首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Of the 14 cyanogen bromide fragments derived from Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase, four are too large to permit complete sequencing by direct means [F. C. Hartman, C. D. Stringer, J. Omnaas, M. I. Donnelly, and B. Fraij (1982) Arch. Biochem. Biophys. 219, 422-437]. These have now been digested with proteases, and the resultant peptides have been purified and sequenced, thereby providing the complete sequences of the original fragments. With the determination of these sequences, the total primary structure of the enzyme is provided. The polypeptide chain consists of 466 residues, 144 (31%) of which are identical to those at corresponding positions of the large subunit of spinach ribulosebisphosphate carboxylase/oxygenase. Despite the low overall homology, striking homology between the two species of enzyme is observed in those regions previously implicated at the catalytic and activator sites.  相似文献   

2.
As a part of the goal to determine the total sequence of Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase, the cyanogen bromide fragments were fractionated and sequenced (or partially sequenced). Twelve of the anticipated 14 peptides were obtained in highly purified form. The other two peptides were located, respectively, within a trytophanyl cleavage product (which overlapped with four CNBr fragments) and within an active-site peptide characterized earlier (which overlapped with three CNBr fragments). These overlaps coupled with amino and carboxyl terminal sequence information of the intact subunit and the availability of the sequence of the corresponding enzyme from higher plants permitted alignment of all fragments. Eight CNBr peptides were sequenced completely; four of the CNBr peptides consisted of more than 80 residues and were only partially sequenced as permitted by direct Edman degradation. Of the approximate 475 residues per subunit, 339 were placed in sequence. The lack of extensive conservation of primary structure between R. rubrum and higher plant carboxylases permits the tentative identifications of those regions likely to be functionally important.  相似文献   

3.
Urea isoelectric focusing of dissociated, carboxymethylated Nicotiana tabacum ribulose-1,5-bisphosphate carboxylase/oxygenase reveals catalytic subunit microheterogeneity. Aggregated or nonaggregated sucrose gradient-purified preparations and the crystalline protein displayed essentially identical large subunit multiple polypeptide patterns. Various pretreatments which fully dissociate the holoenzyme did not alter catalytic subunit microheterogeneity. Direct comparison of the carboxymethylated and noncarboxymethylated crystalline and sucrose gradient-purified proteins demonstrated that the large subunit multiple polypeptide pattern was not an artifact of carboxymethylation. The inclusion of the seryl protease inhibitor phenylmethylsulfonyl fluoride during purification of the holoenzyme did not affect the large subunit multiplicity. However, the addition of leupeptin, a potent thiol proteinase inhibitor, to all solutions during purification of the native protein markedly reduced large subunit polypeptide L3 and increased the staining of polypeptide L2, suggesting that L3 is a leupeptin-sensitive proteinase degradation product of L2. Polypeptide L1 also appeared to be a purification-related artifact, but derived from a modification of L2 other than that which yielded L3. We conclude that polypeptide L2 is the single, native isoelectric form of the catalytic subunit of tobacco ribulosebisphosphate carboxylase/oxygenase.  相似文献   

4.
Butanedione in the presence of borate buffer reversibly inhibits Rhodospirillum rubrum chromatophore transhydrogenase complex and the separated membrane-bound and soluble factor components of the complex. NADP+ completely protected against inactivation of the membrane-bound component, whereas NAD+ was without effect. Soluble factor was maximally protected only partially by either NAD+ or NADP+, but a mixture of the substrates afforded complete protection. NADP+-dependent association of soluble factor with factor-depleted membranes was markedly decreased after incubation of membranes with butanedione in the absence, but not in the presence, of NADP+. Soluble factor was bound to agarose-NAD and was eluted by NAD+, but not by NADP+. These results demonstrate the presence of at least three nicotinamide adenine dinucleotide binding sites on R. rubrum transhydrogenase complex, including separate NADP and NAD binding sites on soluble factor and a NADP binding site on the membrane-bound component.  相似文献   

5.
Insulin-stimulating peptide from tryptic digest of bovine serum albumin   总被引:1,自引:0,他引:1  
Insulin-stimulating peptide was isolated from a tryptic digest of bovine serum albumin by gel permeation, SP Sephadex column chromatography, reversed phase HPLC and cation-exchange HPLC. This peptide, with a molecular weight of about 8,400, had no insulin-like activity by itself, but enhanced fatty acid synthesis from glucose in rat adipose tissue explants in the presence of suboptimal concentrations of insulin. It also stimulated the effect of insulin on CO2 production from glucose in rat adipocytes, without affecting insulin binding. These stimulations were dose-dependent and were observed at concentrations of more than 2 X 10(-7) M peptide only in the presence of a suboptimal concentration of insulin.  相似文献   

6.
Ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach was inactivated by a carboxyl-directed reagent, Woodward's reagent K ( WRK ). The inactivation followed pseudo-first-order kinetics. The reaction order with respect to inactivation by WRK was 1.1, suggesting that inactivation was the consequence of modifying a single residue per active site. The substrate ribulose 1,5-bisphosphate (RBP), two competitive inhibitors, fructose 1,6-bisphosphate (FBP) and sedoheptulose 1,7-bisphosphate (SBP), and a number of sugars-phosphate protected against inactivation by WRK . SBP was a strong protector, displaying a dissociation constant (Kd) of 3 microM with native RBP carboxylase. Pretreatment of RBP carboxylase with diethyl pyrocarbonate prevented WRK incorporation into the enzyme. The enol ester derivative produced by reaction of WRK with RBP carboxylase has a maximal absorbance at 346 nm, and the extinction coefficient was found to be 12300 +/- 700 M-1 cm-1. Spectrophotometric titration of the number of carboxyl groups modified by WRK in RBP carboxylase/oxygenase in the presence and in the absence of SBP suggests that inactivation was associated with the modification of one carboxyl group per active site.  相似文献   

7.
Specific chemical cleavage of human placental and porcine muscle glucosephosphate isomerases at three amino peptide bonds of cysteinyl residues with 2-nitro-5-thiocyanobenzoic acid was achieved. Four primary peptides were generated from the cyanylated human glucosephosphate isomerase, indicating the quantitative cleavage of this enzyme. Four primary plus six overlap peptides were obtained from the cleavage of the swine muscle enzyme. The peptides were separated by SDS-polyacrylamide gel electrophoresis and eluted from the gels. Amino acid and carboxyl terminal analyses of the eluted peptides have permitted the alignment of these peptides with respect to the native polypeptide chain. The analysis of the enzyme which had been specifically covalently labeled at the essential lysine and histidine residues of the active center revealed that the active-site histidine and lysine residues are located on two distinct peptides with molecular weights of 27,500 and 14,000, respectively.  相似文献   

8.
The kinetics of photooxidation of c-type cytochromes from horse heart, Rhodospirillum rubrum, and Rhodopseudomonas capsulata by purified reaction centers from R. rubrum have been investigated. The kinetic mechanism was found to be complex with a second-order step (complex formation) followed by a rate limiting first-order step. Based on studies of the reaction as a function of pH, ionic strength, and detergent concentration, it appears that the complex formation step is largely electrostatically controlled with only portions of the surfaces of the interacting molecules participating. Further, the first-order process observed at high cytochrome concentration appears to result from solvent reorganization and/or a conformational change following complex formation. Based on data analysis in terms of outersphere electron transfer, it is proposed that another first-order process exists which is not rate limiting and is the electron transfer step. Finally, it was found that the detergent concentration can have a profound effect on both the oxidation-reduction potential of the cytochromes and the kinetics of photooxidation. These results limit the detergent concentration range over which experiments can be conducted and interpreted.  相似文献   

9.
The chemical modification of cysteine and tyrosine residues in formyltetrahydrofolate synthetase from Clostridium thermoaceticum has been examined relative to enzymatic activity and reactivity of these groups in the native protein. 4,4′-Dipyridyl disulfide, dansylaziridine, and fluorescein mercuric acetate all reacted with just one of six sulfhydryls per enzyme subunit, resulting in activities of 100, 95 and 70%, respectively. The Km values for MgATP, formate, and tetrahydrofolate were unaltered in the modified enzymes. ATP did produce a 2.5-fold reduction in the rate of reaction between the enzyme and 4,4′-dipyridyl disulfide. Tetranitromethane reacted most rapidly with a single sulfhydryl group per subunit to produce a 20–30% loss in activity. Subsequent additions of tetranitromethane modified 2.2 tyrosines per subunit which was proportional to the loss of the remaining enzymatic activity. Folic acid, a competitive inhibitor, protected against modification of the tyrosines and the associated activity losses; however, the oxidation of the single sulfhydryl group and the initial 20–30% activity loss were unaffected. In the presence of folic acid, higher concentrations of tetranitromethane produced a loss of the remaining activity proportional to the modification of 1.2 tyrosines per subunit. It is proposed that at least 1 tyrosine critical for enzymatic activity is located at or near the folic acid/tetrahydrofolate binding site.  相似文献   

10.
11.
The sequence of 164 amino acid residues in the NH2-terminal BrCN peptide of rabbit muscle aldolase has been determined. The information has permitted location of the following amino acid residues involved in the catalytic activity or in maintaining the structural integrity of the enzyme: Cys-72, forms a disulfide bridge with Cys-336 in the COOH-terminal segment on inactivation of the enzyme by oxidation; Lys-107, forms a Schiff base with pyridoxal phosphate upon inactivation of aldolase by this reagent; Cys-134 and Cys-177, buried, do not react with SH-reagents in the native enzyme.  相似文献   

12.
M. Dron  M. Rahire  J.-D. Rochaix  L. Mets   《Plasmid》1983,9(3):321-324
Sequence comparison of the chloroplast genes of the large subunit of ribulosebisphosphate car☐ylase from wild-type and from a uniparental mutant of the green unicellular algaChlamydomonas reinhardii has revealed a single nucleotide change. The corresponding Gly to Asp amino acid substitution would introduce a negative charge into the presumptive substrate binding region of the enzyme and would explain the inactivity of the mutant protein. This is the first chloroplast mutation whose DNA sequence is known. Our results establish the first exact point of correlation between the physical map of the chloroplast genome ofC. reinhardii and a specific genetic locus.  相似文献   

13.
A novel procedure for isolating peptides which contain methionine is described. It relies upon the reversible increase in charge which occurs upon the alkylation of methionine by iodoacetamide. A digest of the protein is reacted with lodo[14C]acetamide under conditions which direct the reaction exclusively to the methionine residues. In this way, methionine-containing peptides are rendered radioactive and gain one positive charge per methionine simultaneously. The digest is then separated on a cation exchange column, the peptides are located by their radioactivity, and they are separately collected. The carboxyamidomethylation is reversed by thiolysis, which eliminates the extra positive charge which each methionine-containing peptide bore, decreasing their charge selectively. A second chromatographic separation, performed on the same cation exchange column, is sufficient to produce the desired peptides in a high state of purity. Equine myoglobin and bovine ribonuclease were used as models to demonstrate the feasibility of this approach. Methionine-containing tryptic peptides were purified from digests of these proteins in yields which were equivalent to those of previously reported separations. The present procedure, however, is applicable to peptide mixtures of far greater complexity than those which were derived from the model compounds and can be applied with the same success to digests of very large proteins containing many methionine residues.  相似文献   

14.
The response of the microsomal heme oxygenase in the testis to metal ions distinctly differed from that of the ovarian source. The activity of the ovarian enzyme in rats treated with Co2+ (250 mumol/kg, 24 h) responded in consonance with that of the liver and the kidney, i.e., heme oxygenase activity was elevated. In contrast, similar treatments did not increase the activity of testicular heme oxygenase. In addition, other metal ions, such as Cu2+, Sn2+, Pb2+, and Hg2+, known for their potency to increase heme oxygenase activity, were ineffective in increasing the enzyme activity in the testis. The unprecedented response of heme oxygenase in the testis to metal ions did not reflect an unusual nature of the enzyme protein insofar as it displayed a similar cofactor requirement and inhibition by known inhibitors of the enzyme activity, such as KCN and NaN3. Moreover, the apparent Km's for oxidation of hematoheme by the testicular and ovarian microsomal fractions were comparable and measured 2.3 and 1.4 microM, respectively. In the testis of Co2+-treated rats, the concentration of cytochrome P-450 in the rough and smooth endoplasmic reticular fractions was significantly decreased. The decrease in the hemoprotein level, however, did not reciprocate the activity of heme oxygenase in the fractions. The inability of metal ions to induce heme oxygenase activity in the testis did not represent the general refractory nature of the enzymes of heme metabolism to metal ions in this organ, since in rats treated with Co2+ the activity of delta-aminolevulinate synthetase was significantly decreased 24 h after treatment. However, the activities of uroporphyrinogen-I synthetase, delta-aminolevulinate dehydratase, and ferrochelatase and the content of porphyrins were not altered in the testis of rats treated with Co2+. The response of delta-aminolevulinate synthetase in the ovarian tissue to Co2+ treatment contrasted that of the testis. In the ovary, the enzyme activity significantly decreased 6 h after treatment. This decrease was followed by a rebound increase at 24 h after administration of Co2+. The presently described inability of metal ions to induce testicular heme oxygenase activity suggests that the activity of the enzyme in the testis is controlled by factor(s) which differ from those regulating the enzyme activity in other organs, including another steroidogenic organ, the ovary.  相似文献   

15.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

16.
The activity of ribulose 1,5-bisphosphate (RuBP) car?ylase in intact spinach chloroplasts is shown to depend on light and CO2. This activity was measured upon lysis of chloroplasts and assay of the initial activity using nonlimiting substrate concentrations. Incubation of chloroplasts at 25 °C in the absence of CO2 results in a gradual inactivation of the RuBP car?ylase. In the presence of CO2 the initial activity is preserved or increased. CO2 is also able to reactivate the chloroplast car?ylase previously inactivated in the absence of CO2. Upon illumination of the chloroplasts, additional activation was observed. This light activation results from an increased affinity for CO2 of the chloroplast car?ylase. At pH 7.8, the enzyme in dark-adapted chloroplasts required 112 μ m CO2 for half activation, while in the light it required 24 μ m CO2. The light activation was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, carbonylcyanide 3-chlorophenylhydrazone, or dl-glyceraldehyde. Part of the light activation is most likely due to increased Mg2+ in the stroma. dl-Glyceraldehyde inhibition also suggests that some intermediate of the photosynthetic carbon cycle is involved. These results suggest that photosynthetic CO2 assimilation in the chloroplast depends upon the amount of activation of the RuBP car?ylase. This activation is regulated by CO2 and light-induced changes in the chloroplast stroma such as pH, Mg2+, and intermediates of the photosynthetic carbon cycle.  相似文献   

17.
Data are presented which indicate that the transition of acetyl-CoA carboxylase between the active polymeric and inactive protomeric conformations defined for the purified enzyme also occurs with the enzyme in vivo, depends upon the nutritional state of the animal, and is an important physiological phenomenon in the acute regulation of liver fatty acid synthesis. This conclusion utilized the observation that the protomeric form of purified acetyl-CoA carboxylase is inactivated by the binding of avidin to the biotinyl prosthetic group; the catalytically active filamentous form of the enzyme is resistant to avidin. Acetyl-CoA carboxylase activity was 75% avidin-resistant (polymeric) in the liver of meal-fed rats that had completed the consumption of a high glucose meal. This avidin resistance gradually decreased to 20% during the 21-h interval between meals. Peak resistance to avidin of liver carboxylase was attained within 30 min of initiating meal ingestion. The rise in carboxylase resistance to avidin could not be mimicked by insulin injection alone, but could be greatly attenuated by the addition of fat to the glucose meal. The amount of avidin-resistant acetyl-CoA carboxylase was closely associated with the concentration of hepatic malonyl-CoA and the subsequent rate of fatty acid synthesis.  相似文献   

18.
Trypsin treatment of purified fatty acid synthetase from the uropygial gland of goose released a 33,000 molecular weight peptide from the 270,000 molecular weight synthease. A combination of ammonium sulfate precipitation, Sephadex G-100 gel filtration, anion-exchange chromatography with QAE-Sephadex, and cation-exchange chromatography with cellulose phosphate gave rise to the first homogeneous preparation of the 33,000 molecular weight fragment containing fatty acyl-CoA thioesterase activity. Amino acid composition of this peptide was quite similar to that of the intact fatty acid synthetase except for a lower valine content; a partial specific volume of 0.734 was calculated for the thioesterase fragment. The pH optimum for the thioesterase was near 7.5 and the enzyme showed a high degree of preference for CoA esters of fatty acids with 16 or more carbon atoms. Palmitoyl-CoA inhibited the enzyme and therefore the rate of hydrolysis was not proportional to the amount of protein at low concentrations. Inclusion of bovine serum albumin in the reaction mixture prevented this inhibition. Disregarding the substrate inhibition, an apparent Km of 5 × 10?5m and a V of 340 nmol/min/mg were calculated. The thioesterase was inhibited by active serine-directed reagents such as phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate as well as by SH-directed reagents as p-chloromercuribenzoate and N-ethylmaleimide. The isolated thioesterase fragment generated antibodies in rabbits and the antithioesterase inhibited the enzymatic activity of fatty acid synthetase. The antithioesterase showed immunoprecipitant lines with fatty acid synthetase from the uropygial gland and the synthetase from the liver of goose. Anti-fatty acid synthetase prepared against the enzyme from the gland cross-reacted with the thioesterase segment. Even though the synthetase from the uropygial gland synthesizes multimethyl-branched fatty acids in vivo, the thioesterase segment of this synthetase appears to be quite similar to that isolated from the rat.  相似文献   

19.
Homogeneous preparations of ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) were isolated from several diploid and tetraploid cultivars of perennial ryegrass (Lolium perenne L.) by three different purification protocols. The apparent Km values for substrate CO2 were essentially identical for the fully CO2Mg2+-activated diploid and tetraploid enzymes, as were the kinetics for deactivation and activation of the CO2Mg2+ activated and -depleted carboxylases, respectively. Similarly, virtually indistinguishable electrophoretic properties were observed for both the native and dissociated diploid and tetraploid ryegrass proteins, including native and subunit molecular weights and the isoelectric points of the native proteins and the large and small subunit component polypeptides. The quantity of carboxylase protein or total soluble leaf protein did not differ significantly between the diploid and tetraploid cultivars. Contrary to a previous report (M. K. Garrett, 1978, Nature (London)274, 913–915), these results indicate that increased ploidy level (i.e., nuclear gene dosage) has had essentially no effect on the quantity or enzymic and physicochemical properties of ribulosebisphosphate carboxylase/ oxygenase in perennial ryegrass.  相似文献   

20.
The Raman spectra of crystalline H-ProLeuGlyNH2 which has a type II β turn, crystalline S-benzylCysProLeuGlyNH2 which has a type I β-turn, and crystalline gramicidin S which has two β turns and β-sheet structure in its conformation, were investigated. The amide I and amide III bands of the peptides with β turns were generally different from those which are diagnostic for α-helix and β-sheet conformations. The patterns of the amide I and amide III bands, when examined together, indicate that Raman spectra can provide diagnostic evidence for β-turn structure in peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号