relative skull robustness. Since size change and heterochrony are often associated in plethodontid evolution, it is likely that changes in developmental timing play a role in the morphological transitions among these morphologically diverse taxa. Webbed feet, miniaturization, body shape, and an unusual tarsal arrangement are morphologies exhibited in species of Chiropterotrition that are shown to be homoplastic with other clades of tropical plethodontids. Although extensive homoplasy in salamanders might be seen as a roadblock to unraveling phylogenetic hypotheses, the homologous developmental systems that appear to underlie such homoplasy may reveal common and consistent evolutionary processes at work.  相似文献   

14.
The evolution of arboreality in snakes is accompanied by modifications that are remarkably similar across species. Gravity is one of the most important selective agents, and arboreal snakes present adaptations to circumvent the gradient of pressure, including modifications on heart position (HP) and body slenderness (BS). However, the degree to which different life‐history traits influence the cardiovascular system of snakes remains unclear. Here, we used an ecological and a phylogenetic approach to explore the relationship between habitat, HP, BS, and heart size (HS) in five species of the neotropical whipsnakes genus Chironius that occupy terrestrial, semiarboreal, and arboreal habits. Our ecological comparison indicated that the arboreal species have the most posterior‐positioned heart, the most slender body, and the smallest HS, whereas the terrestrial representative of the group exhibited the most anterior heart, the less flattened body, and the largest HS. After removing the phylogenetic effect, we found no difference in HP and BS between terrestrial and arboreal species. Habitat only differed when contrasting with HS. Body slenderness and HS were correlated with HP. Our results suggest that different restrictions, such as anatomical constraints, behavior, and phylogenetic inertia, may be important for the studied species.  相似文献   

15.
Rodents of the subfamily Sigmodontinae comprise a highly diversified group in the Atlantic Forest, with semifossorial, terrestrial, semiaquatic, scansorial, and arboreal forms. In this study, we analyzed morphometric variation in humerus, scapula, ulna, radius, femur, tibia, and pelvis to investigate its possible relationship with the different types of locomotion recorded in the literature. Skeletal characters were measured in 321 specimens belonging to 29 species and 19 genera either restricted to or recorded in this ecoregion. Multivariate morphometric analyses (principal component and canonical variate analyses) arranged individuals of different genera in groups congruent with the different types of locomotion. This arrangement was more clearly defined when analyses included only forelimb measurements, indicating that most of the variation in appendicular traits associated with the different locomotor modes occurs in the forelimb skeleton. Semifossorial forms exhibited the most distinct appendicular morphology, as well as the greatest frequency of endemism among analyzed species. These results suggest that this mode of locomotion led to greater differentiation in semifossorial Atlantic forest sigmodontines than in terrestrial and arboreal forms, which were found to have more subtle differentiation and fewer endemics. Scansorial species could not be set apart from terrestrial ones in terms of appendicular morphology, suggesting that these two modes of locomotion are the most similar and generalized for the group, as they occur in most lineages in the subfamily. The results of this study corroborate previous observations on the relevance of appendicular characters in the differentiation of species and genera in the subfamily Sigmodontinae. J. Morphol. 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Primate shoulder morphology has been linked with locomotor habits, oftentimes irrespective of phylogenetic heritage. Among hominoids, juvenile African apes are known to climb more frequently than adults, while orangutans and gibbons maintain an arboreal lifestyle throughout ontogeny. This study examined if these ontogenetic locomotor differences carry a morphological signal, which should be evident in the scapulae of chimpanzees and gorillas but absent in taxa that do not display ontogenetic behavioral shifts. The scapular morphology of five hominoid primates and one catarrhine outgroup was examined throughout ontogeny to evaluate if scapular traits linked with arboreal activities are modified in response to ontogenetic behavioral shifts away from climbing. Specifically, the following questions were addressed: 1) which scapular characteristics distinguish taxa with different locomotor habits; and 2) do these traits show associated changes during development in taxa known to modify their behavioral patterns? Several traits characterized suspensory taxa from nonsuspensory forms, such as cranially oriented glenohumeral joints, obliquely oriented scapular spines, relatively narrow infraspinous fossae, and inferolaterally expanded subscapularis fossae. The relative shape of the dorsal scapular fossae changed in Pan, Gorilla, and also Macaca in line with predictions based on reported ontogenetic changes in locomotor behavior. These morphological changes were mostly distinct from those seen in Pongo, Hylobates, and Homo and imply a unique developmental pattern, possibly related to ontogenetic locomotor shifts. Accordingly, features that sorted taxa by locomotor habits and changed in concert with ontogenetic behavioral patterns should be particularly useful for reconstructing the locomotor habits of fossil forms. Am J Phys Anthropol 152:239–260, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
The genus Mesopithecus is well represented in the late Miocene of Greece by several recognized species. The present paper investigates functional aspects of the humeri of Mesopithecus delsoni/pentelicus, M. pentelicus and M. aff. pentelicus of several Turolian sites from central and northern Greece, using multivariate approaches. For these purposes, we selected significant humeral functional features, which were represented by 23 linear dimensions and three angles on 14 fossil humeri and 104 humeri from 10 genera and 22 species of extant African and Asian Colobines. All size-adjusted measurements were examined through a principal components analysis, followed by a discriminant function analysis, and a canonical variates analysis. All analyses revealed that the selected characters were able to discriminate between extant colobine genera. Functional groups, such as arboreal walking/climbing, arboreal walking/suspensory and semi-terrestrial walking, were set apart from a central cluster formed by the arboreal walking and arboreal walking/terrestrial groups. This cluster also grouped the three studied Mesopithecus species, which were mainly classified as arboreal walkers with significant terrestrial activities. These observations match with paleoenvironmental reconstructions and the suggested opportunistic feeding habits. Moreover, the overall arboreal/terrestrial locomotor tendencies of these fossil forms are discussed in relation to their earlier migration from Africa and later dispersal to eastern and southern Asia.  相似文献   

18.
The locomotor behavior of Pan paniscus was studied over a four-week period in Equateur, Republic of Zaire. Bonobos were found to be both arboreal and terrestrial in their daily activities. In the trees adult bonobos are basically quadrupedal, but they also have significant components of armswinging, diving, leaping, and bipedalism in their locomotor repertoire.  相似文献   

19.
The phylogenetic position of the family Dactylopteridae is inferred cladistically. The family lacks a close relationship with the Scorpaeniformes, owing to the posterior extension of the infraorbital in the former not being homologous with the scorpaeniform suborbital stay. Monophyly of the Dactylopteridae and percoid family Malacanthidae is supported by 20 synapomorphies, the former having a sister relationship with the malacanthid genusHoplolatilus supported by three synapomorphies. The former Dactylopteridae plus Malacanthidae are redefined as a percoid family. Dactylopteridae. being subdivided into the following four subfamilies: Branchiosteginae (includingBranchiostegus andLopholatilus), Malacanthinae (Caulolatilus andMalacanthus), Hoplolatilinae subfam. nov. (Hoplolatilus) and Dactylopterinae (Dactylopterus andDactyloptena).  相似文献   

20.
In this study, the hindlimb of 12 species of tupaiids was analyzed functionally and compared to that of primates, dermopterans, and chiropterans. Many aspects of the tupaiid hindlimb vary in relation to differential substrate use. These differences include width of the ilium, shape of the acetabulum, size of the anterior inferior iliac spine, size of the greater and third trochanters, depth of the femoral condyles, shape of the patellar groove, and size of the tibial tuberosity. The hindlimb of the arboreal Ptilocercus lowii, the only ptilocercine, is better adapted for arboreal locomotion, whereas that of tupaiines is better adapted for rapid terrestrial (or scansorial) locomotion. The hindlimb of Ptilocercus seems to be habitually flexed and has more joint mobility, a condition necessary for movement on uneven, discontinuous arboreal supports. The tarsus of Ptilocercus facilitates inversion of the foot and its grasping hallux is capable of a great range of abduction. Tupaiines, on the other hand, are characterized by more extended hindlimbs and less mobility in their joints. These restricted joints limit movements more to the parasagittal plane, which increases the efficiency of locomotion on a more even and continuous surface like the ground. The hindlimb of tupaiines is adapted for powerful flexion and extension. Even the most arboreal tupaiines remain similar to terrestrial tupaiines in their hindlimb morphology, which probably reflects the terrestrial ancestry of Tupaiinae (but not Tupaiidae). Many attributes of the tupaiid hindlimb, especially those of the foot, reflect the arboreal ancestry of Tupaiidae and it is proposed that the ancestral tupaiid was arboreal like Ptilocercus. Also, compared to the hindlimb character states of tupaiines, those of Ptilocercus are more similar to those of other archontans, and it is proposed that the hindlimb features of Ptilocercus are primitive for the Tupaiidae. Hence, Ptilocercus should be considered in any phylogenetic analysis that includes Scandentia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号