首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A minor form of hepatic microsomal cytochrome P-450 has been purified to apparent homogeneity from rats treated with the polychlorinated biphenyl mixture, Aroclor 1254. This newly isolated hemoprotein, cytochrome P-450e, is inducible in rat liver by Aroclor 1254 and phenobarbital, but not by 3-methylcholanthrene. Two other hemoproteins, cytochromes P-450b and P-450c, have also been highly purified during the isolation of cytochrome P-450e based on chromatographic differences among these proteins. By Ouchterlony double-diffusion analysis with antibody to cytochrome P-450b, highly purified cytochrome P-450e is immunochemically identical to cytochrome P-450b but does not cross-react with antibodies prepared against other rat liver cytochromes P-450 (P-450a, P-450c, P-450d) or epoxide hydrolase. Purified cytochrome P-450e is a single protein-staining band in sodium dodecyl sulfate-polyacrylamide gels with a minimum molecular weight (52,500) slightly greater than cytochromes P-450b or P-450d (52,000) but clearly distinct from cytochromes P-450a (48,000) and P-450c (56,000). The carbon monoxide-reduced difference spectral peak of cytochrome P-450e is at 450.6 nm, whereas the peak of cytochrome P-450b is at 450 nm. Ethyl isocyanide binds to ferrous cytochromes P-450e and P-450b to yield two spectral maxima at 455 and 430 nm. At pH 7.4, the 455:430 ratio is 0.7 and 1.4 for cytochromes P-450b and P-450e, respectively. Metyrapone binds to reduced cytochromes P-450e and P-450b (absorption maximum at 445–446 nm) but not cytochromes P-450a, P-450c, or P-450d. Metabolism of several substrates catalyzed by cytochrome P-450e or P-450b reconstituted with NADPH-cytochrome c reductase and dilauroylphosphatidylcholine was compared. The substrate specificity of cytochrome P-450e usually paralleled that of cytochrome P-450b except that the rate of metabolism of benzphetamine, benzo[a]pyrene, 7-ethoxycoumarin, hexobarbital, and testosterone at the 16α-position catalyzed by cytochrome P-450e was only 15–25% that of cytochrome P-450b. In contrast, cytochrome P-450e catalyzed the 2-hydroxylation of estradiol-17β more efficiently (threefold) than cytochrome P-450b. Cytochrome P-450d, however, catalyzed the metabolism of estradiol-17β at the greatest rate compared to cytochromes P-450a, P-450b, P-450c, or P-450e. The peptide fragments of cytochromes P-450e and P-450b, generated by either proteolytic or chemical digestion of the hemoproteins, were very similar but not identical, indicating that these two proteins show minor structural differences.  相似文献   

2.
Ethanol oxidation activity has been reconstituted in a system composed of NADPH-cytochrome c reductase, synthetic dilauroylglycerol-3-phosphorylcholine and cytochrome P-450 purified from liver microsomes of phenobarbital-treated rats. This system is free of alcohol dehydrogenase and catalase activities. Furthermore, sodium azide (1 mm), a catalase inhibitor, is without effect on ethanol metabolism. There is a requirement for both NADPH-cytochrome c reductase and cytochrome P-450 and a partial requirement for phospholipid for ethanol oxidation by the reconstituted system. In addition, both NADPH and O2 are required for catalysis. Under optimal reaction conditions, the rate of acetaldehyde formation if 25 to 50 nmol/min/nmol of cytochrome P-450. Cytochrome P-450 from other sources, including the homogeneous P-450LM2 from phenobarbital-treated rabbits, have also been found to catalyze ethanol oxidation in reconstituted systems. Antibody prepared against cytochrome P-450 inhibits ethanol metabolism in the reconstituted system consistent with a cytochrome P-450-mediated reaction. Furthermore, cumene hydroperoxide can replace both NADPH and NADPH-cytochrome c reductase in ethanol oxidation and catalysis can be demonstrated in a system composed of only cytochrome P-450, lipid, ethanol, and cumene hydroperoxide. These data implicate cytochrome P-450 in the direct oxidation of ethanol by this system.  相似文献   

3.
Solubilized components of the vitamin D3-25-hydroxylase, isolated from intact rat liver microsomes known to catalyze the C-25 oxidation of vitamin D3in vitro, have been separated into two submicrosomal fractions enriched in detergent-solubilized NADPH-cytochrome c reductase and cytochrome P-450 or P-448. The P-450 hemoprotein-containing fraction was obtained by solubilization with cholic acid followed by treatment with the nonionic detergent, Emulgen 911, yielding a final preparation with a specific content of 7.25 nmol/mg microsomal protein. The reduced triphosphopyridine nucleotide-dependent cytochrome P-450 reductase activity, as detected by its ability to reduce the artificial electron acceptor, cytochrome c, was isolated free of cytochromes b5 or P-450 by solubilization with deoxycholate and chromatography on DEAE-cellulose. The reductase component was found to exhibit kinetic properties with Michaelis constants: Km(NADPH) = 3.14 μM, Km(NADH) = 31.25 μM, and Km(cyt c) = 12.34 μM. The NADPH-cytochrome c reductase activity was sensitive to NADPH-reversible inhibition by NADP, but not rotenone or cyanide. When the isolated components were incubated in the presence of an NADPH-generating system and carbon monoxide under anaerobic conditions, enzymatic reduction of the P-450 hemoprotein was measured by the appearance of characteristic absorbances at 420 and 450 nm of the reduced carbon monoxide vs. reduced difference spectrum. Furthermore, when the soluble submicrosomal components were reconstituted with excess reduced triphosphopyridine nucleotide, 3H-labeled vitamin D3, and soluble cytosolic supernatant, full vitamin D3-25-hydroxylase activity was restored at rates of up to 7.68 pmol/h/mg protein, with an apparent turnover number of cytochrome P-450 of 1.16 to 1.20 under conditions where the concentrations of the hemoprotein were rate limiting for net product formation. These results strongly support the hypothesis that the rat liver microsomal mixed-function oxidase, vitamin D3-25-hydroxylase, consists of at least two membrane-bound protein components, NADPH-cytochrome c reductase and a cytochrome P-450 terminal oxidase, for the catalytic conversion of vitamin D3 to 25-hydroxyvitamin D3.  相似文献   

4.
Liver microsomes of adult rats produce, by an NADPH-dependent pathway, O2? radicals, as detected by the epinephrine cooxidation to adrenochrome (24.8 nmol/min/mg of protein). This production has also been measured during liver development (from 1 to 20 days after birth) and correlated to the enzyme content (NADPH-cytochrome c reductase, cytochrome b5, and cytochrome P-450), with the aim of establishing the level at which Superoxide radicals are formed in the electron transport system. At 1 day the adrenochrome formation and the activity of NADPH-cytochrome c reductase are about 50 and 40% of those of the adult, respectively, whereas those of cytochromes b5 and P-450 are approximately 10%. After 20 days of development cytochrome b5 and the dehydrogenase reach the adult level, while cytochrome P-450 is about 80%. At this age O2? radicals have a 30% increment and reach only 60% of those of the adult; H2O2 production is also 60% and the N-demethylation of aminopyrine is only 30%. Thus, at birth the formation of O2? radicals is almost entirely dependent on the activity of the flavoprotein. The close correlation between the slight increase in the demethylase activity and adrenochrome formation from 1 to 20 days suggests that a portion of O2? radicals produced by the NADPH-dependent electron transfer is directly involved in the mixed function oxidation. Since about 50% of the radicals are formed at the flavoprotein level, these results indicate that in the adult liver the remaining amount may be generated at the level of cytochrome P-450.  相似文献   

5.
Administration of allylisopropylacetamide (AIA) or CCl4 to rats previously treated with phenobarbital leads to a rapid decrease in cytochrome P450 within 1 hr. The amount of cytochrome b5 and NADPH cytochrome c reductase in liver microsomes remains unchanged following AIA treatment. In contrast, CCl4 administration causes a decrease in total microsomal protein thus leading to a net loss in cytochrome b5 and NADPH cytochrome c reductase. By using 3H-δ-aminolevulinic acid to label microsomal cytochrome P450 heme, the effect of AIA and CCl4 on this cytochrome was shown to be caused by destruction of preexisting CO-binding pigment and not from inhibition of synthesis. In addition, the breakdown products of cytochrome P450 heme accumulate in the liver after AIA or CCl4 treatment.  相似文献   

6.
NADPH-cytochrome c reductase of yeast microsomes was purified to apparent homogeneity by solubilization with sodium cholate, ammonium sulfate fractionation, and chromatography with hydroxylapatite and diethylaminoethyl cellulose. The purified preparation exhibited an apparent molecular weight of 83,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The reductase contained one molecule each of flavin-adenine dinucleotide and riboflavin 5′-phosphate, though these were dissociative from the apoenzyme. The purified reductase showed a specific activity of 120 to 140 μmol/min/mg of protein for cytochrome c as the electron acceptor. The reductase could reduce yeast cytochrome P-450, though with a relatively slow rate. The reductase also reacted with rabbit liver cytochrome P-450 and supported the cytochrome P-450-dependent benzphetamine N-demethylation. It can, therefore, be concluded that the NADPH-cytochrome c reductase is assigned for the cytochrome P-450 reductase of yeast. The enzyme could also reduce the detergent-solubilized cytochrome b5 of yeast. So, this reductase must contribute to the electron transfer from NADPH to cytochrome b5 that observed in the yeast microsomes.  相似文献   

7.
We describe the isolation of cytochrome P-4501α from chick-kidney mitochondria. Although, gel permeation HPLC yielded 41% of the total amount of P-450 present in cholate-solubilized hemeproteins, it produced a highly purified mixture from which the P-4501α could be purified to homogeneity in a final detergent-free state by a single-step application of hydrophobic interaction HPLC using hydroxypropyl silica. The purified P-4501α traveled as a single band in SDS gel electrophoresis with an apparent Mr = 57 000. The absolute spectrum of the P-4501α(Fe3+) form gave a λmax at 403 nm. This characteristic lends support to the anomalous high-spin heme electron paramagnetic resonance spectrum and the heme structure of P-4501α which we have previously reported (Ghazarian et al. (1980) J. Biol. Chem. 255, 8275–8281; Pedersen et al. (1976) J. Biol. Chem. 251, 3933–3941). In reconstitution experiments with ferredoxin-dependent NADPH-cytochrome c (P-450) reductase complexes, P-4501α catalyzed the hydroxylation of 25-hydroxy-9,10-secocholesta-5,7,10(19)-trien-3β-ol at the C-1 position exclusively with a turnover number of 0.03 min?1. This number is identical to that obtained from measurements of the catalytic activity in intact mitochondria, indicating that only one major species of cytochrome P-450 occurs in chick-kidney mitochondria. The complete responsiveness of cytochrome P-450 concentrations in intact mitochondria to the vitamin D status of chicks provided additional evidence that the major cytochrome P-450 species present in renal mitochondria is uniquely associated with vitamin D metabolism.  相似文献   

8.
Cytochrome P-450, NADPH-cytochrome c reductase, biphenyl hydroxylase, and epoxide hydratase have been compared in intact rat liver and in primary hepatocyte cultures. After 10 days in culture, microsomal NADPH-cytochrome c reductase and epoxide hydratase activities declined to a third of the liver value, while cytochrome P-450 decreased to less than a tenth. Differences in the products of benzo[a]pyrene metabolism and gel electrophoresis of the microsomes indicated a change in the dominant form(s) of cytochrome P-450 in the cultured hepatocytes. Exposure of the cultured cells to phenobarbital for 5 days resulted in a threefold induction in NADPH-cytochrome c reductase and epoxide hydratase activities which was typical of liver induction of these enzymes. Exposure of the cells to 3-methylcholanthrene did not affect these activities. Cytochrome P-450 was induced over two times by phenobarbital and three to four times by 3-methylcholanthrene. The λmax of the reduced carbon monoxide complex (450.7 nm) and analysis of microsomes by gel electrophoresis showed that the phenobarbital-induced cytochrome P-450 was different from the species induced by 3-methylcholanthrene (reduced carbon monoxide λmax = 447.9 nm). However, metabolism of benzo[a]pyrene (specific activity and product distribution) was similar in microsomes of control and phenobarbital- and 3-methylcholan-threne-induced hepatocytes and the specific activity per nmole of cytochrome P-450 was higher than in liver microsomes. The activities for 2- and 4-hydroxylation of biphenyl were undetectable in all hepatocyte microsomes even though both activities were induced by 3-methylcholanthrene in the liver. Substrate-induced difference spectra and gel electrophoresis indicated an absence in phenobarbital-induced hepatocytes of most forms of cytochrome P-450 which were present in phenobarbital-induced rat liver microsomes. It is concluded that the control of cytochrome P-450 synthesis in these hepatocytes is considerably different from that found in whole liver, while other microsomal enzymes may be near to normal. Hormonal deficiencies in the culture medium and differential hormonal control of the various microsomal enzymes provide a likely explanation of these effects.  相似文献   

9.
The liver microsomal enzyme system that catalyzes the oxidation of NADPH by organic hydroperoxides has been solubilized and resolved by the use of detergents into fractions containing NADPH-cytochrome c reductase, cytochrome P-450 (or P-448), and microsomal lipid. Partially purified cytochromes P-450 and P-448, free of the reductase and of cytochrome b5, were prepared from liver microsomes of rats pretreated with phenobarbital (PB) and 3-methylcholanthrene (3-MC), respectively, and reconstituted separately with the reductase and lipid fractions prepared from PB-treated animals to yield enzymically active preparations functional in cumene hydroperoxide-dependent NADPH oxidation. The reductase, cytochrome P-450 (or P-448), and lipid fractions were all required for maximal catalytic activity. Detergent-purified cytochrome b5 when added to the complete system did not enhance the reaction rate. However, the partially purified cytochrome P-450 (or P-448) preparation was by itself capable of supporting the NADPH-peroxidase reaction but at a lower rate (25% of the maximal velocity) than the complete system. Other heme compounds such as hematin, methemoglobin, metmyoglobin, and ferricytochrome c could also act as comparable catalysts for the peroxidation of NADPH by cumene hydroperoxide and in these reactions, NADH was able to substitute for NADPH. The microsomal NADH-dependent peroxidase activity was also reconstituted from solubilized components of liver microsomes and was found to require NADH-cytochrome b5 reductase, cytochrome P-450 (or P-448), lipid, and cytochrome b5 for maximal catalytic activity. These results lend support to our earlier hypothesis that two distinct electron transport pathways operate in NADPH- and NADH-dependent hydroperoxide decomposition in liver microsomes.  相似文献   

10.
The effects of pretreatment with toluene, o-, m-, p-xylene and mesitylene were investigated on the microsomal enzymes of liver, kidney and lung in rats. The activities of aminopyrine N-demethylase, aryl hydrocarbon hydroxylase, aniline hydroxylase, NADPH-cytochrome c reductase, as well as the concentrations of cytochrome P-450 and cytochrome b5 were determined. The effects were most marked in the liver, where toluene caused increase in aniline hydroxylase and cytochrome P-450; o-xylene in aminopyrine N-demethylase and cytochrome b5; m-xylene and mesitylene in all the enzymes investigated. In kidneys, all the compounds increased the activity of aniline hydroxylase; m-xylene induced cytochrome P-450 and b5 as well as NADPH-cytochrome c reductase; p-xylene induced cytochrome P-450, and mesitylene cytochrome P-450 and b5. Aminopyrine N-demethylase activity was decreased by toluene. In lungs, only mesitylene caused any significant differences from the controls: increase in aminopyrine N-demethylase and aryl hydrocarbon hydroxylase, decrease in aniline hydroxylase. The methylbenzenes tested induced the microsomal enzymes in a rough correlation to the number of their methyl groups and their hydrophobic properties.  相似文献   

11.
Cytochrome P-450scc (P-450 XIA1) from bovine adrenocortical mitochondria was investigated using a suicide substrate: [14C]methoxychlor. [14C]Methoxychlor irreversibly abolished the activity of the side-chain cleavage enzyme for cholesterol (P-450scc) and the inactivation was prevented in the presence of cholesterol. The binding of [14C]methoxychlor and cytochrome P-450scc occurred in a molar ratio of 1:1 and the cholesterol-induced difference spectrum of cytochrome P-450scc was similar with the methoxychlor-induced difference spectrum. [14C]Methoxychlor-binding peptides were purified from tryptic-digested cytochrome P-450scc modified with [14C]methoxychlor. Determination of the sequence of the amino-acid residues of a [14C]methoxychlor-binding peptide allowed identification of the peptide comprising the amino-terminal amino-acid residues 8 to 28.  相似文献   

12.
The aryl hydrocarbon hydroxylase (AHH) enzyme from the fungus Cunninghamella bainieri has been characterized. It is NADPH dependent and exhibits a pH optimum near 7.8. It is inhibited by CO, SKF 525-A, and metyrapone, but cyanide shows no inhibitory effect. These data, together with the pattern of inhibition and stimulation shown by metal ions, suggest that the fungal AHH activity is due to a cytochrome P-450. About 25% of the hydroxylase activity remains in the supernatant while the remainder precipitates after centrifugation at 100,00g for 2.5 h. The 100,000g supernatant was further fractionated by (NH4)2SO4 precipitation. A NADPH-dependent cytochrome c reductase is concentrated mainly in the 100,000g supernatant, and a cytochrome c oxidase is present mainly in the 100,000g pellet. The cytochrome c reductase is essential for AHH activity as shown by the inhibition of AHH activity with cytochrome c and dichloroindophenol. Solubilization of a portion of the 100,000g pellet in aqueous digitonin followed by dithionite reduction and addition of CO resulted in the observation of a maximum absorbance at 450 nm characteristic of cytochrome P-450.  相似文献   

13.
《Insect Biochemistry》1989,19(5):481-488
Cytochrome P-450, cytochrome b5 and cytochrome P-450 reductase were purified from house fly abdomens using high performance liquid chromatography (HPLC). Using a new technique, cytochrome P-450 was separated from the bulk of other proteins after polyethylene glycol fractionation and hydrophobic interaction chromatography (HIC) using a phenyl-5PW column. This technique resulted in 91% recovery of the cytochrome P-450s in a single concentrated fraction that also contained the remaining cytochrome b5 and cytochrome P-450 reductase activity. Further purification by anion exchange on a DEAE-5SW column resolved the cytochrome P-450s, cytochrome b5 and cytochrome P-450 reductase into individual fractions. The ion exchange step yielded one fraction that contained a high specific content of P-450 (14.4 nmol/mg protein). This cytochrome P-450 fraction ran as a single band at 54.3 kDa in sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gel electrophoresis and had a carboxy ferrocytochrome absorbance maximum at 447 nm.Further purification of the anion exchange cytochrome b5 fraction, by C8 reverse phase HPLC, resulted in a cytochrome b5 fraction with a specific content of 51.8 nmol/mg protein and an apparent molecular mass of 19.7 kDa by SDS-PAGE. The anion exchange HPLC fraction containing the cytochrome P-450 reductase activity was further purified by NADP-agarose affinity chromatography. This step yielded cytochrome P-450 reductase with an apparent molecular mass of 72 kDa.  相似文献   

14.
1. The topography of cytochrome P-450 in vesicles from smooth endoplasmic reticulum of rat liver has been examined. Approx. 50% of the cytochrome is directly accessible to the action of trypsin in intact vesicles whereas the remainder is inaccessible and partitioned between luminal-facing or phospholipid-embedded loci. Analysis by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis reveals three major species of the cytochrome. Of these, the variant with a mol.wt. of 52000 is induced by phenobarbitone and this species is susceptible to trypsin. 2. After trypsin treatment of smooth membrane, some NADPH–cytochrome P-450 (cytochrome c) reductase activity remains and this remaining activity is enhanced by treatment with 0.05% deoxycholate, which renders the membranes permeable to macromolecules. In non-trypsin-treated control membranes the reductase activity is increased to a similar extent. These observations suggest an asymmetric distribution of NADPH–cytochrome P-450 (cytochrome c) reductase in the membrane. 3. As compared with dithionite, NADPH reduces only 44% of the cytochrome P-450 present in intact membranes. After tryptic digestion, none of the remaining cytochrome P-450 is reducible by NADPH. 4. In the presence of both a superoxide-generating system (xanthine plus xanthine oxidase) and NADPH, all the cytochrome P-450 in intact membrane (as judged by dithionite reducibility) is reduced. The cytochrome P-450 remaining after trypsin treatment of smooth vesicles cannot be reduced by this method. 5. The superoxide-dependent reduction of cytochrome P-450 is prevented by treatment of the membranes with mersalyl, which inhibits NADPH–cytochrome P-450 (cytochrome c) reductase. Thus the effect of superoxide may involve NADPH–cytochrome P-450 reductase and cytosolically orientated membrane factor(s).  相似文献   

15.
An intraperitoneal dose of CS2 (500mg/kg) to male rats resulted in loss of liver microsomal mixed-function-oxidase activity (85% loss of biphenyl 4-hydroxylase), followed by denaturation of liver cytochrome P-450 to cytochrome P-420, and degradative loss of both cytochromes (50% loss). Losses of NADPH–cytochrome c reductase (20%) and cytochrome b5 were considerably less. Intraperitoneal administration of CS2 (100mg/kg) to rats pretreated wtih phenobarbitone or 3-methylcholanthrene resulted in similar losses, but the rate of destruction was greater with cytochrome P-450 than with cytochrome P-448. At 12h after intraperitoneal injection of CS2 to non-pretreated rats, a new cytochrome (P-448) appeared. Rat liver microsomal preparations incubated with CS2 in the presence of NADPH and O2 resulted in loss of cytochrome P-450 and mixed-function-oxidase activity directly related to the concentration of CS2 (10–100μm) and to the period of incubation. Addition of EDTA (1mm) completely inhibited this destruction of cytochrome P-450 by CS2 in vitro. Addition of CS2 to liver microsomal preparations resulted in moderate increases in the Ks values for type-I or type-II substrates, but these were insufficient to account for the inhibition of the mixed-function oxidases. We therefore suggest that desulphuration of CS2 leads to binding of the S to cytochrome P-450, denaturation of cytochrome P-450 to cytochrome P-420, and ultimately to destruction of these cytochromes by autoxidation.  相似文献   

16.
A potent inhibitor of microsomal mixed-function oxidation reactions in insects had previously been isolated and partially purified from the gut contents of Prodenia eridania and shown to be associated with proteinase activity. Incubation of rat liver microsomal fraction with low concentrations of this inhibitor led to solubilization of NADPH–cytochrome c reductase, which was paralleled by the inactivation of reduction of cytochrome P-450 by NADPH and by the inhibition of NADPH-linked benzo[3,4]pyrene hydroxylation and aminopyrine demethylation. There was little or no effect on cytochromes b5 and P-450, nor was the capacity of the latter catalyst to combine with exogenous substrates decreased. Contrary to the findings with NADPH, preincubation of microsomal fraction with the inhibitor did not cause a significant decrease in the rate of cytochrome P-450 reduction by NADH, supporting the assumption that different catalysts are involved in the electron transfer from NADH and NADPH to cytochrome P-450. The findings indicate the importance of taking the possible presence of endogenous inhibitors into consideration when evaluating low or absent mixed-function oxidation activities found in insect systems in vitro.  相似文献   

17.
Conversion of benzo[a]pyrene (BP) to BP 7,8-dihydrodiol 9,10-oxides (DE) (measured as 7,10/8,9-tetrols) by untreated (UT) rat liver microsomes is over 10 times slower than following 3-methylcholanthrene (MC) induction. Time courses have been subjected to a kinetic analysis analogous to that previously reported for metabolism by MC-induced microsomes (J. Biol. Chem., 259 (1984) 13770–13776). Competition between BP and 7,8-dihydrodiol for P-450 is the major determinant of the rate of DE formation. Glucuronidation of quinones and phenols only increases the isolated BP metabolites including DE by 40%. This indicates far less inhibition by these products than for metabolism in MC-microsomes (4–6-fold). Thus stimulation may result from a decreased quinone-mediated oxidation of metabolites. In the presence of DNA, UT-microsomes metabolize BP to approximately equal amounts of 9-phenol-4,5-oxide (9-PO) and DE/DNA adducts. Addition of uridine diphosphoglucuronic acid (UDPGA) fails to enhance modification of DNA by DE, but formation of the 9-PO adduct is reduced as a result of lower free 9-phenol levels. The kinetic characteristics of BP metabolism by UT-microsomes are highly sensitive to the presence of very small but variable amounts (2–25 pmol/mg) of the very active cytochrome P-450c, which is the predominant form in MC-microsomes. The major effect of elevated levels of P-450c is an 8-fold increase in DE formation at low concentrations of BP due to a lowering of Km (7.9–2.6 μM) and an increase in the regioselectivity for DE formation from 7,8-dihydrodiol (5–15% of total BP metabolites). The formation of DE was directly correlated with the content of P-450c (r = 0.94). The presence of increased levels of P-450c in UT-microsomes is probably due to previous exposure of the animals to environmental inducers and is minimized by controlled housing and feeding.  相似文献   

18.
Hepatic microsomal cytochrome P-450 from the untreated coastal marine fish scup, Stenotomus chrysops, was solubilized and resolved into five fractions by ion-exchange chromatography. The major fraction, cytochrome P-450E (Mr = 54,300), was further purified to a specific content of 11.7 nmol heme/mg protein and contained a chromophore absorbing at 447 nm in the CO-ligated, reduced difference spectrum. NH2-terminal sequence analysis of cytochrome P-450E by Edman degradation revealed no homology with any known cytochrome P-450 isozyme in the first nine residues. S. chrysops liver NADPH-cytochrome P-450 reductase, purified 225-fold (Mr = 82,600), had a specific activity of 45–60 U/mg with cytochrome c, contained both FAD and FMN, and was isolated as the one-electron reduced semiquinone.Purified cytochrome P-450E metabolized several substrates including 7-ethoxycoumarin, acetanilide, and benzo[a]pyrene when reconstituted with lipid and hepatic NADPH-cytochrome P-450 reductase from either S. chrysops or rat. The purified, reconstituted monooxygenase system was sensitive to inhibition by 100 μM 7,8-benzoflavone, and analysis of products in reconstitutions with purified rat epoxide hydrolase indicated a preference for oxidation on the benzo-ring of benzo[a]pyrene consistent with the primary features of benzo[a]pyrene metabolism in microsomes. Cytochrome P-450E is identical to the major microsomal aromatic hydrocarbon-inducible cytochrome P-450 by the criteria of molecular weight, optical properties, and catalytic profile. It is suggested that substantial quantities of this aromatic hydrocarbon-inducible isozyme exist in the hepatic microsomes of some untreated S. chrysops. The characterization of this aryl hydrocarbon hydroxylase extends our understanding of the metabolism patterns observed in hepatic microsomes isolated from untreated fish.  相似文献   

19.
Incubation in the presence of NADPH and molecular oxygen of 14C-labeled polychlorinated biphenyls (PCBs) and two tetrachlorobiphenyl (TCB) isomers with a reconstituted system containing NADPH-cytochrome P-450 reductase and cytochrome P-450, both purified from liver microsomes of phenobarbital(PB)-pretreated rabbits, led to covalent binding of radioactive metabolites of PCBs and TCBs to the protein components of the system. A rabbit liver cytosol fraction added to the system provided more binding sites for the activated metabolites and thus increased the extent of binding markedly. The binding reaction depended absolutely on the reductase, cytochrome P-450 and NADPH, and required dilauroyl phosphatidylcholine and sodium cholate for maximal activity. A further stimulation of the binding was attained by including cytochrome b5 in the reconstituted system. Four forms of cytochrome P-450, purified from liver microsomes of PB- and 3-methylcholanthrene(MC)-treated rabbits and rats, were used to reconstitute the PCB- and TCB-metabolizing systems, and it was found that PB-inducible forms of the cytochrome from both animals were more active than those inducible by MC in catalyzing the PCB- and TCB-binding reaction. Sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis indicated that, in the system containing the reductase, cytochrome P-450 and cytochrome b5, PCB metabolites bound to the reductase and cytochrome P-450, but not to cytochrome b5. In the presence of the liver cytosol fraction, the binding took place to many cytosolic proteins in addition to the reductase and cytochrome P-450.  相似文献   

20.
The midpoint reduction potentials of the haem iron in bovine adrenal cytochrome P-450 and its associated iron-sulphur protein, adrenal ferredoxin, have been measured, using EPR spectroscopy to monitor the high and low spin ferric haem iron and reduced adrenal ferredoxin signals as a function of potential, in mitochondrial and microsomal suspensions.In mitochondria the high spin (substrate-bound) cytochrome P-450 showed single-component one-electron plots under most conditions; at pH 6.65 cholesterol side-chain cleavage cytochrome P-450 (P-450scc) had a midpoint Em = ?305 mV; at pH 8.0 11β-hydroxylase cytochrome P-450 (P-45011β) had Em = ?335 mV. Low spin cytochrome P-450 showed more complex titration curves under all conditions, which could be most simply interpreted in terms of two one-electron components with midpoint potentials approx. ?360 and ?470 mV, with varying intensities. During treatments that caused substrate binding, only the ?470 mV component was reduced in magnitude. On sonication and removal of adrenal ferredoxin, the ?470 mV low spin component was converted to higher potential. The potentials could also be altered by the cytochrome P-450 inhibitors aminoglutethimide and metyrapone. In the microsomes, a high spin component of cytochrome P-450 (Em ≈ ?290 mV) was observed even at pH 8.0, suggesting the binding of an endogenous substrate, while the low spin P-450 showed a predominance of the ?360 mV component. The midpoint potential of membrane-bound adrenal ferredoxin under these various conditions was found to be ?248 mV ± 15 mV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号