首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat, human, and chicken liver and yeast fatty acid synthetase complexes were dissociated into half-molecular weight nonidentical subunits of molecular weight 225,000–250,000 under the same conditions as used previously for the pigeon liver fatty acid synthetase complex [Lornitzo, F. A., Qureshi, A. A., and Porter, J. W. (1975) J. Biol. Chem.250, 4520–4529]. The separation of the half-molecular weight nonidentical subunits I and II of each fatty acid synthetase was then achieved by affinity chromatography on Sepharose ?-aminocaproyl pantetheine. The separations required, as with the pigeon liver fatty acid synthetase, a careful control of temperature, ionic strength, pH, and column flow rate for success, along with the freezing of the enzyme at ?20 °C prior to the dissociation of the complex and the loading of the subunits onto the column. The separated subunit I (reductase) from each fatty acid synthetase contained β-ketoacyl and crotonyl thioester reductases. Subunit II (transacylase) contained acetyl- and malonyl-coenzyme A: pantetheine transacylases. Each subunit of each complex also contained activities for the partial reactions, β-hydroxyacyl thioester dehydrase (crotonase), and palmitoyl-CoA deacylase. The specific activities of a given partial reaction did not vary in most cases more than twofold from one fatty acid synthetase species to another. The rat and human liver fatty acid synthetases required a much higher ionic strength for stability of their complexes and for the reconstitution of their overall synthetase activity from subunits I and II than did the pigeon liver enzyme. On reconstitution by dialysis in high ionic strength potassium phosphate buffer of subunits I and II of each complex, 65–85% of the control fatty acid synthetase activity was recovered. The rat and human liver fatty acid synthetases cross-reacted on immunoprecipitation with antisera. Similarly, chicken and pigeon liver fatty acid synthetases crossreacted with their antisera. There was, however, no cross-reaction between the mammalian and avian liver fatty acid synthetases and the yeast fatty acid synthetase did not cross-react with any of the liver fatty acid synthetase antisera.  相似文献   

2.
Translation and characterization of the fatty acid synthetase messenger RNA   总被引:1,自引:0,他引:1  
Fatty acid synthetase messenger RNA was obtained from rat liver polysomal RNA and then injected into Xenopus laevis oocytes. The radioactive fatty acid synthetase protein synthesized in the oocytes was identified by immunoprecipitation with anti-fatty acid synthetase antibody and the immunoprecipitate was then characterized by electrophoresis on sodium dodecyl sulfate-polyacrylamide gel. Co-migration of authentic fatty acid synthetase and the labeled product synthesized in oocytes was observed. Based on sucrose density gradient analysis, the rat liver fatty acid synthetase mRNA has a sedimentation coefficient of approximately 33 S, which agrees with the predicted minimum size necessary to code for the fatty acid synthetase protein. In addition, this mRNA was partially purified with oligo(dT)-cellulose, which indicates that it has a polyadenylate region. The relative in vivo rate of synthesis of fatty acid synthetase and the level of fatty acid synthetase mRNA in liver were also determined during the course of dietary induction of this enzyme. The results indicate that the dietary-induced increase in the level of fatty acid synthetase is probably due to an increased level of the fatty acid synthetase mRNA.  相似文献   

3.
An acyl coenzyme A hydrolase (thioesterase II) has been purified to near homogeneity from lactating rat mammary gland. The enzyme is a monomer of molecular weight 33,000 and contains a single active site residue. The enzyme is specific for acyl groups, as acyl-CoA thioesters, containing eight or more carbon atoms and can also hydrolyze oxygen esters. Thioesterase II is capable of shifting the product specificity of rat mammary gland fatty acid synthetase from predominately long chain fatty acids (C14, C16, and C18) to mainly medium chain fatty acids (C8, C10, and C12). Thioesterase II can restore the capacity for fatty acid synthesis to fatty acid synthetase in which the thioesterase component (thioesterase I) has been inactivated with phenylmethanesulfonyl fluoride or removed by trypsinization. No evidence was found of significant levels of thioesterase II in lactating rat liver. The presence of thioesterase II in the lactating mammary gland and the ability of the enzyme to hydrolyze acyl-fatty acid synthetase thioesters of intermediate chain length, are indicative of a major role for this enzyme in the synthesis of the medium chain fatty acids characteristic of milk fat.  相似文献   

4.
Chicken liver fatty acid synthetase is irreversibly inactivated by malonyl CoA and by acetyl and malonyl CoA. Two active forms of the enzyme existing above and below 11.5° are inactivated at different rates. Activities for fatty acid and triacetic acid lactone synthesis are lost at about the same rate and NADP+ protects the enzyme against inactivation. Inactivation results from the enhanced covalent binding of malonyl groups in addition to those required for fatty acid synthesis.  相似文献   

5.
Fatty acid synthetase, partially purified by gel filtration with Sepharose 4B from goose liver, showed the same relative rate of incorporation of methylmalonyl-CoA (compared to malonyl-CoA) as that observed with the purified fatty acid synthetase from the uropygial gland. In the presence of acetyl-CoA, methylmalonyl-CoA was incorporated mainly into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8,10-pentamethyl-dodecanoic acid by the enzyme from both sources. Methylmalonyl-CoA was a competitive inhibitor with respect to malonyl-CoA for the enzyme from the gland just as previously observed for fatty acid synthetase from other animals. Furthermore, rabbit antiserum prepared against the gland enzyme cross-reacted with the liver enzyme, and Ouchterlony double-diffusion analyses showed complete fusion of the immunoprecipitant lines. The antiserum inhibited both the synthesis of n-fatty acids and branched fatty acids catalyzed by the synthetase from both liver and the uropygial gland. These results suggest that the synthetases from the two tissues are identical and that branched and n-fatty acids are synthesized by the same enzyme. Immunological examination of the 105,000g supernatant prepared from a variety of organs from the goose showed that only the uropygial gland contained a protein which cross-reacted with the antiserum prepared against malonyl-CoA decarboxylase purified from the gland. Thus, it is concluded that the reason for the synthesis of multimethyl-branched fatty acids by the fatty acid synthetase in the gland is that in this organ the tissue-specific and substrate-specific decarboxylase makes only methylmalonyl-CoA available to the synthetase. Fatty acid synthetase, partially purified from the mammary gland and the liver of rats, also catalyzed incorporation of [methyl-14C]methylmalonyl-CoA into 2,4,6,8-tetramethyldecanoic acid and 2,4,6,8-tetramethylundecanoic acid with acetyl-CoA and propionyl-CoA, respectively, as the primers. Evidence is also presented that fatty acids containing straight and branched regions can be generated by the fatty acid synthetase from the rat and goose, from methylmalonyl-CoA in the presence of malonyl-CoA or other precursors of n-fatty acids. These results provide support for the hypothesis that, under the pathological conditions which result in accumulation of methylmalonyl-CoA, abnormal branched acids can be generated by the fatty acid synthetase.  相似文献   

6.
High purity fatty acid synthetase mRNA has been prepared from rat liver. The translational purity of the mRNA preparation was at least 27% as judged by the percentage of the radioactivity incorporated into acid-insoluble material that was precipitated by anti-fatty acid synthetase antibody. The specific activity of the mRNA was 220-times greater than that reported previously from this laboratory [1]. The large increase in the specific activity was achieved by the repeated use of high resolution linear-log sucrose density gradient centrifugation and the removal of 28 S rRNA by Sepharose 4B chromatography, as well as by the optimization of the K+ concentration (160 mM) in the reticulocyte lysate translation system. The mRNA preparation showed a single major band on agarose gel electrophoresis under denaturing conditions, and the translational activity of the fatty acid synthetase mRNA on the gel was found to coincide with this band. The molecular weight of the fatty acid synthetase mRNA is 2.5·106 Da. The mRNA directed the synthesis of fatty acid synthetase with a molecular weight indistinguishable from that of the authentic enzyme subunit (Mr = 240 000). The copurification of the translation product and authentic enzyme revealed that the fatty acid synthetase polypeptides synthesized in the reticulocyte lysate system are assembled in vitro into dimers, the native form of the enzyme.  相似文献   

7.
We have confirmed that coenzyme A is required for rat fatty acid synthetase activity (T. C. Linn, M. J. Stark, and P. A. Srere, 1980, J. Biol. Chem.255, 1388–1392). When rat liver or mammary gland fatty acid synthetase was assayed in the presence of a CoA-scavenging system such as ATP citrate lyase, almost complete inhibition of fatty acid synthesis was observed. The inhibition was reversed by addition of CoA or pantetheine, but not by addition of N-acetylcysteamine or other thiols. In the absence of CoA, the rate of elongation of acyl moieties on both native fatty acid synthetase and fatty acid synthetase lacking the chain-terminating thioesterase I component (trypsinized fatty acid synthetase) was reduced 100-fold. All of the palmitate synthesized slowly by the CoA-depleted native multienzyme was released, by the thioesterase I component, as the free fatty acid; only shorter-chainlength acyl moieties remained bound to the enzyme. The acyl-S-multienzyme thioesters formed by the trypsinized fatty acid synthetase in the absence of CoA contained saturated moieties of chain length C6-C16; addition of CoA promoted elongation of the acyl-S-multienzyme thioesters without release from the enzyme. The transfer of acetyl and malonyl moieties from CoA to the multienzyme, the reduction of S-acetoacetyl-N-acetylcysteamine and S-crotonyl-N-acetylcysteamine, and the dehydration of S-β-hydroxybutyryl-N-acetylcysteamine, reactions catalyzed by the fatty acid synthetase, were not dependent on the presence of CoA. The hydrolysis of acyl-S-multienzyme catalyzed by thioesterase I, the resident chain-terminating component of the fatty acid synthetase, and thioesterase II, a monofunctional mammary gland chain-terminating enzyme, was also independent of CoA availability as was hydrolysis of an acyl-S-pantetheine pentapeptide isolated from the multienzyme. On the basis of these observations we conclude that CoA is required for the elongation of acyl moieties on the fatty acid synthetase but not for their release from the multienzyme.  相似文献   

8.
This paper reports the first detailed study of the physicochemical properties of a fatty acid synthetase multienzyme complex from a mammalian liver. Fatty acid synthetase from pig liver was purified by a procedure including the following main steps: (i) preparation of a clarified supernatant solution (50,000 g), (ii) ammonium sulfate fractionation, (iii) DEAE-cellulose chromatography to separate 11 S catalase from the 13 S fatty acid synthetase, (iv) a preparative sucrose density gradient step to remove a 7 S impurity, and (v) a calcium phosphate gel step to remove an unusual yellow 16 S heme protein to yield a colorless preparation. The purified fatty acid synthetase was colorless and showed a single symmetrical peak in sucrose density gradient and conventional sedimentation velocity experiments. Fatty acid synthetase was very stable at 4 °C in the presence of 1 mm dithiothreitol and 25% sucrose. Extrapolation to zero protein concentration yielded values of So20,w = 13.3 S and Do20,w = 2.60 × 10?7cm2/s for the sedimentation and diffusion coefficients of the enzyme. Frictional coefficient values of 1.55 and 1.56 × 10?7 cm, respectively, were calculated from the values for the sedimentation and diffusion coefficients. Based on these frictional coefficient values, the Stokes radius of the enzyme was calculated to be 82.4 Å. Sedimentation and diffusion coefficient data yielded a molecular weight value of Mw (sD) = 478,000 and sedimentation equilibrium data yielded a value of Mw = 476,000. Preliminary intrinsic viscosity measurements at 20 °C gave a value of 7.3 ml/g, indicating that the enzyme is somewhat asymmetric. This is supported by the value of 1.58 calculated for the frictional ratio and by the fact that the values for the sedimentation and diffusion coefficients are both slightly lower than expected for a globular protein of molecular weight 478,000. The enzyme possesses about 90 SH groups per molecule, assuming a molecular weight of 478,000. The ultraviolet absorption spectrum of the enzyme shows a maximum at 280 nm and an unusual shoulder at 290 nm. The fluorescence spectrum of the enzyme is dominated by tryptophan fluorescence and, over the excitation range of 260–300 nm, there is a single emission maximum at 344 nm.  相似文献   

9.
Phosphatidylcholine containing large amounts of long polyunsaturated fatty acid, eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6), was synthesized in isooctane. Immobilized phospholipase A2 was used as a catalyst. A parallel non-enzymatic esterification reaction was investigated in separate experiments.

The concentrations of lyso-phosphatidylcholine, polyunsaturated fatty acids, water and the enzyme were varied over wide ranges as were the temperature and the reaction time. The type of enzyme, carrier and immobilization procedure were held constant.

The yield of phosphatidylcholine was relatively high (about 21%) when the concentration of polyunsaturated fatty acids was high (300 mg/g of reaction mixture) and the water content was low (below 30% of the dry immobilized enzyme). The highest yield of phosphatidylcholine was found at 80 hours and 75°C. However, at this temperature an extensive non-enzymatic reaction between polyunsaturated fatty acids and lyso-phosphatidylcholine occurred. At 80°C the polyunsaturated fatty acids were partly oxidized. Therefore, a temperature of 45°C to 65°C is probably the optimum temperature for the reaction.  相似文献   

10.
11.
Abstract— The activity of fatty acid synthetase was studied in the brain and liver of the developing rat. Synthetase activity in brain was considerably higher in foetal and suckling rats than in older animals However, except for a small transient rise in the perinatal period, activity in liver was low until weaning when a dramatic rise occurred. Activity in brain varied according to the quantity of dietary fat only in long-term experiments, whereas in liver nutritional influences clearly predominated in determining the rapid developmental changes of synthetase activity. Administration of hydrocortisone diminished hepatic activity but did not change brain synthetase. In the hypothyroid state activity in brain and liver was consistently decreased. However, in the hyperthyroid state hepatic activity increased but activity in brain did not change. The relatively high activity of fatty acid synthetase during brain development has been discussed in relation to the critical role of this enzyme system in brain metabolism. The effect of the hypothyroid state on the activity of brain synthetase suggests the possibility of hormonal control of this enzyme activity. The responses of hepatic synthetase to the hormonal influences delineate a specific step by which these compounds may exert their effect on fatty acid biosynthesis.  相似文献   

12.
Significant advances have been made in the past few years in our understanding of the mechanism of synthesis of fatty acids, the structural organization of fatty acid synthetase complexes and the mechanism of regulation of activity of these enzyme systems. Numerous fatty acid synthetase complexes have been purified to homogeneity and the mechanism of synthesis of fatty acids by these enzyme systems has been ascertained from tracer, and recently, kinetic studies. The results obtained by these methods are in complete agreement. Furthermore, the kinetic results have indicated that fatty acid synthesis proceeds by a seven-site ping-pong mechanism. Several of the fatty acid synthetases have been dissociated completely to nonidentical half-molecular weight subunit species and these have been separated by affinity chromatography. From one of these subunits acyl carrier protein has been obtained. Whether the nonidentical subunits can be dissociated into individual proteins or whether these subunits are each comprised of one peptide is still a matter of controversy. However, it appears to us that each of the half-molecular weight subunits is indeed comprised of individual proteins. Studies on the regulation of activity of fatty acid synthetase complexes of avian and mammalian liver have resulted in the separation by affinity chromatography of three species (apo, holo-a and holo-b) of fatty acid synthetase. Since these species have radically different enzyme activities they may provide a mechanism of short-term regulation of fatty acid synthetase activity. Other studies have shown that the quantity of avian and mammalian liver fatty acid synthetases is controlled by a change in the rate of synthesis of this enzyme complex. This change in the rate of synthesis of enzyme complex is under the control of insulin and glucagon. The former hormone increases the rate of enzyme synthesis, whereas the latter decreases it. Further studies on fatty acid synthetase complexes will undoubtedly concentrate upon more refined aspects of the structural organization of these enzyme systems, including the sequencing of acyl carrier proteins, the effects of protein-protein interaction on the kinetics of the partial reactions of fatty acid synthesis catalyzed by separated enzymes of the complex, the mechanism of hormonal regulation of fatty acid synthetase activity and x-ray diffraction analysis of subunits and complex.  相似文献   

13.
The adaptive synthesis of fatty acid synthetase in the livers of rats fed a fat-free diet following 48 hr of fasting has been studied using immunochemical methods. The development of fatty acid synthetase activity during adaptive synthesis occurs about 3 hr following feeding, whereas the synthesis of material precipitable by anti-fatty acid synthetase serum, as judged by the incorporation of 3H-labeled amino acids into the immunoprecipitate, commenced within 1 hr. Extracts of liver of rats fed a fat-free diet for 1–3 hr following fasting contain increasing amounts of material which competes with purified fatty acid synthetase for antibody binding sites, even though they have no fatty acid synthetase activity. This suggests the presence of enzymatically inactive precursors of fatty acid synthetase in the liver extracts. The incorporation of [14C]pantothenate into fatty acid synthetase during adaptive synthesis follows the same pattern as the development of enzyme activity, indicating that these enzymatically inactive precursors of fatty acid synthetase may represent an apoenzyme which is converted to the enzymatically active holoenzyme by the incorporation of the 4′-phosphopantetheine prosthetic group. The subcellular site of synthesis of fatty acid synthetase was shown to be in the pool of polysomes that are not membrane bound, rather than in the rough endoplasmic reticulum.  相似文献   

14.
A computer-centered spectrofluorimeter was used to examine the physicochemical properties of hepatic microsomes and microsomal lipids obtained from isolated rat livers perfused with medium containing palmitate or oleate. The fatty acid composition and degree of unsaturation of the liver microsomal lipids reflected that the fatty acid present in the perfusate. The absorption corrected fluorescence, relative fluorescence efficiency, polarization, and fluorescence anisotropy of several fluorescent probe molecules were measured to determine if their different microenvironments may be altered by the type of fatty acid infused. The probe molecules β-parinaric acid and 1.6-diphenyl-1,3,5-hexatriene had higher values for each of these parameters when incorporated into microsomes obtained from livers perfused with a medium containing palmitate than with oleate. The same parameters measured for cholesta-5,7,9(11)-trien-3β-ol and N-phenyl-1-naphthylamine were not altered. These differences appeared to be primarily due to alterations in microviscosity of the probe microenvironments since the rotational correlation time of 1,6-diphenyl-1,3,5-hexatriene was 25% lower in the microsomes from livers perfused with oleate as compared to livers perfused with palmitate. Thermal discontinuities in Arrhenius plots were noted in the intact microsomes but not in the isolated microsomal lipids with the fluorescence probe molecule β-parinaric acid. Break points occurred at 10°C and 26°C for microsomes from livers perfused with palmitate and at 12°C and 17°C for microsomes from livers perfused with oleate containing medium. These results suggest that the physicochemical properties of liver microsomes were determined in part by the fatty acid in the perfusate.  相似文献   

15.
We have investigated the activation of pristanic acid to its CoA-ester in rat liver. The results show that peroxisomes, mitochondria as well as microsomes contain pristanoyl-CoA synthetase activity. On the basis of competition experiments and immunoprecipitation studies using antibodies raised against rat liver microsomal long-chain fatty acyl-CoA synthetase (EC 6.2.1.3) we conclude that pristanic acid is activated by the same enzyme which activates long-chain fatty acids, i.e., long-chain fatty acyl-CoA synthetase.  相似文献   

16.
17.
Coordinate control of rat liver lipogenic enzymes by insulin   总被引:4,自引:0,他引:4  
Recent evidence has established that insulin is required for the dietary induction of rat liver fatty acid synthetase [Proc. Nat. Acad. Sci. USA69, 3516 (1972)]. Since other hepatic lipogenic enzymes as well as fatty acid synthetase exhibit coordinate adaptation to nutritional changes [Advan. Enzyme Regul.10, 187(1972)], the role of insulin in the dietary induction of these enzymes has been investigated. When a high-carbohydrate, fat-free diet was fed to diabetic rats previously fasted for 48 hr, insulin was shown to be required for the dietary induction of acetyl-CoA carboxylase, citrate cleavage enzyme, malic enzyme, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, fatty acid synthetase, and glucokinase. Activity of serine dehydrase, selected as a model gluconeogenic enzyme, was increased in diabetic rats, whereas insulin treatment reduced the activity of this enzyme during the course of refeeding. The behavior of serine dehydrase was consistent with its gluconeogenic role. The activity of the cytosol isocitrate dehydrogenase did not change during refeeding in the diabetic or insulin-treated diabetic rat. Glucagon, the physiological antagonist of insulin, inhibited the increase in activity of each of the lipogenic enzymes requiring insulin for induction. Our results indicate that insulin is required for the coordinate regulation of the lipogenic enzymes of mammalian liver.  相似文献   

18.
The effects of hypophysectomy and subsequent administration of growth hormone, thyroxine, insulin, and testosterone were examined in rat liver for the relationship between the thermotropic effects on State 3 respiration (ADP induced) and fatty acid composition of the phospholipid fraction of intact mitochondria as well as of inner membrane vesicles. The Arrhenius profile for energy-linked (succinate) State 3 respiration of mitochondria from hypophysectomized rats lacked the discontinuity at 23.5 °C seen with mitochondria from normal rats. After injections of the hormones the discontinuity representing the transition temperature from gel to liquid crystalline state of lipids occurred at different temperatures: 18.5 °C for growth hormone, 26.0 °C for thyroxine, 19.5 °C for growth hormone + thyroxine, 27.6 °C for insulin, and 25.3 °C for testosterone. The energy of activation between 37.5 and 23.5 °C was 1.9 times greater for hypophysectomy than for controls. Growth hormone was the most effective in restoring the energy of activation to normal, above as well as below transition temperature. The effect of thyroxine appears to be due to a larger stimulation of the State 4 respiration than that of growth hormone, insulin, or testosterone, especially at higher temperatures. Phospholipids extracted from intact mitochondria or inner membrane vesicles of hypophysectomized rats contained less arachidonic acid (20:4) and more linoleic acid (18:2) than those of normal rats. In addition, the contents of some of the minor fatty acids were also changed. Calculated unsaturation index showed an 18.8 and 14.9% depletion in unsaturation in whole mitochondria and inner membranes, respectively. Among the different hormones used to treat the hypophysectomized rats, growth hormone was the most effective in restoring the transition temperature and fatty acid composition to normal levels and increasing the gain in body weight. Although the other hormones increased total unsaturation index to some extent, some of the individual fatty acids were affected differently. Good correlation exists between the unsaturation index of mitochondrial fatty acids and transition temperature of State 3 respiration. These results strongly suggest a role for the hormones, particularly growth hormone, in the control of mitochondrial membrane fluidity of hypophysectomized rat liver, through fatty acid composition of phospholipids.  相似文献   

19.
Medium chain acyl-CoA synthetases catalyze the first reaction of amino acid conjugation of many xenobiotic carboxylic acids and fatty acid metabolism. This paper reports studies on purification, characterization, and the partial amino acid sequence of mouse liver enzyme. The medium chain acyl-CoA synthetase was isolated from mouse liver mitochondria. The purified enzyme catalyzes this reaction not only for straight medium chain fatty acids but also for aromatic and arylacetic acids. Maximal activity was found with hexanoic acid. High activities were obtained with benzoic acid having methyl, pentyl, and methoxy groups in the para- or meta-positions of the benzene ring. However, the enzyme was less active with valproic acid and ketoprofen. Salicylic acid exhibited no activity. The medium chain acyl-CoA synthetases from mouse and bovine liver mitochondria were subjected to in-gel tryptic digestion, followed by LC-MS/MS sequence analysis. The amino acid sequence of each tryptic peptide of mouse liver mitochondrial medium chain acyl-CoA synthetase differed from that from bovine liver mitochondria only in one or two amino acids. LC-MS/MS analysis provided the information about these differences in amino acid sequences. In addition, we compared the properties of this protein with the homologues from rat and bovine.  相似文献   

20.
Hepatocytes were isolated at specified times from livers of diabetic and insulin-treated diabetic rats during the course of a 48-h refeeding of a fat-free diet to previously fasted rats. The rates of synthesis of fatty acid synthetase and acetyl-CoA carboxylase in the isolated cells were determined as a function of time of refeeding by a 2-h incubation with l-[U-14C]leucine. Immunochemical methods were employed to determine the amount of radioactivity in the fatty acid synthetase and acetyl-CoA carboxylase proteins. The amount of radioactivity in the fatty acid synthetase synthesized by the isolated cells was also determined following enzyme purification of the enzyme to homogeneity. Enzyme activities of the fatty acid synthetase and acetyl-CoA carboxylase in the cells were measured by standard procedures. The results show that isolated liver cells obtained from insulintreated diabetic rats retain the capacity to synthesize fatty acid synthetase and acetyl-CoA carboxylase. The rate of synthesis of the fatty acid synthetase in the isolated cells was similar to the rate found in normal refed animals in in vivo experiments [Craig et al. (1972) Arch. Biochem. Biophys. 152, 619–630; Lakshmanan et al. (1972) Proc. Nat. Acad. Sci. USA69, 3516–3519]. In addition the relative rate of synthesis of fatty acid synthetase was stimulated greater than 20-fold in the diabetic animals treated with insulin. Immunochemical assays, when compared with enzyme activities, indicated the presence of an immunologically reactive, but enzymatically inactive, form or “apoenzyme” for both the fatty acid synthetase and acetyl-CoA carboxylase. The synthesis of these immunoreactive and enzymatically inactive species of protein, as well as the synthesis of the “holoenzyme” forms of both enzymes, requires insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号