首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
A steady-state kinetic analysis of the activation of bovine Factor X, by bovine Factor Xa, was undertaken. The activation was found to be dependent on the presence of divalent cations; Ca2+ showing the greatest stimulatory effect and Mn2+ exhibiting a lower degree of activity for this reaction. Although Sr2+ and Mg2+ were ineffective when present alone, each contributed synergistically to the activation rate at suboptimal levels of Ca2+. The effect of phospholipid (phosphatidylcholine:phosphatidylserine, 4:1, w:w) on the rate of activation and on the activation pathway was investigated. Phospholipid (PL) concentrations of up to 40 μm had no effect on the activation rate; whereas, concentrations of 40–180 μm were slightly inhibitory. In the absence of PL, the major product of the activation was Factor α-Xa, while in the presence of PL, lower-molecular-weight forms of Factor X (Factor β-X) and Factor Xa (Factor β-Xa were produced. At saturating levels of Ca2+, the Km app for the activation, at pH 7.4 and 37 °C, in the absence of PL, was found to be 0.6 ± 0.1 μm and the V was 1.7 ± 0.3 mol Factor X cleaved min?1 mol?1 Factor Xa. The corresponding values, in the presence of 90 μm PL, were 1.4 ± 0.2 μm and 2.2 ± 0.2 mol Factor X cleaved min?1 mol?1 Factor Xa.  相似文献   

2.
The thermotropic properties of bovine blood coagulation Factors IX and X, as well as the activation intermediates and products of these proteins, have been investigated by differential scanning microcalorimetry in the presence and absence of Ca2+. Bovine Factor IX displays a single thermal-denaturation transition characterized by a temperature midpoint (TM) of 54.5 ± 0.5 °C and a calorimetric enthalpy (ΔHc) of 105 ± 15 kcal/mol, in the absence of Ca2+. In the presence of Ca2+ concentrations sufficient to saturate its sites on Factor IX, the Tm value is increased to 57.0 ± 0.5 °C and the ΔHc is virtually unchanged. When the activation intermediate, Factor IXα, is similarly analyzed in the absence of Ca2+, a broad, diffuse thermogram was obtained which did not lend itself to calculation of thermodynamic parameters. In the presence of Ca2+, Factor IXα displayed thermograms characterized by a TM of 51.0 ± 0.5 °C and a ΔHc of 109 ± 10 kcal/mol. The activated product, Factor IXaα, in the absence of Ca2+ (the values in the presence of saturating Ca2+ are given in parentheses), undergoes thermal denaturation with a TM of 54.5 ± 0.5 °C (57.0 ± 0.5 °C) and a ΔHc of 158 ±10 kcal/mol (156 ± 10 kcal/mol). Similarly, the terminal-activation product, Factor IXaβ, displays a TM of 51.5 ± 0.5 °C (54.0 ± 0.5 °C) and a ΔHc of 85 ± 5 kcal/mol (126 ± 10 kcal/mol). Bovine blood coagulation Factor X has been analyzed in this same fashion, and shows very similar thermal properties to Factor IX. The thermal denaturation of Factor X is represented by a TM of 54.0 ± 0.5 °C (55.0 ± 0.5 °C) and a ΔHc of 102 ± 10 kcal/mol (118 ± 10 kcal/mol), whereas its activated form, Factor Xaβ, possesses a TM of 55.0 ± 0.5 °C (55.0 ± 0.5 °C) and a ΔHc of 92.0 ± 5 kcal/mol (136 ± 10 kcal/mol). These studies indicate that, for many of these proteins, Ca2+ induces a conformational alteration to a more thermally stable form, which also requires the absorption of greater amounts of heat for thermal denaturation.  相似文献   

3.
The binding isotherm of Ca2+ to bovine coagulation Factor VII has been examined at 25°C, and pH 7.4, by equilibrium ultrafiltration. The simplest model which describes the nonlinear isotherm obtained assumes that two strong Ca2+ sites exist, with an average KD of 0.1 ± 0.04 mm, and at least four weaker sites, with an average KD of 1.7 ± 0.3 mm. Concomitant with Ca2+ interaction, the intrinsic steady state fluorescence of bovine Factor VII decreases. Approximately 80% of the total fluorescence alteration occurs as a consequence of saturation of the two strong Ca2+ sites. The remainder of the fluorescence decrease takes place upon the total binding of three to four Ca2+ sites. This result indicates that an alteration in the environment of a tryptophan residue(s) occurs upon binding of Ca2+ to bovine Factor VII.  相似文献   

4.
The binding of Mn2+, Ca2+, and rare earth ions to apoconcanavalin A has been studied by water proton relaxation enhancement, electron paramagnetic resonance spectroscopy, and fluorescence spectroscopy. An electron paramagnetic resonance and water proton relaxation rate study of the titration of apoconcanavalin A with Mn2+ gives evidence of two equivalent binding sites per monomer with KD = 50 μm ± 4 μm. When a similar Mn2+ titration of apoconcanavalin A is performed in the presence of Ca2+ ion, very little free Mn2+ is detected by electron paramagnetic resonance until the two Mn2+ binding sites per monomer are filled. The substitution of a rare earth ion for Ca2+ ion in the above experiment often resulted in a slight displacement of Mn2+ from the transition metal site as detected by electron paramagnetic resonance. A water proton relaxation rate study of the titration of apoconcanavalin A with Gd3+ reflects two binding sites with a KD = 40 μm ± 4 μm and two with a KD = 200 μm ± 50 μm. The fluorescence emission spectrum of concanavalin A (λem = 340 nm) is slightly quenched by the addition of Tb3+ while Tb3+ fluorescence is greatly enhanced. A fluorometric titration of apoconcanavalin A with Tb3+ also reflects two sites with a KD = 40 μm ± 15 μm and two with a KD = 270 μm ± 50 μm.  相似文献   

5.
The effect of metal ions on human activated Factor X (Factor Xa) hydrolysis of the chromogenic substrate benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide (S2222) was studied utilizing initial rate enzyme kinetics. The divalent metal ions Ca2+, Mn2+, and Mg2+ enhanced Factor Xa amidolytic activity with Km values of 30 μm, 20 μm, and 1.4 mm, respectively. Na+ activation of Factor Xa amidolytic activity was also found. The Km for Na+ activation was 0.31 m. Both the divalent metal ions and Na+ increased the affinity of Factor Xa for S2222 and had no effect on the maximal velocity of the reaction. Other monovalent cations were unable to activate Factor Xa. However, K+ was a competitive inhibitor of the Na+ activation (Ki = 0.14 m). Lanthanide ions inhibited Factor Xa amidolytic activity. Gd3+ inhibition of Factor Xa hydrolysis of S2222 was noncompetitive and had a Ki of 3 μm. The lanthanide ion inhibition could not be reversed by Ca2+ even when Ca2+ was present in a 1000-fold excess over its Km indicating nonidentity of the Factor Xa lanthanide and Ca2+ binding sites. It is concluded that the Factor Xa Ca2+ binding sites have characteristics different from those previously described for the Factor X molecule and that Mg2+, Na+, and K+ may be physiological regulators of Factor Xa activity.  相似文献   

6.
The capacity of various metal ions to support activation of bovine factor IX, by the coagulant protein of Russell's Viper venom, has been examined. The following metal ions, at concentrations which saturate their effect, promoted activation of factor IX, at approximately equal efficiency: Ca2+, Mn2+, Sr2+, and Co2+, Other metal ions, i.e., Ba2+, and Mg2+, at saturating concentrations, led to a maximum rate of activation of factor IX of 25%, compared to Ca2+, The lanthanides, Gd2+, and Tb3+, also promoted activation in this system, at maximal rates of approximately 15%, compared to Ca2+, In this study, it was also discovered that the esterase activity of bovine factor IXa was dependent upon the presence of metal ions. Utilizing α-N-benzoyl-l-arginine ethyl ester as the substrate, steady state kinetic analysis in the absence of metal ion indicated that the Km and Vmax for this substrate was 20 mm and 2.9 μmol substrate cleaved min?1 mg?1 of factor IXa, respectively, at pH 8.0 and 30 °C. In the presence of optimal concentrations of Ca2+, Mn2+, Mg2+, Sr2+, and Ba2+, the Vmax values for this same substrate increased to 6.7, 5.9, 5.0, 5.0, and 3.7 μmol cleaved min?1 mg?1 of factor IXa, respectively. None of these metal ions had an affect on the Km value of this substrate.  相似文献   

7.
We measured by batch microcalorimetry the standard enthalpy change ΔH° of the binding of Mn2+ to apo-bovine α-lactalbumin; ΔH° = −90 ± 4kJ·mol−1. The binding constants, KMn2+, calculated from the calorimetric and circular dichroism titration curves, are (4.6±1) · 105M−1, respectively. Batch calorimetry confirms the competitive binding of Ca2+, Mn2+ and Na+ to the same site. The relatively small enthalpy change for Mn2+ binding compared to Ca2+ binding favours a model of a rigid and almost ideal Ca2+-complexating site, different from the well-known EF-hand structures. Cation binding to the high-affinity site most probably triggers the movement of an α-helix which is directly connected to the complexating loop.  相似文献   

8.
The paramagnetic cation Mn+2 binds to Torpedo californica acetylcholine receptor (AcChR) at sites with at least two different affinity constants. For each α-Bungarotoxin (α-Bgt) binding site AcChR has between 3 to 4 Mn+2 sites with Kd values of 1.74 ± 1.0 × 10?4 M. An additional 10–12 sites/α-Bgt site have a weaker affinity for Mn+2 (Kd ? 1 mM). The α-Bgt does not displace bound Mn+2, however Ca+2 displaces all bound Mn+2 in a competitive fashion with Kd of 0.90 × 10?3 M and Mg+2 is as effective as Ca+2 in the displacement. Decamethonium, carbamylcholine and NaCl at high concentrations are also effective in displacing Mn+2. A constant enhancement value (?b) for the binary metal · AcChR complexes was obtained when simultaneous EPR measurements and the water proton relaxation rates were made. Similarity of the AcChR environment and/or coordination number for the Mn+2 sites in AcChR is inferred. It appears that Mn+2 binds to many AcChR sites, different from those responsible for binding cholinergic ligands. The Mn+2 site seem to be the same as those responsible for binding the electrophysiologically significant Ca+2.  相似文献   

9.
The effect of Mn2+ and Ca2+ on the kinetics of the tryptic activation of bovine trypsinogen was studied at pH 7.3 and 36.5°C. For comparison, the rate constants of autolysis and esterolytic activity of trypsin were also determined. It can be concluded that Mn2+ increases the conversion rate of trypsinogen into trypsin in a 25–40% larger extent than Ca2+. The manganese(II) ion bond to trypsinogen is supposed to keep the N-terminal part of the zymogen in a better conformation for binding at the primary and secondary binding sites of trypsin.  相似文献   

10.
Taka-Aki Ono  Yorinao Inoue 《BBA》1983,723(2):191-201
The effects of divalent cations on photoactivation of the latent water-oxidation system in intact chloroplasts isolated from wheat (Triticum aestivum L.) leaves grown under intermittent flash illumination were investigated by using A23187, an ionophore for divalent cations, and the following results were obtained. (a) Photoactivation in the intact chloroplasts was inhibited by A23187, but was restored on addition of a low concentration of Mn2+ (10 μM). (b) A high concentration of Mn2+ (70 μM) was inhibitory, in contrast, for photoactivation, but the inhibition was restored by the coexistence of a suitable concentration of Ca2+ (5 mM). (c) The Ca2+-dependent restoration was inhibited by a high concentration of Mg2+ or Sr2+, but the inhibition was restored by the coexistence of Ca2+. (d) Kinetic analyses of these competitive effects between divalent cations revealed that: (i) High concentration of Ca2+ inhibits photoactivation in competition with Mn2+. (ii) High concentration of Mn2+ inhibits photoactivation in competition with Ca2+. (iii) High concentration of Mg2+ affects photoactivation by inhibiting Ca2+-dependent restoration in competition with Ca2+. Based on these results, we propose that the latent water-oxidation center has two binding sites, each specific for Mn2+ and Ca2+, and that photoactivation takes place in the center having both Mn2+ and Ca2+ on their respective binding sites.  相似文献   

11.
The binding parameters of 125I-labeled calmodulin to bovine cerebellar membranes have been determined and correlted with the activation of adenylate cyclase by calmodulin. In the presence of saturating levels of free Ca2+, calmodulin binds to a finite number of specific membrane sites with a dissociation constant (Kd) of 1.2 nM. Furthermore, Scatchard analysis reveals a second population of binding sites with a 100-fold lower affinity for calmodulin. The Ca2+-dependence of calmodulin binding and of adenylate cyclase activation varies with the amount of calmodulin present, as can be infered from the model of sequential equilibrium reactions which describes the activation of calmodulin-dependent enzymes. On the basis of this model, a quantitative analysis of the effect of free Ca2+ and of free calmodulin concentration on both binding and activation of adenylate cyclase was carried out. This analysis shows that both processes take place only when calmodulin is complexed with at least three Ca2+ atoms. The concentration of the active calmodulin ·Ca2+ species required for half-maximal activation of adenylate cyclase is very similar to the Kd of the high affinity binding sites on brain membranes. A Hill coefficient of approx. 1 was found for both processes indicating an absence of cooperativity. Phenothiazines and thioxanthenes antipsychotic agents inhibit calmodulin binding to membranes and calmodulin-dependent activation of adenylate cyclase with a similar order of potency. These results suggest that the Ca2+-dependent binding of calmodulin to specific high affinity sites on brain membranes regulates the activation of adenylate cyclase by calmodulin.  相似文献   

12.
The binding of Mn2+ to the anthranilate synthetase-phosphoribosyltransferase enzyme complex from Salmonella typhimurium was examined by electron paramagnetic resonance studies. Two types of binding sites were observed: one to two tight sites with a dissociation constant of 3–5 μm and five to six weaker sites with a dissociation constant of 40–70 μm. The activator constant for Mn2+ was found to be 9 μm for the glutamine-linked anthranilate synthetase activity and 4 μm for the phosphoribosyltransferase activity. These values are both in the range of the dissociation constant for the tight sites. Water proton relaxation rate measurements showed that the binary enhancement values for both classes of sites were equivalent, ?b = 10.7 ± 2.0. The addition of chorismate to the Mn2+-enzyme complexes when predominantly the tight Mn2+ sites were occupied resulted in a large decrease in the observed enhancement (?T = 2.0). Addition of 5-phosphoribosyl-1-pyrophosphate to the enzyme-Mn2+ complexes caused large decreases in the water proton relaxation rate (?T = 1.5) when tight or tight plus weaker Mn2+ sites were occupied. No changes in the water proton relaxation rate were observed when glutamine, pyruvate, or anthranilate were added; a small decrease was observed when enzyme-Mn2+ was titrated with tryptophan. Tryptophan significantly altered the effect of the binding of chorismate but not of 5-phosphoribosyl-1-pyrophosphate. The effect of tryptophan on the water proton relaxation rate of a Mn2+-enzyme-chorismate complex using a variant enzyme complex which is tryptophan hypersensitive (P. D. Robison, and H. R. Levy, 1976, Biochim. Biophys. Acta. 445, 475–485) occurred at lower concentrations than for the normal enzyme complex. The uncomplexed anthranilate synthetase subunit was titrated with Mn2+ and found to have one to two binding sites with a dissociation constant of 300 ± 100 μm. This dissociation constant is much larger than the activator constant for Mn2+ for uncomplexed anthranilate synthetase which was determined to be 4 μm. These results indicate that the Mn2+-binding sites on anthranilate synthetase are altered when the enzyme complex is formed and that both chorismate and 5-phosphoribosyl-1-pyrophosphate interact closely with enzyme-bound Mn2+ or cause a large effect upon its environment.  相似文献   

13.
The interactions of divalent cations with the adenosine triphosphatase (ATPase) and para-nitrophenyl phosphatase (pNPPase) activity of the purified dog kidney Na pump and the fluorescence of fluorescein isothiocyanate (FITC)-labeled pump were determined. Sr2+ and Ba2+ did not compete with K+ for ATPase (an extracellular K+ effect). Sr2+ and Ba2+ did compete with Na+ for ATPase (an intracellular Na+ effect) and with K+ for pNPPase (an intracellular K+ effect). These results suggest that Ba2+ or Sr2+ can bind to the intracellular transport site, yet neither Ba2+ nor Sr2+ was able to activate pNPPase activity; we confirmed that Ca2+ and Mn2+ did activate. As another measure of cation binding, we observed that Ca2+ and Mn2+, but not Ba2+, decreased the fluorescence of the FITC-labeled pump; we confirmed that K+ substantially decreased the fluorescence. Interestingly, Ba2+ did shift the K+ dose-response curve. Ethane diamine inhibited Mn2+ stimulation of pNPPase (as well as K+ and Mg2+ stimulation) but did not shift the 50% inhibitory concentration (IC50) for the Mn2+-induced fluorescence change of FITC, though it did shift the IC50 for the K+-induced change. These results suggest that the Mn2+-induced fluorescence change is not due to Mn2+ binding at the transport site. The drawbacks of models in which Mn2+ stimulates pNPPase by binding solely to the catalytic site vs. those in which Mn2+ stimulates by binding to both the catalytic and transport sites are presented. Our results provide new insights into the pNPPase kinetic mechanism as well as how divalent cations interact with the Na pump.  相似文献   

14.
Factor XI is the zymogen of a dimeric plasma protease, factor XIa, with two active sites. In solution, and during contact activation in plasma, conversion of factor XI to factor XIa proceeds through an intermediate with one active site (1/2-FXIa). Factor XIa and 1/2-FXIa activate the substrate factor IX, with similar kinetic parameters in purified and plasma systems. During hemostasis, factor IX is activated by factors XIa or VIIa, by cleavage of the peptide bonds after Arg145 and Arg180. Factor VIIa cleaves these bonds sequentially, with accumulation of factor IX alpha, an intermediate cleaved after Arg145. Factor XIa also cleaves factor IX preferentially after Arg145, but little intermediate is detected. It has been postulated that the two factor XIa active sites cleave both factor IX peptide bonds prior to releasing factor IX abeta. To test this, we examined cleavage of factor IX by four single active site factor XIa proteases. Little intermediate formation was detected with 1/2-FXIa, factor XIa with one inhibited active site, or a recombinant factor XIa monomer. However, factor IX alpha accumulated during activation by the factor XIa catalytic domain, demonstrating the importance of the factor XIa heavy chain. Fluorescence titration of active site-labeled factor XIa revealed a binding stoichiometry of 1.9 +/- 0.4 mol of factor IX/mol of factor XIa (Kd = 70 +/- 40 nm). The results indicate that two forms of activated factor XI are generated during coagulation, and that each half of a factor XIa dimer behaves as an independent enzyme with respect to factor IX.  相似文献   

15.
The ultrastructure and 90 ° light-scattering capacity of adrenal cortex mitochondria have been examined under conditions which lead to an activation of malic enzyme activity in these mitochondria. After isolation, the mitochondria display an aggregate ultrastructure which does not resemble the vesicular (orthodox) form normally seen in vivo. Under conditions of malic enzyme activation (presence of malate, NADP+, Mg2+ and 1 mm Ca2+), the ultrastructure reverts to a vesicular form as seen in vivo. Of these required components, only Ca2+ affects the ultrastructure. The ultrastructural transformation from the aggregate to the orthodox form is always accompanied by a decrease in the 90 ° light-scattering capacity. When produced by Ca2+, transformation requires energy-dependent Ca2+ uptake if an oxidizable substrate is present. In the absence of substrate, the transformation occurs as an apparent energy-independent effect. Mn2+ can substitute for Ca2+ only in the presence of substrate. In de-energized mitochondria, Mn2+ prevents the effects of Ca2+. The activation of malic enzyme is always preceded by a decrease in light scattering and transformation to the orthodox ultrastructure; however, the presence of the orthodox form is not a sufficient condition since subsequent chelation of free Ca2+ fails to reverse either the decrease in light scattering or ultrastructural transformation but does reverse the enzyme activation. In addition, levels of Mn2+ which effectively depress light-scattering capacity and produce the orthodox form, fail to activate malic enzyme significantly. The data are discussed as they relate to Ca2+-induced damage in mitochondria.  相似文献   

16.
Intrinsic versus extrinsic coagulation. Kinetic considerations.   总被引:3,自引:1,他引:2       下载免费PDF全文
A study to compare the kinetics of activation of factor IX by Factor XIa/Ca2+ and by Factor VIIa/tissue factor/Ca2+ has been undertaken. When purified human proteins, detergent-extracted brain tissue factor and tritiated-activation-peptide-release assays were utilized, the kinetic constants obtained were: Km = 310 nM, kcat. = 25 min-1 for Factor XIa and Km = 210 nM, kcat. = 15 min-1 for Factor VIIa. The kinetic constants for the activation of Factor X by Factor VIIa/brain tissue factor were: Km = 205 nM, kcat. = 70 min-1. Predicted rates for the generation of Factor IXa and Factor Xa were obtained when human monocytic tumour U937 cells (source of tissue factor) and Factor VIIa were used to form the activator. In other experiments, inclusion of high-Mr kininogen did not increase the activation rates of Factor IX by Factor XIa in the presence or absence of platelets and/or denuded rabbit aorta. These kinetic data strongly indicate that both Factor XIa and Factor VIIa play physiologically significant roles in the activation of Factor IX.  相似文献   

17.
It has been shown that removal of manganese from the water-oxidizing complex (WOC) of photosystem II (PSII) leads to flash-induced oxygen consumption (FIOC) which is activated by low concentration of Mn2+ (Yanykin et al., Biochim Biophys Acta 1797:516–523, 2010). In the present work, we examined the effect of transition and non-transition divalent metal ions on FIOC in Mn-depleted PSII (apo-WOC-PSII) preparations. It was shown that only Mn2+ ions are able to activate FIOC while other transition metal ions (Fe2+, V2+ and Cr2+) capable of electron donation to the apo-WOC-PSII suppressed the photoconsumption of O2. Co2+ ions with a high redox potential (E 0 for Co2+/Co3+ is 1.8 V) showed no effect. Non-transition metal ions Ca2+ by Mg2+ did not stimulate FIOC. However, Ca2+ (in contrast to Mg2+) showed an additional activation effect in the presence of exogenic Mn2+. The Ca2+ effect depended on the concentration of both Mn2+ and Ca2+. The Ca effect was only observed when: (1) the activation of FIOC induced by Mn2+ did not reach its maximum, (2) the concentration of Ca2+ did not exceed 40 μM; at higher concentrations Ca2+ inhibited the Mn2+-activated O2 photoconsumption. Replacement of Ca2+ by Mg2+ led to a suppression of Mn2+-activated O2 photoconsumption; while, addition of Ca2+ resulted in elimination of the Mg2+ inhibitory effect and activation of FIOC. Thus, only Mn2+ and Ca2+ (which are constituents of the WOC) have specific effects of activation of FIOC in apo-WOC-PSII preparations. Possible reactions involving Mn2+ and Ca2+ which could lead to the activation of FIOC in the apo-WOC-PSII are discussed.  相似文献   

18.
Magnesium-dependent adenosine triphosphatase, purified from sheep kidney medulla using digitonin, has been characterized in a series of kinetic and magnetic resonance studies. Kinetic studies of divalent metal activation using either Mg2+ or Mn2+ indicate a biphasic response to divalent cations. Apparent Km values of 23 μm for free Mg2+ and 3.3 μm for free Mn2+ are obtained at low levels of added metal, while Km values of 0.50 mm for free Mg2+ and 0.43 mm for free Mn2+ are obtained at much higher levels of divalent cations. In all cases the kinetic data indicate that the binding of divalent metals is independent of the substrate, ATP. Kinetic studies of the substrate requirements of the Mg2+-ATPase also yield biphasic Lineweaver-Burk plots. At low ATP concentrations, kinetic studies yield apparent Km values for free ATP of 6.0 and 1.4 μm with Mg2+ and Mn2+, respectively, as the activating divalent metals. At much higher levels of ATP the response of the enzyme to ATP changes so that Km values for free ATP of 8.0 and 2.0 mm are obtained for Mg2+ and Mn2+, respectively. In both cases, however, the binding of ATP is independent of added metal. ADP inhibits the Mg2+-ATPase and the kinetic data indicate that ADP competes with ATP at both the high and low affinity sites. Dixon plots of the data are consistent with competitive inhibition at both ATP sites, with Ki values of 10.5 μm and 4.5 mm. Electron paramagnetic resonance and water proton relaxation rate studies show that the enzyme binds 1 g ion of Mn2+ per 469,000 g of protein. The Mn2+ binding studies yield a KD for Mn2+ at the single high affinity site of 2 μm, in good agreement with the kinetically determined activator constant for Mn2+ at low Mn2+ levels. Moreover, the EPR binding studies also indicate the existence of 34 weak sites for Mn2+ per single high affinity Mn2+ site. The KD for Mn2+ at these sites is 0.55 mm, in good agreement with the kinetic activator constant for Mn2+ of 0.43 mm, consistent with additional activation of the enzyme by the large number of weaker metal binding sites. The enhancement of water proton relaxation by Mn2+ in the presence of the enzyme is also consistent with the tight binding of a single Mn2+ ion per 469,000 Mr protein and the weaker binding of a large number of divalent metal ions. Analysis of the data yields a value for the enhancement for bound Mn2+ at the single tight site, ?b, of 5 and an enhancement at the 34 weak sites of 11. The frequency dependence of water proton relaxation by Mn2+ at the single tight site yields a dipolar correlation time (constant from 8–60 MHz) of 3.18 × 10?9 s. The kinetics and metal binding studies, together with the effect of temperature on ATPase activity at high and low levels of ATP, are consistent with the existence in this preparation of a single Mg2+-ATPase, with high and low affinity sites for divalent metals and for ATP. Observations of both high and low affinities for ATP have been made with two other purified ATPases. The similarities of these systems to the Mg2+-ATPase described here are discussed.  相似文献   

19.
Many of the structural domains involved in Ca2+ channel (CACN) inactivation are also involved in determining their sensitivity to antagonist inhibition. We hypothesize that differences in inactivation properties and their structural determinants may suggest candidate domains as targets for the development of novel, selective antagonists. The characteristics of Ca2+ current (ICa) inactivation, steady-state inactivation (SSIN), and recovery from inactivation were studied in freshly dispersed smooth muscle cells from rabbit portal vein (RPV) using whole-cell, voltage-clamp methods. The time course of inactivation could be represented by two time constants. Increasing ICa by increasing [Ca2+]o or with more negative holding potentials decreased both time constants. With Sr2+, Ba2+, or Na+ as the charge carrier, ICa inactivation was also represented by two time constants, both of which were larger than those found with Ca2+. With Ca2+, Sr2+, or Ba2+ as the charge carrier, both time constants had minimum values near the voltage associated with maximum current. When Na+ (140 mM) was the charge carrier, voltages for Imax (−20 mV) or τmin (o mV) did not correspond. SSIN of ICa had a half-maximum voltage of −32±4 mV for Ca2+, −43 mV±5 mV for Sr2+, −41±5 mV for Ba2+, and −68±6 mV for Na+. The slope factor for SSIN per e-fold voltage change was 6.5±0.2 mV for Ca2+, 6.8±0.3 for Sr2+, and 6.6±0.2 for Ba2+, representing four equivalent charges. When Na+ or Li+ was the charge carrier, the slope factor was 13.5±0.7 mV, representing two equivalent charges. For ICa in rat left ventricular (rLV) myocytes, there was no difference in the slope factor of SSIN for Ca2+ and Na+. The rate of recovery of ICa from inactivation varied inversely with recovery voltage and was independent of the charge carrier. These results suggest that inactivation of ICa in PV myocytes possess an intrinsic voltage dependence that is modified by Ca2+. For RPV but not rLV ICa, the charge of the permeating ion confers the voltage-dependency of SSIN.  相似文献   

20.
Extraction with EDTA of lyophilized and lysozyme treated preparations of the blue-green algae Anacystis nidulans resulted in loss of the capacity for photoevolution of O2. Reactivation was achieved by the addition of both cations: Mn2+ and Ca2+ (or to a smaller extent by Mn2+ and Sr2+). The dual requirement for Mn2+ and Ca2+ could be demonstrated when the O2 evolution under short saturating light flashes and the variable chlorophyll fluorescence associated with the reduction of the primary acceptor of Photosystem II was examined. The fluorescence experiments in addition showed that incorporation of the cations was a light dependent step, since the fluorescence rise only started after a lag period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号