首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature dependence of the elastic modulus for alginate gels was studied using two different gel systems: covalently crosslinked Na-alginate gels and in-situ prepared Ca-alginate gels. The modulus of physically crosslinked gels showed a complex behaviour. The temperature coefficient of the modulus of covalently crosslink gels changed from positive for the lowest crosslinked gels to negative for the highest crosslinked gels. This suggests a change from rubberlike to enthalpy-driven elasticity with an increasing degree of crosslinking for these gel networks.  相似文献   

2.
The preparation of acrylamide-agarose gels lacking covalent crosslinking with methylenebisacrylamide is described. These hybrid gels melt at 85 degrees C and, consequently, allow quantitative analysis of tritium-labeled protein after electrophoresis. Recovery of tritium-labeled ribonucleic acids extracted from hybrid gels is 20 to 25% greater than from standard acrylamide-methylenebisacrylamide gels. Standard curves of electrophoretic mobilities as a function of molecular weights of dissociated proteins and ribonucleic acids are compared for acrylamide-agarose gels and acrylamide-methylenebisacrylamide gels.  相似文献   

3.
The pH of conventional Tris-glycine SDS-PAGE gels during a run is determined to be 9.5, in contrast to Bis-Tris-Mes gels where the pH is 7.2. Concentrations of free acrylamide are determined to be less than 10mM in commercial gels of both types, and it is found that of the major components in these gels, only glycine and protein amine or sulfhydryl functions are likely to react with residual acrylamide during the time frame of typical separations. The addition of acrylamide to sulfhydryl groups on proteins is modeled using glutathione and cysteine at acrylamide concentrations found in the commercial gels. Rate constants are determined for these reactions as well as for reaction with glycine at the pH that proteins will encounter in these gel types. The half-life for glutathione sulfhydryl at 10mM acrylamide and pH 7.2 is more than 4h at room temperature. Rates are significantly lower in Bis-Tris-Mes gels than in Tris-glycine gels, reducing the risk of adventitious protein modification. Commercial Bis-Tris-Mes gels provide a sample reduction buffer at pH 8.5 versus the conventional pH 6.8 of Tris-glycine gels. It is shown that significantly less protein degradation occurs during sample preparation at the higher pH used with Bis-Tris gels.  相似文献   

4.
Poly(N-vinylacetamide) hydrogels (PNVA gels) were synthesized to investigate their basic characteristics for biomedical applications such as water contact angles, protein uptake, and mouse fibroblasts (L-929) cell adhesion. Because PNVA gels show hydrophilic features, double network (DN) hydrogels were prepared by the secondary polymerization of N-vinylacetamide (NVA) or acrylamide (AAm) in PNVA gels (NVA/NVA DN gels and NVA/AAm DN gels, respectively), in order to vary PNVA gel features for biocompatibility. Contact angles for both DN gels decreased to around 20 degrees, whereas both PNVA and PAAm gels were over 30 degrees. On the other hand, more protein tended to adsorb to DN gels than single network hydrogels. Compared to PNVA gel, cell adhesion and proliferation on NVA/NVA DN gel were improved with less swelling ratio and much protein uptake, while no significant difference was observed on NVA/AAm DN gel, probably due to more hydrophilic character, supported by lowest water contact angle. These complicated structure change in DN gels would provide a new methodology for tuning the biocompatibility of hydrogels and for controlling surface hydrophilic characteristics and network structures.  相似文献   

5.
A new photopolymerizing reagent, uranyl nitrate, is used for the polymerization of acrylamide gels at low pH. The amount of uranyl nitrate (0.2 mg/ml) required for the polymerization of gels at pH 3.0 is considerably less than that of persulfate (7 mg/ml). Use of this reagent obviates the need for the removal of excess of persulfate by preelectrophoresis. The electrophoretic separation of basic proteins in uranium-polymerized gels showed faster movement and better resolution of proteins and proved the gels to be versatile, uniform, and reproducible. Electrophoresis of trypsin in these gels does not affect the enzymatic activity. The catalyst can also be used for the polymerization of gels containing 3 M urea.  相似文献   

6.
The method for two-dimensional gel electrophoresis of J. Klose and M. Feller [(1981) Electrophoresis 2, 12-24] has been simplified by reducing the thickness of the gels from 3.5 to 1.1 mm for isoelectric focusing gels and from 3.5 to 0.84 mm for sodium dodecyl sulfate slab gels. Thin gels need less reagents and smaller sample volumes. Cooling of the thin gels during electrophoresis is more effective, which allows the use of higher electric power. Therefore, less time is required for an electrophoretic run (approx 4 h). The resolution increases due to the smaller size of the spots. The time required for staining the gels is reduced from at least 3 days to about 1 h. The method has been tested with a protein sample from the filamentous fungus Fusarium solani.  相似文献   

7.
Poly-N-acryloyl-tris(hydroxymethyl)aminomethane (NAT) gels were evaluated as a matrix for DNA electrophoresis. The resolution of DNA restriction fragments in three poly(NAT)-N,N'-methylenebisacrylamide (Bis) gels (4, 5, and 6%) was compared with the resolution in polyacrylamide (AA)-Bis gels of the same percentage. Poly(NAT) gels were found to give a substantially improved separation of DNA fragments larger than 200 bp. In contrast to poly(AA) gels, DNA fragments of up to 4 kbp were well resolved in the new matrix. By pulse-field electrophoresis the useful separation range of poly(NAT) gels was expanded to at least 23 kbp. For DNA fragments below 10 kbp, the resolution was better than that in a 0.7% agarose gel. Thus poly(NAT) gels are most suitable for the electrophoretic separation of DNA molecules whose size is out of the optimal fractionation range of poly(AA) or agarose gels.  相似文献   

8.
ABSTRACT: BACKGROUND: Fibrin gels are a promising biomaterial for tissue engineering. However, current fabrication methods are time intensive with inherent variation. There is a pressing need to develop new and consistent approaches for producing fibrin-based hydrogels for examination. RESULTS: We developed a high throughput method for creating fibrin gels using molds fabricated from polydimethylsiloxane (PDMS). Fibrin gels were produced by adding solutions of fibrinogen and thrombin to cylindrical defects in a PDMS sheet. Undisturbed gels were collected by removing the sheet, and fibrin gels were characterized. The characteristics of resulting gels were compared to published data by measuring compressive stiffness and osteogenic response of entrapped human mesenchymal stem cells (MSCs). Gels exhibited compressive moduli nearly identical to our previously reported fabrication method. Trends in alkaline phosphatase activity, an early marker of osteogenic differentiation in MSCs, were also consistent with previous data. CONCLUSIONS: These findings demonstrate a streamlined approach to fibrin gel production that drastically reduces the time required to make fibrin gels, while also reducing variability between gel batches. This fabrication technique provides a valuable tool for generating large numbers of gels in a cost-effective manner.  相似文献   

9.
The structure of fibrin plays an important role in the organization of thrombi, the development of atherosclerosis, and restenosis after PTCA. In this study, we examined the mechanisms of the migration of vascular smooth muscle cells (SMCs) into fibrin gels, using an in vitro assay system. Cultured SMCs from bovine fetal aortic media migrated into fibrin gels prepared with thrombin, which cleaves both fibrinopeptides A and B from fibrinogen, without other chemotactic stimuli. Both desA fibrin gels prepared with batroxobin, which cleaves only fibrinopeptide A, and desB fibrin gels prepared with Agkistrodon contortrix thrombin-like enzyme (ACTE), which cleaves only fibrinopeptide B, similarly induced the migration of SMCs compared to fibrin gels prepared with thrombin. These results suggest that the cleavage of fibrinopeptides is not necessary, but rather that the three-dimensional structure of the gel may be important for the migration of SMCs. Furthermore, gels prepared with protamine sulfate, which forms fibrin-like gels non-enzymatically, similarly induced the migration of SMCs compared to the gels prepared with thrombin. Both anti-fibrin(ogen) fragment D and anti-fibrin(ogen) E antibodies inhibited the migration of SMCs into fibrin gels, suggesting that both the D and E domains of fibrin(ogen) are involved in the migration of SMCs into fibrin gels. The addition of GRGDS, a synthetic RGD-containing peptide, but not that of GRGES, a control peptide, partially inhibited the migration of SMCs into fibrin gels, suggesting that the migration of SMCs into fibrin gels is at least in part dependent on the RGD-containing region of the alpha chain. The migration of SMCs into fibrin gels was also inhibited by a monoclonal antibody for integrin alpha v beta 3 and alpha 5 beta 1, indicating that migration is dependent on these integrins. Furthermore, both fibrin(ogen) fragments D and E inhibited the migration of SMCs into fibrin gels, suggesting that these fragments, generated during fibrino(geno)lysis, may be relevant in the regulation of SMC migration into fibrin gels.  相似文献   

10.
To study human neutrophil (polymorphonuclear leukocyte (PMN)) migration and killing of bacteria in an environment similar to that found in inflamed tissues in vivo, we have used fibrin gels. Fibrin gels (1500 microm thick) containing Staphylococcus epidermidis were formed in Boyden-type chemotaxis chambers. PMN migrated < 300 microm into these gels in 6 h and did not kill S. epidermidis when the gels contained heat-inactivated serum, C5-deficient serum, a streptococcal peptidase specific for a fragment of cleaved C5 (C5a), or anti-C5aR IgG. In contrast, in gels containing normal human serum, PMN migrated approximately 1000 microm into the gels in 4 h and into the full thickness of the gels in 6 h, and killed 90% of S. epidermidis in 6 h. fMLP reduced PMN migration into fibrin gels and allowed S. epidermidis to increase by approximately 300% in 4 h, whereas leukotriene B(4) stimulated PMN to migrate the full thickness of the gels and to kill 80% of S. epidermidis in 4 h. We conclude that both complement opsonization and C5a-stimulated chemotaxis are required for PMN bacterial killing in fibrin gels, and that fMLP inhibits PMN bactericidal activity in fibrin gels. The latter finding is surprising and suggests that in the presence of fibrin fMLP promotes bacterial virulence.  相似文献   

11.
The anisotropic mechanical properties of magnetically aligned fibrin gels were measured by magnetic resonance elastography (MRE) and by a standard mechanical test: unconfined compression. Soft anisotropic biomaterials are notoriously difficult to characterize, especially in vivo. MRE is well-suited for efficient, non-invasive, and non-destructive assessment of shear modulus. Direction-dependent differences in shear modulus were found to be statistically significant for gels polymerized at magnetic fields of 11.7 and 4.7 T compared to control gels. Mechanical anisotropy was greater in the gels polymerized at the higher magnetic field. These observations were consistent with results from unconfined compression tests. Analysis of confocal microscopy images of gels showed measurable alignment of fibrils in gels polymerized at 11.7 T. This study provides direct, quantitative measurements of the anisotropy in mechanical properties that accompanies fibril alignment in fibrin gels.  相似文献   

12.
A procedure was developed for a rapid staining of proteins in polyacrylamide gels with tannic acid and the extraction of enzymatic activity from the gels. Lysozyme and Taka-amylase A were stained with tannic acid and localized on pH 4.3, and 8.0 and 9.5 gels, respectively. After the gels were rinsed in buffer solutions, the activities of the enzymes were recovered in good yield from the gels. The use of these techniques is discussed.  相似文献   

13.
Two simple and generally applicable methods of preparation of affinity gels for affinity electrophoresis in agarose and polyacrylamide gels are described. In the first method, amino ligands are coupled to periodate-oxidized agarose gel beads (Sepharose 4B), and homogeneous affinity gels are obtained after mixing the melted substituted beads with either melted agarose solution or with the polymerization mixture used for the preparation of polyacrylamide gels. This type of affinity gel was used for affinity electrophoresis of lectins (immobilized p-aminophenyl glycosides), ribonuclease (immobilized uridine 3′,5′-diphosphate 5′-p-aminophenyl ester), trypsin (immobilized p-aminobenzamidine), and double-stranded phage DNA fragments (immobilized acriflavine). Alternatively, heterogeneous affinity gels are prepared from the suspension of ligand-substituted agarose, dextran, or polyacrylamide gel beads in the polymerization solution normally used for preparation of polyacrylamide electrophoretic gels. This technique was used for affinity electrophoresis of lectins, ribonuclease, and trypsin on affinity gels containing appropriate ligands coupled to the gel beads “activated” by various methods. Applicability of affinity gels prepared by the two methods described above for affinity isoelectric focusing is demonstrated.  相似文献   

14.
A technique has been developed for embedding several agarose gels (running gels), each of a different agarose concentration, within a single 1.5% agarose slab. Equal portions of a sample were placed at the origin of each running gel and were simultaneously subjected to electrophoresis. Protein within the running gels was detected by staining with Coomassie blue; 0.2% gels were the least concentrated gels that were stained without gel breakage. Using the above technique, the dependence of electrophoretic mobility on agarose concentration has been measured for bacteriophage T7 capsids and a capsid dimer.  相似文献   

15.
A simple technique is described which allows casting of continuous-pore gradient gel slabs without any special equipment. The gels are not linear but satisfactory for all practical purposes. These gels compare favorably with gels made with gradient mixers and with gels obtained commercially, as has been shown by electrophoresis of standard proteins.  相似文献   

16.
In this study, aimed at a biochemical and physical characterization of kappa-carrageenan gels used for entrapment of Bacillus firmus NRS 783 (a superior producer of an alkaline protease), effects of carrageenan concentration, gelation temperature, initial cell loading, and strength of the curing agent (KCl) on the properties of cell-free and cell-laden gels were examined. The physical properties of the differently prepared gels that were examined included density, free volume fraction, mechanical strength, and change in gel volume during gel curing. The biochemical characteristics studied included viability of gel-entrapped cells, cell leakage from cell-laden gels, and cell penetration into cell-free gels. For the range of carrageenan contents investigated [between 2% and 5% (w/v)], the mechanical strength of the gels with/without KCl curing was observed to increase with an increase in carrageenan content of gels. The mechanical strength of each gel increased substantially upon extensive curing. Free volume fractions in excess of 0.8 were observed for all gels. Of cells that were viable prior to immobilization, 90-92% remained viable after formation and extensive curing of gels for cell-gel mixtures prepared at 45 degrees C. Attempts at prolonged storage of cell-laden gel beads at 0 degrees C as stock cultures of immobilized B. firmus were unsuccessful due to a significant decline in cell viability during such storage. On the basis of the cell leakage studies, the average pore sizes of 2%, 3%, 4%, and 5% gels were deduced to increase in the following order of carrageenan content (w/v): 4%, 3%, 2%, and 5%. Commensurate with the decrease in the average pore size (or the increased tightness of the gels) with increasing carrageenan content, both the extent of cell leakage and the extent of net cell penetration decreased with increasing carrageenan content for the first three gels. Owing to non-uniform distribution of free space and much larger pores, the extent of net cell penetration in 5% carrageenan gels was considerably low, while the extent of cell leakage in 5% carrageenan gels was an order of magnitude greater than the extents of cell leakage in the other three gels.  相似文献   

17.
We describe a protocol to cast nondenaturing polyacrylamide gradient gels (SFBR3/31) for the size resolution of lipoproteins. The protocol yields gels with minimal lot-to-lot variation in length and electrophoretic properties. Absorbance profiles of cholesterol-stained lipoproteins in baboon sera were used to estimate the relative amounts of stain in four lipoprotein size classes (VLDL+LDL, HDL1, HDL2, and HDL3). When compared with gels from a commercial source, the SFBR3/31 gels gave very similar results in terms of precision (coefficients of variation) and of estimated amounts of lipoproteins in the four size classes. In other studies, we estimated peak diameters of protein-stained human lipoproteins after calibrating the gels with size standards. Peak diameters estimated using SFBR3/31 gels were highly correlated (r2 = 0.99, n = 33) with those estimated using gels from a commercial source. We conclude that the protocol reliably produces gradient gels that are suitable for the analysis of lipoprotein phenotypes.  相似文献   

18.
A vertical submarine electrophoresis apparatus for use with minislab polyacrylamide gels is described. The design allows polyacrylamide gels to be run with the same ease and convenience that agarose gels are run with horizontal submarine apparatuses. The vertical submarine features a single buffer chamber with a restriction between the upper and the lower portions of the chamber. Acrylamide gels, cast between 9 X 10-cm glass slides, are inserted into the restriction and are completely immersed in buffer. Thus, current flows primarily through the gel itself, but some current flows through the buffer in the restriction surrounding the gel. Because water-tight separation of buffer chambers is not necessary, time-consuming and/or expensive procedures such as sealing with agarose or using fragile notched glass plates are eliminated. The apparatus can be set up to run a gel in less than 30 s. It is versatile in that gels of varying thickness (0.5, 0.8, 1.5, and 3 mm) can be run on a single apparatus. The apparatus has been used for sodium dodecyl sulfate gels, low ionic strength native gels for nucleoprotein complexes, and composite acrylamide-agarose gels.  相似文献   

19.
A simple protocol is described for the silver staining of polyacrylamide gradient gels used for the separation of restriction fragments of kinetoplast DNA [schizodeme analysis of trypanosomatids (Morel et al., 1980)]. The method overcomes the problems of non-uniform staining and strong background color which are frequently encountered when conventional protocols for silver staining of linear gels are applied to gradient gels. The method described has proven to be of general applicability for DNA, RNA and protein separations in gradient gels.  相似文献   

20.
The rate constants for inactivation of lactate dehydrogenase and alcohol dehydrogenase in solution at 65 degrees C (pH 7,5) are 0,72 and 0,013 min-1, respectively. The enzyme incorporation into acrylamide gels results in immobilized enzymes, whose residual activity is 18--25% of the original one. In 6,7% gels the rate of thermal inactivation for lactate dehydrogenase is decreased nearly 10-fold, whereas the inactivation rate for alcohol dehydrogenase is increased 4,6-fold as compared to the soluble enzymes. In 14% and 40% gels the inactivation constants for lactate dehydrogenase are 6,3.10(-3) and 5,9.10(-4) min-1, respectively. In 60% gels the thermal inactivation of lactate dehydrogenase is decelerated 3600-fold as compared to the native enzyme. The enthalpy and enthropy for the inactivation of the native enzyme are equal to 62,8 kcal/mole and 116,9 cal/(mole.grad.) for the native enzyme and those of gel-incorporated (6,7%) enzyme -- 38,7 kcal/mole and 42 cal/(mole.grad.), respectively. The thermal stability of alcohol dehydrogenase in 60% gels is increased 12-fold. To prevent gel swelling, methacrylic acid and allylamine were added to the matrix, with subsequent treatment by dicyclohexylcarbodiimide. The enzyme activity of the modified gels is 2,7--3% of that for the 6,7% gels. The stability of lactate dehydrogenase in such gels is significantly increased. A mechanism of stabilization of the subunit enzymes in highly concentrated gels is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号