首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extremely acidophilic microorganisms Bacillus pumilus and Bacillus subtilis were isolated from soil collected from the commercial edible oil and fish oil extraction industry. Optimization of conditions for acidic lipase production from B. pumilus and B. subtilis using palm oil and fish oil, respectively, was carried out using response surface methodology. The extremely acidic lipases, thermo-tolerant acidic lipase (TAL) and acidic lipase (AL), were produced by B. pumilus and B. subtilis, respectively. The optimum conditions for B. pumilus obtaining the maximum activity (1,100 U/mL) of TAL were fermentation time, 96 h; pH, 1; temperature, 50 °C; concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the TAL was 55 kDa. The AL from B. subtilis activity was 214 U/mL at a fermentation time of 72 h; pH, 1; temperature, 35 °C; concentration of fish oil, 30 g/L; maltose concentration, 10 g/L. After purification, an 11.4-fold purity of lipase with specific activity of 2,189 U/mg protein was obtained. The molecular weight of the extremely acidic lipase was 22 kDa. The functional groups of lipases were determined by Fourier transform-infrared (FT-IR) spectroscopy.  相似文献   

2.
A newly soil-isolated Staphylococcus aureus strain secretes a non-induced lipase in the culture medium. The extracellular lipase from S. aureus (SAL3) is purified to homogeneity. The purified enzyme is a tetrameric protein (180 kDa) corresponding to the association of four lipase molecules. The 15 N-terminal amino acid residues showed a high degree of homology with other staphylococcal lipase sequences. The part of the gene encoding the mature SAL3 is cloned and sequenced. The deduced polypeptide sequence, corresponding to the mature SAL3, was very similar to the mature Staphylococcus simulans lipase sequence with two additional amino acid residues (LK) at the N-terminus of SAL3. The lipase activity is maximal at pH 9.5 and 55 °C. The specific activity of about 4200 U/mg or 3500 U/mg was measured using tributyrin or olive oil emulsion as substrate, respectively, at pH 9.5 and 55 °C.In contrast to other staphylococcal lipases previously characterised, SAL3 is found to be stable between pH 5 and 12 after 24 h incubation. The enzyme retained 50% of its activity after 60 min incubation at 60 °C. This novel lipase is able to hydrolyse its substrate in presence of various oxidizing agents as well as some surfactants and some commercial detergents, then SAL3 can be considered as a good candidate for industrial and biotechnological applications.  相似文献   

3.
Thermostable lipases are important biocatalysts, showing many interesting properties with industrial applications. Previously, a thermophilic Bacillus sp. strain L2 that produces a thermostable lipase was isolated. In this study, the gene encoding for mature thermostable L2 lipase was cloned into a Pichia pastoris expression vector. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter, the recombinant L2 lipase was secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. After optimization the maximum recombinant lipase activity achieved in shake flasks was 125 U/ml. The recombinant 44.5 kDa L2 lipase was purified 1.8-fold using affinity chromatography with 63.2% yield and a specific activity of 458.1 U/mg. Its activity was maximal at 70 °C and pH 8.0. Lipase activity increased 5-fold in the presence of Ca2+. L2 lipase showed a preference for medium to long chain triacylglycerols (C10–C16), corn oil, olive oil, soybean oil, and palm oil. Stabilization at high temperature and alkaline pH as well as its broad substrate specificity offer great potential for application in various industries that require high temperature operations.  相似文献   

4.
Acidic lipase finds its commercial values in medical applications and bioremediation of food wastes. In this work, approaches for rapid screening of lipase-producing bacteria were developed and the feasibility assessment of the screening methods was performed. From food waste samples, the proposed screening procedures allowed isolation of sixteen pure bacterial strains expressing higher lipase activity at acidic pH (pH 6.0) than at alkaline pH (pH 9.0). To enhance the accuracy of lipase activity determination under acidic conditions, a novel assay procedure was also developed by deactivating lipase activity by microwave treatment prior to back titration. This additional step could minimize interferences arising from residual lipase activity during conventional direct back-titration methods in measuring lipase activity at acidic pH. Using the four strategies proposed in this work, the best acidic-lipase-producing isolate was obtained by strategy C (SSC) and was identified as Aeromonas sp. C14, displaying an optimal lipase activity of 0.7 U/ml at an acidic pH of 6.0.  相似文献   

5.
The objective of the present study was the isolation, molecular cloning and biochemical characterization of a thermophilic organic solvent-resistant lipase from Bacillus sp. DR90. The lipase gene was expressed in Escherichia coli BL21(DE3) using pET-28a(+) vector. The purification of recombinant lipase was conducted by nickel affinity chromatography and its biochemical properties were determined. The lipase sequence with an ORF of 639 bp contains the conserved pentapeptide Ala-His-Ser-Met-Gly. His-tagged recombinant lipase had a specific activity of 1,126 U/mg with a molecular mass of 26.8 kDa. The cloned lipase was optimally active at pH 8.0 and 75 °C representing high stability in broad ranges of temperature and pH. High performance liquid chromatography was used to determine the major compounds released during the lipase-catalyzed reaction of p-nitrophenyl derivatives as well as the substrate specificity. The purified lipase showed high compatibility towards various organic solvents, surfactants and commercial solid/liquid detergents; therefore the recombinant DR90 lipase could be considered as a probable candidate for future applications, predominantly in detergent processing industries.  相似文献   

6.
A mesophilic bacterial culture, producing an extracellular alkaline lipase, was isolated from the gas-washing wastewaters generated from the Sfax phosphate plant of the Tunisian Chemical Group and identified as Staphylococcus capitis strain. The lipase, named S. capitis lipase (SCL), has been purified to homogeneity from the culture medium. The purified enzyme molecular weight was around 45 kDa. Specific activities about 3,900 and 500 U/mg were measured using tributyrin and olive oil emulsion as substrates, respectively at 37°C and pH 8.5. Interestingly, the SCL maintained more than 60% of its initial activity over a wide pH values ranging from 5 to 11 with a high stability between pH 9 and 11 after 1 hr of incubation at room temperature. The lipase activity was enhanced in the presence of 2 mM of Mg2+, Ca2+, and K+. SCL showed significant stability in the presence of detergents and organic solvents. Altogether, these features make the SCL useful for industrial applications. Besides, SCL was compatible with commercially available detergents, and its incorporation increases lipid degradation performances making it a potential candidate in detergent formulation.  相似文献   

7.
Abstract

The present study aims to exploit microbial potential from colder region to produce lipase enzyme stable at low temperatures. A newly isolated bacterium GBPI_508 from Himalayan environment, was investigated for the production of cold-active lipase emphasizing on its aggregation properties. Plate based assays followed by quantitative production of enzyme was estimated under different culture conditions. Further characterization of partially purified enzyme was done for molecular weight determination and activity and stability under varying conditions of pH, temperature, and in presence of organic solvents, inhibitors, and metal ions. The psychrotolerant bacterium was identified as Pseudomonas palleroniana following 16S rRNA gene sequencing. Maximum lipase production by GBPI_508 was recorded in 7?days at 25?°C utilizing yeast extract as nitrogen source and olive oil as substrate in the lipase production medium. Triton X-100 (1%) in the medium as emulsifier significantly enhanced the lipase production. Lipase produced by bacterium showed aggregation which was confirmed by dynamic light scattering and native PAGE. SDS-PAGE followed by zymogram analysis of partially purified enzyme showed two active bands of ~50?kDa and ~54?kDa. Optimum activity of partially purified enzymatic preparation was recorded at 40?°C while the activity remained nearly consistent from pH 7.0 to 12.0, whereas, maximum stability was recorded at pH values 7.0 and 11.0 at 25?°C. Interestingly, lipase in the partially purified fraction retained 60% enzyme activity at 10?°C. Medium chain pNP ester (C10) was the most preferred substrate for the lipase of GBPI_508. The lipase possessed >50% residual activity when incubated with different organic solvents (25% v/v) except toluene and dichloromethane which inhibited the activity below 50%. Partially purified enzyme was also stable in the presence of metal ions and inhibitors. The study suggests applicability of GBPI_508 lipase in low temperature conditions such as cold-active detergent formulations and cold bioremediation.  相似文献   

8.
A three‐step purification of a unique lipase with halo‐, solvent‐, detergent‐, and thermo‐tolerance from Staphylococcus arlettae JPBW‐1 gave raise to a 27‐fold purification with a specific activity of 32.5 U/mg. The molecular weight of the purified lipase was estimated to be 45 kDa using SDS–PAGE, and its amino acid sequence was characterized using MALDI‐TOF‐MS analysis. The sequence obtained from MALDI‐TOF‐MS showed significant similarity with the capsular polysaccharide biosynthesis protein (CapD) of Staphylococcus aureus through comparative modeling approach using ROBETTA server. Identification of responsible fragments for homodimer formation was performed using comparative modeling and substrate binding domain through C‐terminus matching of this new lipase with the CapD of Staphylococcus aureus was executed. Thus, the experimental coupled molecular modeling postulated a structure–activity relationship of lipase from S. arlettae JPBW‐1, a potential candidate for detergent, leather, pulp, and paper industries.  相似文献   

9.
A gene encoding a lipolytic enzyme amplified from the alkaliphilic bacterium Bacillus halodurans LBB2 was cloned into the pPICZαB vector and integrated into the genome of the protease deficient yeast strain Pichia pastoris SMD1168H. This previously undescribed enzyme was produced in active form, and cloning in frame with the Saccharomyces cerevisiae secretion signal (α-factor) enabled extracellular accumulation of correctly processed enzyme, with an apparent molecular mass of 30 kDa. In shake-flask cultivations, very low production levels were obtained, but these were significantly improved by use of a “batch-induced” cultivation technique which allowed a maximum enzyme activity of 14,000 U/l using p-nitrophenyl butyrate (C-4) as a substrate and a final extracellular lipolytic enzyme concentration of approximately 0.2 g/l. Partial characterization of the produced enzyme (at pH 9) revealed a preference for the short-chain ester (C-4) and significant but lower activity towards medium (C5-C6) and long (C16 and C18) fatty acid chain-length esters. In addition, the enzyme exhibited true lipase activity (7,300 U/l) using olive oil as substrate and significant levels of phospholipase activity (6,400 U/l) by use of a phosphatidylcholine substrate, but no lysophospholipase activity was detected using a lysophosphatidylcholine substrate.  相似文献   

10.
Two novel genes (pwtsB and pwtsC) encoding lipases were isolated by screening the soil metagenomic library. Sequence analysis revealed that pwtsB encodes a protein of 301 amino acids with a predicted molecular weight of 33 kDa, and pwtsC encodes a protein of 323 amino acids with a predicted molecular weight of 35 kDa. Furthermore, both genes were cloned and expressed in Escherichia coli BL21 (DE3) using pET expression system. The expressed recombinant enzymes were purified by Ni-nitrilotriacetic acid affinity chromatography and characterized by spectrophotometric with different p-nitrophenyl esters. The results showed that PWTSB displayed a high degree of activity and stability at 20°C with an optimal pH of around 8.0, and PWTSC at 40°C with an optimal pH of around 7.0. P-nitrophenyl palmitate (p-NPP) was identified as the best substrate of PWTSB and PWTSC. The specific activities of PWTSB and PWTSC were 150 and 166 U/mg, respectively toward p-NPP at 30°C, about 20-fold higher than that toward p-nitrophenyl butyrate (C4) and caprylate (C8). In conclusion, our results suggest that PWTSB is a cold adapt lipase and PWTSC is a thermostable lipase to long-chain p-nitrophenyl esters. P. Wei and L. Bai contributed equally to this work.  相似文献   

11.
The novel fungus Aspergillus niveus RS2 isolated from rice straw showed relatively high xylanase production after 5 days of fermentation. Of the different xylan-containing agricultural by-products tested, rice husk was the best substrate; however, maximum xylanase production occurred when the organism was cultured on purified xylan. Yeast extract was found to be the best nitrogen source for xylanase production, followed by ammonium sulfate and peptone. The optimum pH for maximum enzyme production was 8 (18.2 U/ml); however, an appreciable level of activity was obtained at pH 7 (10.9 U/ml). Temperature and pH optima for xylanase were 50°C and 7.0, respectively; however the enzyme retained considerably high activity under high temperature (12.1 U/ml at 60°C) and high alkaline conditions (17.2 U/ml at pH 8 and 13.9 U/ml at pH 9). The enzyme was strongly inhibited by Hg2+, while Mn2+ was slight activator. The half-life of the enzyme was 48 min at 50°C. The enzyme was purified by 5.08-fold using carboxymethyl-sephadex chromatography. Zymogram analysis suggested the presence of a single candidate xylanase in the purified preparation. SDS-PAGE revealed a molecular weight of approximately 22.5 kDa. The enzyme had K m and V max values of 2.5 and 26 μmol/mg per minute, respectively.  相似文献   

12.
cDNA of Aureobasidium melanogenum lipase comprises 1254 bp encoding 417 amino acids, whereas genomic DNA of lipase comprises 1311 bp with one intron (57 bp). The lipase gene contains a putative signal peptide encoding 26 amino acids. The A. melanogenum lipase gene was successfully expressed in Pichia pastoris. Recombinant lipase in an inducible expression system showed the highest lipase activity of 3.8 U/mL after six days of 2% v/v methanol induction. The molecular mass of purified recombinant lipase was estimated as 39 kDa using SDS-PAGE. Optimal lipase activity was observed at 35–37 °C and pH 7.0 using p-nitrophenyl laurate as the substrate. Lipase activity was enhanced by Mg2+, Mn2+, Li+, Ca2+, Ni2+, CHAPS, DTT, and EDTA and inhibited by Hg2+, Ag+, SDS, Tween 20, and Triton X-100. The addition of 10% v/v acetone, DMSO, p-xylene, and octanol increased lipase activity, whereas that of propanol and butanol strongly inhibited it.  相似文献   

13.
《Process Biochemistry》2010,45(10):1683-1691
Beef tallow, a slaughter house waste was used as a substrate for lipase production, employing Pseudomonas gessardii. The strain, P. gessardii was isolated from the beef tallow acclimatized soil. The crude lipase activity at 139 U/ml by volume was obtained at optimized conditions of pH 5.0 and temperature of 37 °C. After purification, a 7.59-fold purity of lipase with specific activity of 1120 U/mg protein and molecular mass of 92 kDa was obtained. The purified lipase showed maximum activity and stability at pH 5.0 and 30 °C. Ca2+ had a stimulatory effect on the lipase activity compared to the other metal ions studied. The relative activity was enhanced with the addition of Triton X-100 with lower hydrophilic–lipophilic balance (HLB) value as 13.0 and DMSO with the lowest partition coefficient (log P) value, as 1.378. The amino acid composition and the functional groups of lipase were confirmed by HPLC and FT-IR spectroscopy. The purified lipase had the highest hydrolytic activity towards slaughterhouse wastes and vegetable oils. This work provides a potential biocatalyst for the wide applications in oleochemical and biotechnological industries.  相似文献   

14.
Growth and production of lipase by a new Geotrichum-like strain, R59, were studied. Production of extracellular lipase was substantially enhanced when the initial pH of the culture medium, types of carbon and nitrogen sources, substances probably stimulating the lipase biosynthesis, the temperature, and time of growth were optimized. Sucrose and triolein were the most effective carbon sources for lipase production. Maximum lipase activity (146 U/ml–1) was obtained with urea as the nitrogen source. Growth at 30°C, an initial pH of 6.0 and incubation time of 48 h were found as optimum conditions for cell growth and production of lipase by Geotrichum-like strain R59. The enzyme was thermostable and exhibited very high activity after 1 h incubation at 60°C.  相似文献   

15.
A mutant of the lipase from Geobacillus sp. strain T1 with a phenylalanine to leucine substitution at position 16 was overexpressed in Escherichia coli strain BL21(De3)pLysS. The crude enzyme was purified by two-step affinity chromatography with a final recovery and specific activity of 47.4 and 6,315.8 U/mg, respectively. The molecular weight of the purified F16L lipase was approximately 43 kDa by 12% SDS-PAGE analysis. The F16L lipase was demonstrated to be a thermophilic enzyme due its optimum temperature at 70 °C and showed stability over a temperature range of 40–60 °C. The enzyme exhibited an optimum pH 7 in phosphate buffer and was relatively stable at an alkaline pH 8–9. Metal ions such as Ca2+, Mn2+, Na+, and K+ enhanced the lipase activity, but Mg2+, Zn2+, and Fe2+ inhibited the lipase. All surfactants tested, including Tween 20, 40, 60, 80, Triton X-100, and SDS, significantly inhibited the lipolytic action of the lipase. A high hydrolytic rate was observed on long-chain natural oils and triglycerides, with a notable preference for olive oil (C18:1; natural oil) and triolein (C18:1; triglyceride). The F16L lipase was deduced to be a metalloenzyme because it was strongly inhibited by 5 mM EDTA. Moderate inhibition was observed in the presence of PMSF at a similar concentration, indicating that serine residues are involved in its catalytic action. Further, the activity was not impaired by water-miscible solvents, including methanol, ethanol, and acetone.  相似文献   

16.
Investigations were conducted with the aim of producing extracellular lipase from Candida rugosa by solid-state fermentation (SSF), using coconut oil cake (COC) as a solid substrate. To optimize production, various modifications were made to enrich the substrate by supplementing it with mineral solution, different carbon sources and several inorganic as well as organic nitrogen sources. Among them, urea (1%), peptone (3%) and maltose (5%) were found to be most suitable. Addition of olive oil (10%) encouraged lipase synthesis. The maximum lipase activity in the enriched substrate was 87.76 units per gram of dry fermented substrate [U/gds] compared to 25.81 U/gds in the raw cake at 96 h of fermentation, and growth was as high as 14.44 mg/gds of glucosamine. This was reached at 72 h in the enriched substrate. C. rugosa growth was calculated indirectly by estimating the glucosamine content in the cell wall after its hydrolysis. The enzyme yield was far better than any values reported as yet.  相似文献   

17.
The gene encoding esterase (GDEst-95) from Geobacillus sp. 95 was cloned and sequenced. The resulting open reading frame of 1497 nucleotides encoded a protein with calculated molecular weight of 54.7 kDa, which was classified as a carboxylesterase with an identity of 93–97% to carboxylesterases from Geobacillus bacteria. This esterase can be grouped into family VII of bacterial lipolytic enzymes, was active at broad pH (7–12) and temperature (5–85 °C) range and displayed maximum activity toward short acyl chain p-nitrophenyl (p-NP) esters. Together with GD-95 lipase from Geobacillus sp. strain 95, GDEst-95 esterase was used for construction of fused chimeric biocatalyst GDEst-lip. GDEst-lip esterase/lipase possessed high lipolytic activity (600 U/mg), a broad pH range of 6–12, thermoactivity (5–85 °C), thermostability and resistance to various organic solvents or detergents. For these features GDEst-lip biocatalyst has high potential for applications in various industrial areas. In this work the effect of additional homodomains on monomeric GDEst-95 esterase and GD-95 lipase activity, thermostability, substrate specificity and catalytic properties was also investigated. Altogether, this article shows that domain fusing strategies can modulate the activity and physicochemical characteristics of target enzymes for industrial applications.  相似文献   

18.
Nine isolates of Botryosphaeria spp. were screened for lipases when cultivated on eight different plant seed oils and glycerol, and all produced lipases. Botryosphaeria ribis EC-01 produced highest lipase titres on soybean oil and glycerol, while eight isolates of Botryosphaeria rhodina produced significantly lower enzyme titres. B. ribis EC-01 produced lipase when grown on different fatty acids, surfactants, carbohydrates and triacylglycerols, with highest enzyme titres produced on Triton X-100-emulsified stearic (316.7 U/mL), palmitic (283.5 U/mL) and oleic (247.4 U/mg) acids, and soybean oil (105.6 U/mL), as well as castor oil (191.2 U/mg); an enhancement of 9-fold over soybean oil-grown cultures. Glycerol was also a good substrate for lipase production. The crude lipase extract was optimally active at pH 8.0 and 55 °C, stable between 30 and 55 °C and pH 1–10, and tolerant to 50% (v/v) glycerol, methanol and ethanol. The crude lipase showed affinity for substrates of short, average and long-chain fatty acids (different esters of p-nitrophenol and triacylglycerols). Zymograms developed with 4-methylumbelliferyl-butyrate showed two bands of lipolytic activity at 45 and 15 kDa. This is the first report on the production of lipases by B. ribis grown on these different carbon sources.  相似文献   

19.
Abstract

Fungal lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. In the present study, Aspergillus fumigatus isolated from oil-contaminated soil produced good amount of lipase activity with galactose (1%) as carbon source and peptone (0.1%) as nitrogen source after 72?h of incubation in the production medium at 45?°C and pH 10.0. The isolated enzyme was found to give its optimum reaction temperature at 40?°C and pH 9.0 with the substrate used as p-nitrophenyl benzoate. The activity of lipase was inhibited by the presence of metal ions. A 6.68-fold increase for lipase production was obtained by one variable at a time. Based on the findings of present study, lipase of A. fumigatus is a potential lipase and a candidate for industrial applications such as bioremediation, detergent, leather and pharmaceutical industries.  相似文献   

20.
Lipases are some of the crucial enzymes during the fungal penetrating process of the insect integument. Due to the importance and lack of information on the microbial lipases of Beauveria bassiana, investigations were carried out to purify and biochemically characterize these enzymes. The results obtained on growth medium demonstrated the highest activity of lipase 6 days after inoculation while the pH of the medium was 7.1. After three purification steps, the purified enzyme was 9.91-fold with specific activity of 20816 U/mg protein, recovery of 25% and molecular weight of 25 kDa. The purified lipase had the optimal pH and temperature at 7 and 35°C and was stable for 36–72 h under those conditions. Ca2 + significantly increased the enzyme activity and NaCl decreased it at all the tested concentrations. In addition, Mn2 + had no effect on enzyme activity but Mg2 + and Zn2 + increased it only at the highest concentration used. Three out of the four inhibitors used, significantly decreased the purified lipase activity so that most inhibition and changes in the enzyme kinetic parameters were obtained by using different concentrations of EDTA. Knowledge of enzymology provides important information for the development of fungi as microbial pest control agents opening new avenues for study of the role of enzymes in virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号