首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report describes the in vivo metabolism of a new class of naturally occurring biologically active phospholipids (1-alkyl-2-acetyl-sn-glycero-3-phosphocholines) that can cause hypotension and platelet aggregation. After intravenous injection in male rats, the acetylated ether phospholipid (1-[1′,2′-3H]alkyl) is rapidly cleared (T12 ?30 s) from blood and its metabolites are found in a variety of tissues. The tissues containing the highest levels of radioactivity are lung, liver, spleen, and kidney. Chromatographic results showed that a considerable portion of the active lipid is not readily catabolized in some of the major tissues examined; however, inactive metabolites were also found, mainly 1-alkyl-2-lyso-sn-glycero-3-phosphocholine and 1-alkyl-2-acyl-sn-glycero-3-phosphocholine; the latter has a long chain fatty acid at the sn-2 position instead of the acetate. The findings are consistent with our earlier data that show these same tissues have the most active enzyme systems for metabolizing 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine.  相似文献   

2.
The metabolism of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) was studied using various cultured cell lines. All incubations were done in the presence of bovine serum albumin and serum-free media, since albumin eliminates the adsorption of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine to cultureware and serum enzymes interfere. Human leukemia (HL-60) cells, MDCK canine kidney cells, and transformed and nontransformed clones of mouse C3H1OT1/2 cells display varying rates of uptake, degradation, and capacities for reacylation of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine. HL-60 cells displayed the highest uptake rate (24.6 pmol/mg cell protein/15 min). Whereas C3H10T1/2 cells in culture showed uptake rates comparable to other cells tested, they displayed a relative metabolic inertness towards 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine.  相似文献   

3.
Enzymatic systems in human blood cells are described for the activation and inactivation of a biologically active phospholipid (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) with hypotensive, platelet-aggregating, and inflammatory properties. The results document the presence of alkyldihydroxyacetone-phosphate synthase (forms the O-alkyl linkage in lipids), 1-alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase (produces the biologically active molecule), and 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine: acetylhydrolase (destroys the biological activity) in human neutrophils and eosinophils. Both the acetyltransferase and acetylhydrolase activities are increased severalfold after treatment of normal neutrophils with ionophore A23187; however, alkyldihydroxyacetone-phosphate synthase activity is not influenced by the ionophore. Eosinophils isolated from patients with eosinophilia have significantly greater activities of all the enzymes studied than the eosinophils isolated from normal individuals. Our results indicate the acetyltransferase responsible for 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine synthesis may serve an important role in human blood cells that release this biologically active phospholipid. Moreover, the acetyltransferase activity was found to be dramatically influenced by calcium flux.  相似文献   

4.
Stimulation of washed rabbit platelets with AGEPC (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine) caused a 15–20% decrease in their phosphatidylinositol level within 15 seconds without affecting other major classes of phospholipids. In the same time frame the level of phosphatidic acid (PA) increased dramatically some four fold. LysoGEPC, which is inactive in stimulating rabbit platelets, did not cause any change in PI or PA. When [32Pi] was present during the stimulation of platelets by AGEPC, the incorporation of radiolabel into PI-4-phosphate (DPI), PI-4,5-bis phosphate (TPI) and PA was enhanced significantly within one minute while the incorporation into PI increased only after one minute. These results clearly established that AGEPC induced stimulation of rabbit platelets was associated with the metabolism of inositol phospholipids and phosphatidic acid. The relevance of these findings to the mode of action of AGEPC and Ca2+ mobilization is also discussed.  相似文献   

5.
The molecular heterogeneity of platelet-activating factor (PAF) produced by stimulated human neutrophilic polymorphonuclear leukocytes (PMN) was assessed by both normal and reverse phase high performance liquid chromatography (HPLC). As detected by rabbit platelet stimulation, at least 5 PAF molecules were separated by HPLC. Fast atom bombardment (FAB) mass spectrometry revealed one of these PAFs was acetyl glyceryl ether phosphorylcholine (AGEPC) with a C16:0 alkyl chain in the sn-1 position. Although the structures of the remaining PAFs are unknown, two of the peaks of PAF activity had the same retention times on reverse phase HPLC as the C15- and C18-saturated alkyl chain AGEPC homologues. These studies indicate that the human PMN produces multiple molecular species of PAF.  相似文献   

6.
Surprisingly, the sn-1 configuration of 1-0-hexadecyl-2-acetyl-glycerylphosphorylcholine showed significant activity, 3.22 × 10?9 M, when compared to the sn-3 enantiomer, 2.92 × 10?10 M and a racemic mixture with a value of 7.2 × 10?10 M. A methoxy substitution at the C-1 or C-2 position of octadecyl glycerylphosphorylcholine gave a derivative with high biological activity for stimulating serotonin release from rabbit platelets. A 1-0-dodecyl-2-methoxy analogue showed very low activity; also, a comparable series of 0-benzyl derivatives were inactive. Examination of 1-0-hexadecyl, 1-0-octadecyl- or 1-0-dodecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine showed that the hexadecyl compound had three times the biological activity of the octadecyl and five times that of the dodecyl.  相似文献   

7.
Synthetic 1-O-alkyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine (PAF) and 1-O-alkyl-sn-glyceryl-3-phosphorylcholine (lyso-PAF) have previously been shown to induce chemotaxis and chemokinesis of human neutrophils. We present here data showing that these agents are inactive by themselves, but that they enhance neutrophil secretion once it has been initiated by a calcium ionosphore or by zymosan. Two substances, the lipid eosinophil chemotactic factor (ECF) and the lysosomal enzyme β-glucuronidase, are used as markers for neutrophil release. PAF augments secretion of both substances in a dose-dependent fashion, with lyso-PAF being less potent. The kinetics of enhancement are very rapid (<2 min) and are not reversible by washing of the cells. A pyrazoline derivative that inhibits arachidonate cyclo-oxygenation and lipoxygenation, reduces the enhancing effect of PAF and lyso-PAF. PAF, and less so lyso-PAF, are thus potentially important modulators of neutrophil secretion during inflammatory processes.  相似文献   

8.
Rabbit peritoneal neutrophils incorporated [14C]arachidonic acid into seven molecular species of choline-containing phosphoglycerides. These 2-[14C]arachidonoyl species differed with respect to the alkyl ether or acyl residue bound at the sn-1 position; four of the seven were ether-linked. Stimulation with calcium ionophore A23187 induced a proportionate release of arachidonate from all seven molecular species: 40% of the released arachidonate came from alkyl ether species. Thus, 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine (GPC) is a significant source of metabolizable arachidonic acid. Since 1-O-alkyl-2-lyso-GPC is the metabolic precussor of platelet activating factor, these results further interrelate pathways forming arachidonate metabolites and platelet activating factor; they also supply a rationale for the observation that both classes of stimuli form concomitantly during cell activation.  相似文献   

9.
When 32Pi-labeled rabbit platelets were incubated with 5 × 10?10m 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC), either in the presence or absence (0.1 mm EGTA) of added Ca2+, there was a three- to five-fold increase in the [32P]phosphatidic acid (PA) pool within 15 to 20 s. This event was followed by a gradual decrease in the [32P]PA level to near basal level in 5 min. AGEPC effected this change in [32P]PA in a characteristic dose- and time-dependent manner. Polar head group analogs of AGEPC, such as AGEDME and AGEMME, also effected an increase in PA labeling at levels. comparable to those previously reported for their activity toward rabbit platelets [K. Satouchi, R. N. Pinckard, L. M., McManus, and D. J. Hanahan (1981) J. Biol. Chem.256, 4425–4432]. Other analogs, i.e., lysoGEPC and the enantiomer, sn-1-AGEPC, which are inactive toward rabbit platelets, also showed no effect on the level of [32P]PA. The finding that the PA level in rabbit platelets could be manipulated by the addition of AGEPC, without any added Ca2+, provided an excellent model system for establishinig a correlation between the uptake of Ca2+, serotonin release, and PA level. Thus, PA must be regarded as a sensitive indicator of a reaction mechanism important to the platelet response to AGEPC, and could be the focal point in promoting calcium uptake during the stimulation process.  相似文献   

10.
Desensitisation of human blood platelets to the effects of 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (1-O-alkylAcGEPC) and palmityl-lysophosphatidate by pre-incubation with these agonists has no effect on the aggregatory or secretory responses to collagen but causes 30–40% inhibition of these responses to thrombin in aspirin-treated platelets. The effects of 1-O-alkylAcGEPC and palmitoyl-lysophosphatidate are not additive. The results are not consistent with the proposal that 1-O-alkylAcGEPC or lysophosphatidate are the mediators for the responses to collagen observed when prostaglandinendo-peroxide synthesis is prevented, although they may play some role in the responses to thrombin under these conditions.  相似文献   

11.
The metabolic fate of 1-O-[3H]alkyl-2-acetyl-sn-glycero-3-phosphorylcholine ([3H]-AGEPC) upon interaction with rabbit platelets was investigated. [3H]AGEPC was converted to a product identified as the long-chain fatty acyl analog. The reaction was unaffected by extracellular calcium. After a lag time of 30 to 60 s the kinetics of the conversion was linear. The rate of the reaction was found to be a function of platelet and AGEPC concentrations. Of the [3H]AGEPC (10?9m) 85 ± 5% was processed into the-long chain fatty acyl analog within 1 h when incubated at 37 2C with a 1.25 × 109 platelets per milliliter suspension. A maximal number of 1200 to 3600 [3H]AGEPC molecules were converted to the long-chain fatty acyl derivative per minute per platelet in the presence of 2 mm EDTA. Under similar conditions the 1-O-[3H]alkyl-2-(lyso)-sn-glycero-3-phosphorylcholine ([3H]lysoGEPC) also was transformed to a comparable long-chain fatty acyl derivative at a much slower rate and to a lower extent. No significant increase in lysoGEPC was noted in incubation mixtures containing [3H]AGEPC. The possible direct transacylation of AGEPC upon interaction with platelets is discussed as well as the possible involvement of this reaction in directly triggering the platelet response to AGEPC stimuli.  相似文献   

12.
A new phospholipid was shown to be biosynthesized in liver mitochondria from labeled 1-alkyl-sn-glycerol-3-phosphate and labeled fatty acid in the presence of ATP and CoA and its structure was shown to be 1-alkyl-2-(3-hydroxy)acyl-sn-glycerol-3-phosphate. Fatty acids in mitochondria were oxidized to the β-hydroxy derivatives which were utilized for the acylation of alkyl glycerophosphate. Free long chain β-hydroxy acids were also utilized by mitochondria and microsomes in the presence of ATP and CoA for the acylation of glycerophosphate derivatives to form the phosphatidate analogs.  相似文献   

13.
The human polymorphonuclear neutrophil (PMN) aggregation responses to 5(S),12(R)-dihydroxy-cis-6,14-trans-8,10-eicosatetraenoate (diHETE), C5a, N-formyl-methionyl-leucyl-phenylalanine (FMLP), and 1-0-alkyl-2-0-acetyl-sn-glycero-3-phosphocholine (AAGPC) were desensitized by preincubating the cells with small amounts of diHETE. Desensitization developed rapidly, persisted in washed cells, and was not due to stimulus inactivation. The desensitized cells exhibited normal aggregation responses to ionophore A23187 and phorbol myristate acetate (PMA). Thus, responsiveness to diHETE appears necessary for the aggregation response to C5a, FMLP, and AAGPC. Endogenous diHETE, which forms rapidly in cells challenged with these latter stimuli, may mediate their aggregating actions.  相似文献   

14.
Addition of the animal ether phospholipid platelet-activating factor, 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine, (PAF) stimulates medium acidification in cultured soybean (Glycine max L.) cells. The pH of the medium after 8–10 hours is on the average one pH unit lower than in controls. With fusicoccin an average pH difference of 1.7 units is reached. Phospholipids, glycerol, 1-oleyl-2-acetyl-sn-glycerol, 1-0-hexadecyl-sn-glycerol, and triolein at the same concentrations as PAF had no stimulatory effect on medium acidification. The detergents CHAPS and deoxycholate lead to alkalinization of the medium whereas lysophosphatidylcholine (LPC), a detergent with structural similarity to PAF, shows no effect.Abbreviations CHAPS (3-((3-cholamylopropyl) dimethylamino)-1-propanesulfonate) - DOC deoxycholic acid - FC fusicoccin - LPC lysophosphatidylcholine - OAG 1-oleyl-2-acetyl-sn-glycerol - PAF platelet-activating factor = 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine - IAA indole-3-acetic acid  相似文献   

15.
The pink portion of the rabbit harderian gland is known to contain a preponderance of ether-linked glycerolipids consisting primarily of 1-(O-acyl)hydroxyalkyl-2,3-diacyl-sn-glycerols and smaller amounts of 1-alkyl-2,3-diacyl-sn-glycerols. In the present study, we have used a combination of chemical, enzymatic, and chromatographic techniques to identify two minor lipid components in the gland as 1-hydroxyalkyl-2-acyl-sn-glycerols and 1-hydroxyalkyl-2,3-diacyl-sn-glycerols. The long-chain acyl groups occurring in the 1-hydroxyalkyl-2-acyl-sn-glycerols and 1-hydroxyalkyl-2,3-diacyl-sn-glycerols are almost exclusively hexadecanoic acid, whereas the 1-(O-acyl)hydroxyalkyl-2,3-diacyl-sn-glycerols have a ratio of hexadecanoic acid to octadecanoic acid of 21. The 1-(O-acyl) hydroxyalkyl-2,3-diacyl-sn-glycerols and the 1-hydroxyalkyl-2,3-diacyl-sn-glycerols also contain a short-chain acyl moiety identified as 3-methylbutanoic acid (isovaleric acid). This acid was found to occupy the 3-position of the glycerol backbone in these lipid classes.Metabolic experiments demonstrate that 3-methylbutanoic acid in the lipids of the gland is derived from the catabolism of l-leucine. Pulse-chase data show a precursor-product relation between the 1-hydroxyalkyl-2,3-diacyl-sn-glycerols and 1-(O-acyl-hydroxyalkyl-2,3-diacyl-sn-glycerols and rule out direct hydroxylation of 1-alkyl-2,3-diacyl-sn-glycerols as a possible biosynthetic route to the 1-(O-acyl)hydroxyalkyl-2,3-diacyl-sn-glycerols.Characterization of the alkyl and acyl groups and the positional distributions of the acyl moieties in combination with the metabolic information indicated the acylation sequence involved in the formation of 1-(O-acyl)hydroxyalkyl-2,3-diacyl-sn-glycerol is 1-hydroxyalkyl-2-acyl-sn-glycerols → 1-hydroxyalkyl-2,3-diacyl-sn-glycerols → 1-(O-acyl)hydroxyalkyl-2,3-diacyl-sn-glycerols. The data also suggest that hydroxylation of the alkyl side-chain occurs before or at the alkylacylglycerol stage.  相似文献   

16.
Photomixotrophic rape cells in culture specifically incorporate 1-O-tetradecyl-sn-glycerol from a racemic mixture into complex alkyl glycerolipids. Thus, both neutral and ionic 1-O- alkyl-2-O-acyl-sn-glycerolipids with defined alkyl moieties can be prepared from racemic mixtures of alkylglycerols.  相似文献   

17.
The total synthesis of 1-O-alkyl-2-acetyl-3-glyceryl-(2-trimethyl ammoniummethyl) phosphonate, the phosphono analogue of 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine, is described. The phosphonolipid shows much lower activity than the phospholipid stimulating serotonin release from rabbit platelets.  相似文献   

18.
Acyltransferases are present in microsomes from alveolar type II cell adenomas (produced by urethan injections) that transfer palmitic acid in the presence of CoA, ATP, and Mg++ to sn-glycerol-3-P to form phosphatidic acid, to dihydroxyacetone-P to form acyldihydroxyacetone-P, and to 1-acyl-sn-glycero-3-phosphocholine to form 3-sn-phosphatidylcholine. The data clearly demonstrate that the microsomal preparations can catalyze significant incorporation of palmitic acid into the 2-position of the disaturated species of 3-sn-phosphatidylcholine independently of phosphatidic acid formation as evidenced by the fact that sn-glycerol-3-P and calcium ions (which inhibit choline phosphotransferase) did not influence the incorporation of palmitic acid into the main surfactant lipid. Thus, a deacylation-acylation reaction involving 2-lysophosphatidylcholine appears to be an important pathway for the synthesis of surfactant lipid in alveolar type II cells; the control of acyl specificity at the 2-position is determined by the relative concentrations of the coparticipating substrates, l-palmitoyl-sn-glycero-3-phosphocholine and palmitoyl-CoA.  相似文献   

19.
A triacylglycerol analogue, rac-1,2-di-O-oleoyl-3-S-oleoyl-3-thioglycerol, was fed to rats and chyle acylglycerols were analyzed. Triacylglycerol was the dominating chyle lipid but X-triacyl-1-thioglycerol constituted approx. 6% of total chyle lipids. Its identity was verified by ultraviolet and mass spectra and its stereochemical structure by ORD and CD. The proportions of triacyl-1-thio-sn-glycerol/triacyl-3-thio-sn-glycerol were 6337 and 7822 in two experiments. Possible reasons for this stereospecificity are discussed. The study shows that the stereochemical configuration of lipids isolated from biological material can be assessed by ORD and CD.  相似文献   

20.
Four naturally occurring platelet-activating factor (PAF) analogs, 1-alk-1'-enyl-2-acetyl-sn-glycero-3-phosphocholine, 1-hexade-canoyl-2-acetyl-sn-glycero-3-phosphocholine, 1-octadecanoyl-2-acetyl-sn-glycero-3-phosphocholine, and 1-alkyl-2-acetyl-sn-glycero-3-phosphoethanolamine, stimulated human neutrophils (PMN) to mobilize Ca2+, degranulate, and produce Superoxide anion. They were, respectively, 5-, 300-, 500-, and 4000-fold weaker than PAF in each assay; inhibited PMN-binding of [3H]PAF at concentrations paralleling their biological potencies; and showed sensitivity to the inhibitory effects of PAF antagonists. PAF and the analogs, moreover, desensitized PMN responses to each other but not to leukotriene B4 and actually increased (or primed) PMN responses to N-formyl-MET-LEU-PHE. Finally, 5-hydroxyicosatetraenoate-enhanced PMN responses to PAF and the analogs without enhancing the actions of other stimuli. It stereospecifically raised each analog's potency by as much as 100-fold and converted a fifth natural analog, 1-alk-1'-enyl-2-acetyl-sn-glycero-3-phosphoethanolamine from inactive to a weak stimulator of PMN. PAF and its analogs thus represent a structurally diverse family of cell-derived phospholipids which can activate, prime, and desensitize neutrophils by using a common, apparently PAF receptor-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号