首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinol and retinoic acid have been incorporated into the artificial membrane systems, planar bimolecular lipid membranes and liposomes, and their effects on several membrane parameters have been measured. 1. Retinol and retinoic acid increased the permeability of egg lecithin liposomes to K+, I? and glucose when incorporated into the membranes at levels as low as 0.5 membrane mol%. Retinoic acid influenced permeability more than did retinol for each of the solutes tested. 2. Retinol and retinoic acid both decreased the electrical resistance of egg lecithin-planar bimolecular lipid membranes from 0.5 to 8 membrane mol%. Retinoic acid effected a larger change than did retinol. 3. Retinol and retinoic acid increased the permeability of dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine liposomes to water at 1.0 and 3.0 membrane mol%. A larger effect on water permeability was measured for retinoic acid than for retinol. 4. Retinol and retinoic acid at 1.0 and 3.0 membrane mol% were shown to lower the phase-transition temperature of liposomes composed of dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine. Phase-transition temperatures were monitored by abrupt changes in water permeability and liposome size associated with the transition. Retinoic acid lowered the phase-transition temperature of dimyristoylphosphatidylcholine liposomes more than did retinol, while both retinoids had almost the same effect on dipalmitoylphosphatidylcholine liposomes.  相似文献   

2.
Summary The microviscosity of cellular membranes (or membrane fluidity) was measured in suspensions of single mucosal cells isolated from the urinary bladder of the toad,Bufo marinus, by the technique of polarized fluorescence emission spectroscopy utilizing the hydrophobic fluorescent probe, perylene. At 23°C, 5mm dibutyryl cyclic 3,5-AMP decreased the apparent microviscosity of the cell membranes from 3.31 to 3.07 P, a minimum decrease of 7.3% (P<0.001) with a physiological time course. Direct visualization of the cell suspension indicated that 98% of the cells were viable, as indicated by Trypan Blue dye exclusion. The fluorescent perylene could be seen only in plasma membranes, suggesting that the measured viscosity was that of plasma membrane with little contribution from the membranes of cellular organelles. Addition of antidiuretic hormone to intact hemibladders stained with perylene produced changes in fluorescence consistent with a similar 7% decrease in apparent microviscosity with a physiological time course. However, finite interpretation of the findings in intact tissue cannot be made because the location and the fluorescent lifetime of the probe could only be conducted on the isolated cells. Comparison with previously determined relationships between water permeability and microviscosity in artificial bilayers suggests that the 7% (a lower limit) decrease in microviscosity would produce only a 6.5% increase in water permeability.  相似文献   

3.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 °C). Incorporation of cholesterol (30–50%) increased the microviscosity of lipid phases by 200–500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since the latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracaine and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of the anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at the 25 °C varied as follows:polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erytherocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol : phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important fuctional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

4.
Rotation of fluorescent probes localized within lipid bilayer membranes   总被引:1,自引:0,他引:1  
Measurements of the steady state polarization of fluorescence from perylene and 9-vinylanthracene embedded in bilayer membranes were performed as a function of temperature. Similar measurements were made when these probes were dissolved in hydrocarbons as model solvents. The effects of cholesterol and n-alkyl alcohol additions to bilayers and head group variation were also examined. Results were expressed in terms of the average rotation rates of the probes.At 25°C, the calculated rotation rate for perylene in egg phosphatidylcholine vesicles was 275 × 106 sec?1 as compared to 2400 × 106 sec?1 for perylene in n-hexadecane. However, the activation energies for probe rotation in both environments was about 7 kcal/mole suggesting similar rotational diffusion mechanisms. Membrane microviscosity evaluations were performed according to a recently published scheme and an assessment of this method of viscosity estimation was given. The presence of an approximately equimolar amount of cholesterol impeded probe rotation (90 × 106 sec?1 at 25°C) and reduced the activation energy (4.9 kcal/mole) for probe rotation. In contrast, addition of n-alkyl alcohols to the vesicle suspension acted to increase probe rotation rates, an indication of fluidization of the membranes. This is in accord with spin label and cation permeability data for similar membranes.It was concluded that this method of probing can adequately report changes in membrane dynamic structure when these changes occur uniformly over the membrane surface. The interpretation is less clear when structural changes occur only in patches or domains of the membrane thereby producing a non-uniform surface distribution of probes.  相似文献   

5.
We studied the effect of vitamin A and its analogues (retinoids) on the clonal growth in vitro of normal human myeloid progenitor cells. Normal human bone marrow cells were cultured in soft gel in the presence of a source of colony-stimulating factor (CSF), and various retinoids, and the number of granulocyte-macrophage colonies (CFU-GM) were scored. The addition of 3 × 10?8 to 3 × 10?6 M retinoic acid to culture plates containing CSF markedly increased the number of myeloid colonies as compared with culture plates containing CSF alone. Maximal stimulation occurred at a concentration of 3 × 10?7 M retinoic acid which increased the mean number of colonies by 213 ± 8 % (±S.E.) over plates containing CSF alone. Retinal or retinyl acetate was less potent than retinoic acid, and retinol (vitamin A) had no effect on colony growth. Retinoic acid had no direct CSF activity nor did it stimulate CSF production by the cultured bone marrow cells. Our studies show for the first time that retinoids can stimulate granulopoiesis in vitro and we suggest that this stimulation may be mediated by increased responsiveness of the granulocyte-macrophage progenitors to the action of CSF.  相似文献   

6.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 degrees C). Incorporation of cholesterol (30-50%) increased the microviscosity of lipid phases by 200-500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since tha latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracain and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at 25 degrees C varied as follows: polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erythrocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol: phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important functional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

7.
8.
Upon differentiation of embryonal carcinoma cells induced by retinoids (10−7 M) the ‘apparent’ membrane microviscosity increases dramatically. Only biologically active retinoids induce differentiation and cause an enhancement in microviscosity. Several embryonal carcinoma cell lines have a relatively lower ‘apparent’ microviscosity than their differentiated derivatives, suggesting that this may be a general property of these cells. At higher concentrations retinoids cause a reduction in ‘apparent’ membrane microviscosity of various cells. This change occurs whether the analogue is biologically active or not, indicating the non-specific nature of this action.  相似文献   

9.
Human promyelocytic leukemia cells (HL-60) were induced to phagocytize, reduce NBT dye(nitroblue tetrazolium), and change into forms that were morphologically similar to mature granulocytes by retinoic acid and related retinoids, but not by the pyridyl analog of retinoic acid. Induction of differentiation could be detected after 4 days of treatment of the cells with retinoic acid at as low a dose as 4 × 10?8 M. Thus, retinoids may be used in studies on the control of cell differentiation and malignancy of human myeloid leukemia cells.  相似文献   

10.
The measurements of the fluorescence polarization of perylene embedded in erythrocyte membranes were carried out with normal and reticulocyte-rich blood, and the microviscosity of erythrocyte membranes was calculated from the polarization degree. In intact cells, reticulocyte membranes had a significantly lower microviscosity than normal erythrocyte membranes, while in ghosts no significant difference in membrane microviscosity was observed between reticulocytes and mature erythrocytes.  相似文献   

11.
The addition of retinoic acid to cultures of HeLa-S3 cells caused a reduction in cell proliferation rate which became apparent after 72 h and was linearly dependent on retinoic acid concentration in the range 10−9–10−5 M. After 72 h of exposure to retinoic acid, the cells assumed a flattened appearance and no longer formed multilayers. These changes were reversed within 48 h after removal of retinoic acid from the medium. Structural analogs of retinoic acid with a free ---COOH group at C-15 were usually more potent in growth inhibition than compounds with an alcohol, aldehyde, ether or ester group. A cellular retinoic acid-binding protein was detected in cell homogenates, and the binding of [3H]retinoic acid to the binding protein was inhibited by most, but not all, analogs possessing a free terminal ---COOH group. For example, the 4-oxo analog of retinoic acid, while capable of inhibiting cellular proliferation, failed to bind to the retinoic acid-binding protein. Analysis of cell surface and cellular glycoproteins by lactoperoxidase-catalysed 125I iodination and by metabolic labeling with [3H]glucosamine revealed that a 190000 D glycoprotein which was labeled by both methods and a 230000 D glycoprotein which was labeled only with [3H]glucosamine were labeled more intensely in retinoic acid-treated cells compared with untreated cells. The electrophoretic mobility of the 230000 D glycoprotein could be modified by treatment of intact cells with either neuraminidase or proteolytic enzymes, suggesting that this glycoprotein is also exposed on the cell surface. The cell surface alterations were detected much earlier than the onset of growth inhibition and appeared as early as 24 h after exposure to retinoic acid. The possible relationship between retinoic acid-induced changes in cell membrane structure, cell morphology, and cell proliferation is discussed.  相似文献   

12.
The influence of retinol and retinoic acid, two retinoids of major interest, on the main gel to liquid-crystalline phase transition of different phospholipid membranes has been studied by means of differential scanning calorimetry. Both compounds exerted perturbing effects on the phase transition of membranes composed of dipalmitoylphosphatidylcholine or dipalmitoylphosphatidylethanolamine. At concentrations up to 42.5 mol% of retinoid in the membrane, the delta H was not much affected with respect to the pure phospholipid, indicating a rather slight interaction. As the concentration of retinol was increased the Tc transition temperature decreased. A fluid-phase immiscibility was observed for the system DPPC/retinol at concentrations between 0 and 33 mol%. Almost ideal phase diagrams were obtained for the mixture DPPE/retinol. At concentrations of 33 mol% and higher retinol was able to induce phase separations in DPPC membranes, but not in DPPE. The effect of retinoic acid was much weaker, the Tc and delta H remaining almost unaltered and equal to that of the pure phospholipid up to concentrations of 30 mol%, at neutral pH. Retinoic acid exerted a pH-dependent effect. As the pH decreased, and therefore increased the extent of protonation of retinoic acid, the pertubation of the membrane induced by this compound was less. A strong effect, both on Tc and delta H, was observed at pH 10, where the retinoic acid moiety will be mainly unprotonated and the negative charge will generate repulsive forces thus destabilizing the membrane. The mixture DPPC/retinoic acid presents a region of fluid-phase immiscibility. At low pH, when the retinoic acid moiety was fully protonated, this fluid-immiscibility region extended from 0 to 36 mol% of retinoic acid, but its size decreased with increasing pH, and at pH 10 it was only found from 0 to 3 mol%. These results are discussed in terms of the possible retinoid/phospholipid interactions and the disposition of the retinoid moiety in the bilayer.  相似文献   

13.
β-lactoglobulin (β-LG) is a member of lipocalin superfamily of transporters for small hydrophobic molecules such as retinoids. We located the binding sites of retinol and retinoic acid on β-LG in aqueous solution at physiological conditions, using FTIR, CD, fluorescence spectroscopic methods, and molecular modeling. The retinoid-binding sites and the binding constants as well as the effect of retinol and retinoic acid complexation on protein stability and secondary structure were determined. Structural analysis showed that retinoids bind strongly to β-LG via both hydrophilic and hydrophobic contacts with overall binding constants of K retinol- β -LG?=?6.4 (±?.6)?×?106?M?1 and K retinoic acid- β -LG?=?3.3 (±?.5)?×?106?M?1. The number of retinoid molecules bound per protein (n) is 1.1 (±?.2) for retinol and 1.5 (±?.3) for retinoic acid. Molecular modeling showed the participation of several amino acids in the retinoid–protein complexes with the free binding energy of ?8.11?kcal/mol for retinol and ?7.62?kcal/mol for retinoic acid. Protein conformation was altered with reduction of β-sheet from 59 (free protein) to 52–51% and a major increase in turn structure from 13 (free protein) to 24–22%, in the retinoid–β-LG complexes, indicating a partial protein destabilization.  相似文献   

14.
Synthesis of long-chain fatty alcohols in preputial glands of mice is catalyzed by an NADPH-dependent acyl coenzyme A (CoA) reductase located in microsomal membranes; sensitivity to trypsin digestion indicates that the reductase is on the cytoplasmic side of the membrane. Results with pyrazole and phenobarbital demonstrate the reaction is not catalyzed by a nonspecific alcohol dehydrogenase or an aldehyde reductase. Acyl-CoA reductase activity is sensitive to sulfhydryl and serine reagent modification, is stimulated by bovine serum albumin, and produces an aldehyde intermediate. The activity is extremely detergent sensitive and cannot be restored even after removal of the detergents. Phospholipase C or asolectin treatment does not release the acyl-CoA reductase from microsomal membranes, but causes a significant decrease in the activity recovered in the membrane pellet. Glycerol does not solubilize the reductase activity, nor does 3.0 m NaCl; however, the combination of glycerol and 3.0 m NaCl did release about 50% of the acyl-CoA reductase from the microsomal pellet. Substrate concentration curves obtained in the presence or absence of bovine serum albumin show significant differences in enzyme activities. The reductase is sensitive to the concentration of palmitoyl-CoA and is progressively inhibited at levels beyond the critical micellar concentration of the substrate. The apparent Km for acyl-CoA reductase is 14 μm; however, the maximum velocity varies with the concentration of albumin used. Expression of enzyme activity in delipidated microsomes requires specific phospholipids, which suggests that in vivo regulation of acyl-CoA reductase activity could be achieved through modifications in membrane lipid composition.  相似文献   

15.
Effects of low (from 4 × 10?12 to 2 × 10?7 M) doses of the organophosphorus plant growth regulator Melaphen on structural characteristics of plant and animal cellular membranes were compared with special reference to changes in the microviscosity of free membrane lipid bilayers and annular lipids bound to protein clusters. It was found that effective concentrations of Melaphen were not only different for animal and plant membranes, but also discrete and equal to 2 × 10?7 or 4 × 10?12 M depending on the membrane origin and the nature of membrane lipid components. In parallel experiments, effects of Melaphen on the rate of lipid peroxidation (LPO) in biological membranes were studied under conditions of external cold stress. The intensity of LPO was decreased at all Melaphen concentrations able to modulate the microviscosities of free and annular membrane lipids. It is concluded that effects of low and ultra-low Melaphen concentrations on structural and functional states of biological membranes of plant and animal origin are mediated by its interaction with signaling receptors of cellular membranes and cell organelles of both plant and animal origin.  相似文献   

16.
Experimental evidence indicates that the major pathway of retinoic acid metabolism in hamster liver microsomes follows the sequence: retinoic acid → 4-hydroxy-retinoic acid → 4-keto-retinoic acid → more polar metabolites. Using all-trans-[10-3H]retinoic acid, it can be shown by reverse-phase high pressure liquid chromatographic analysis that the first and last steps of this sequence require NADPH, whereas the oxidation of 4-hydroxy to 4-keto-retinoic acid is NAD+ (or NADP+) dependent. Both NADPH-dependent steps, but not the NAD+-dependent dehydrogenase reaction, are strongly inhibited by carbon monoxide. The metabolism of retinoic acid but not of 4-hydroxy-retinoic acid is highly dependent on the vitamin A regimen of the animal. Retinoic acid is rapidly metabolized by liver microsomes either from vitamin A-normal hamsters or from vitamin A-deficient hamsters that have been pretreated with retinoic acid, but not by microsomes from vitamin A-deficient animals; in direct contrast, the rate of metabolism of 4-hydroxy-retinoic acid is equivalent in each of these microsomal preparations. Analysis of the kinetics of these reactions yields the following Michaelis constants with respect to the retinoid substrates: retinoic acid, 1 × 10?6m; 4-hydroxy-retinoic acid, 2 × 10?5m; and 4-keto-retinoic acid, 1 × 10?7m. The 4-hydroxy to 4-keto-retinoic acid oxidation has been shown to be experimentally irreversible, to have a KmNAD+of 2 × 10?5m, to be strongly inhibited by NADH, and to be unaffected by the presence of retinoic acid or its 4-keto-derivative in an equimolar ratio to the 4-hydroxy-substrate.  相似文献   

17.
The effects of calcium and of the psychoactive drug chlorpromazine (CPZ) on the rat synaptic plasma membrane have been studied using two stearic nitroxide spin labels having their doxyl groups in positions 5 and 16 and the fluorescent probe 1-anilinonaphtalene-8-sulfonate (ANS). The mobility of the 5-doxyl stearic spin label which probes the membrane phospholipids in the vicinity of their polar heads is decreased in the presence of both compounds. Calcium is more efficient in this respect than CPZ. In spite of this qualitative similarity of action, CPZ inhibits the effect of calcium and vice versa. No modification of the 16-doxyl stearic spectrum has been observed even at high calcium or CPZ concentrations. An increase in fluorescence intensity and a blue shift in the emission wavelength of ANS-probed membranes are observed with very low CPZ concentrations (10?7 to 10?5m). With higher concentrations, a further intensity increase and a further blue shift are due to direct interaction between ANS and CPZ. Calcium also increases the fluorescence intensity of ANS-labeled membranes in the concentration range 10?5–10?2m. As for the spin-label data, the effects of both compounds are mutually competitive. It is concluded that calcium interacts principally with the phospholipid polar heads of this type of membrane. However, the competition with CPZ suggests indirectly that this ion is also bound to membrane proteins. CPZ has an affinity for membrane lipids only at high concentrations. In its pharmacologically active concentration range, it is located preferentially on the membrane proteins.  相似文献   

18.
Treatment of the S3G strain of HeLa cells with dexamethasone inhibits cholesterol synthesis and thus results in decreased plasma membrane cholesterol-to-protein ratios. Incubation of HeLa cells with dexamethasone for 24 h lowers the steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) in intact cell plasma membranes and isolated plasma membranes (Johnston, D. and Melnykovych, G. (1980) Biochim. Biophys. Acta 596, 320–324). We have examined the effect of dexamethasone treatment of S3G HeLa cells on the lateral diffusion of the fluorescent lipid analogue 3,3′-dioctadecylindocarbocyanine iodide (DiI) by the fluorescence photobleaching recovery technique. The lateral diffusion of DiI was measured in cells 0, 2, 6, 12, and 24 h following treatment with dexamethasone and in cells identically handled without dexamethasone at 37°C. The diffusion constants of DiI in the treated and untreated cell membranes at zero time were (4.52±0.30) · 10?9 cm2/s and (4.56±0.24) · 10?9 cm2/s, respectively. There was no significant change in the lateral diffusion of DiI in the untreated cells over the 24 h period. The lateral diffusion of the lipid probe in the dexamethasone-treated cells began to increase 6 h following treatment and reached (6.43±0.27) · 10?9 cm2/s at 24 h. The lateral diffusion of DiI was also measured at 25, 17, 10 and 4°C following 24 h incubation with and without dexamethasone. The effect of dexamethasone treatment on the lipid probe lateral diffusion observed at 37°C is decreased at 25°C and reversed in direction at 10 and 4°C. These results agree with those obtained in artificial systems containing varying amounts of cholesterol and support the suggestion that cholesterol acts to suppress phospholipid phase changes in animal cells. The lateral diffusion of DiI localized as a monolayer at a mineral oil-water interface was measured by fluorescence photobleaching recovery. The resulting data and the viscosity of the mineral oil were used to calculate the microviscosities of the plasma membranes of untreated and dexamethasone-treated cells at 25°C. Membrane microviscosities were also calculated from the fluorescence polarization studies cited above. In both cases the dexamethasone treatment reduced the apparent microviscosity by approximately 25%. However, the absolute microviscosity values obtained by the two techniques differ by a factor of 3.  相似文献   

19.
Lipid bilayer membranes were made from hopanoid phosphatidylcholine mixtures dissolved in decane. The specific capacity of the mixed membranes was found to increase with increasing hopanoid content. This indicates an interaction between hopanoids and lipids which leads to a reduction of the chemical potential of the solvent in the membranes.The structural properties of mixtures of hopanoids and phosphatidylcholines were investigated using charged probe molecules, the negatively charged lipophilic ions dipicrylamine (DPA) and tetraphenylborate (TØB) and the positively charged potassium complex PV-K+ (PV, cyclo (D-Val-L-Pro-L-Val-D-Pro)3). The transport properties of the lipophilic ions in the mixed membranes indicate that the electrical properties like dipolar potential and surface potentials of phosphatidylcholine membranes are not changed by the insertion of the hopanoids. The translocation rate constant K of the PV-K+ complex is drastically reduced in the hopanoid phosphatidylcholine membranes with increasing hopanoid content. This effect is discussed on the basis of an alteration of the microviscosity in the mixed membranes. There exists a close analogy between the action of cholesterol and hopanoids in bilayer membranes from phosphatidylcholines.A bilayer membrane composed of di-ω-cyclohexyldodecanoyl-phosphatidylcholine (DCPC) was found to possess a higher specific capacity as compared to other phosphatidylcholines. Also a lower translocation rate constant for PV-K+ was observed which may be caused by the relative high microviscosity of this lipid even above the phase transition temperature.  相似文献   

20.
We have examined the effects of retinoids on growth of cultured human skin fibroblasts from four individuals. Retinoic acid and retinol both produce a dose-dependent inhibition of growth in the four strains examined; retinoic acid was more potent than retinol in this respect. The growth inhibitory effect of retinoic acid is characterized by a decrease in the exponential growth rate, which is reversible upon removal of retinoic acid from the growth medium; the final saturation density, however, is not modified by retinoic acid treatment. No alterations of cell morphology, viability, or adhesiveness to substratum are induced by the retinoid concentrations utilized. The inhibitory effect of 10−6 M retinoic acid on cell growth is not affected by the concentration of fetal calf serum (FCS) in the medium. In all four human fibroblast strains examined, specific binding of [3H]retinoic acid to cytosol is present as determined by sucrose-density gradient centrifugation. Despite the effects of retinol on fibroblast growth, no cytoplasmic binding of [3H]retinol could be demonstrated in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号