首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependences of adsorbed water state (obtained from the variations in 1H NMR spectra with the angle between the bilayer normal and magnetic field direction) and water diffusion along the bilayer normal (measured using pulsed field gradient 1H NMR) on hydration degree have been studied in macroscopically oriented bilayers of dioleoylphosphatidylcholine. The angle dependences of the shape of NMR spectrum are qualitatively different only for water concentrations higher and lower than that achieved by hydration from saturated vapors (χeq, about 23%). At concentrations lower than χeq, all water in the sample either makes the hydration shells of the lipid polar heads or is in fast exchange with the shell water, so the spin-echo signal from water is detected only within a narrow range of angles close to the magic angle, 54.7°. At concentration exceeding χeq, the spin-echo signal from water is retained at all orientations, suggesting that a portion of water between bilayers (quasi-free water) slowly exchanges with water bound to the polar heads. There is an inverse dependence of the coefficient of water self-diffusion through the bilayer system on the hydration degree, which is described in the Tanner model with account of water self-diffusion in the hydrophobic part of the bilayer. Bilayer permeability, distribution coefficient of molecules between aqueous and lipid phases, and water self-diffusion coefficient in the hydrophobic region of the bilayer are estimated.  相似文献   

2.
The state of adsorbed water (estimated from the dependence of the shape of the 1H NMR spectrum on the angle between the normal to the bilayers and the direction of the magnetic field) and the diffusion of water molecules in the direction of the normal to the bilayers (estimated by 1H NMR spectroscopy with the impulse gradient of magnetic field) in microscopically oriented dioleoylphosphatidylcholine bilayers have been studied depending on hydration. The dependences of the shape of the NMR spectrum on angle differ qualitatively only at concentrations of water greater and less than the concentration that is achieved upon hydration from saturated vapors chi(eq) (about 23 weight %). At concentrations below chi(eq), all water present in samples enters the hydrate shells of polar "heads" of lipids or is in the state of "rapid exchange" with the water of hydrate shells, with the result that the signal of spin echo for water is observed only in a narrow range of angles close to the "magic angle", 54 degrees C. At concentrations above xhi(eq), the signal of spin echo for water is retained at all orientations, indicating probably that part of water between the bilayers ("quasi-free water") is in the state of a "slow exchange" with water "bound" to polar "heads". It was found that the coefficient of self-diffusion of water across the system of bilayers inversely depends on the degree of hydration, which is described in the Tanner model with consideration of the self-diffusion of water molecules in the hydrophobic moiety of the bilayer. The permeability of the bilayer, the coefficient of distribution of molecules between the water and lipid phases, and the coefficient of self-diffusion of water in the hydrophobic moiety of the bilayer were estimated.  相似文献   

3.
This paper reports an incoherent quasielastic neutron scattering study of the single particle, diffusive motions of water molecules surrounding a globular protein, the hen egg-white lysozyme. For the first time such an analysis has been done on protein crystals. It can thus be directly related and compared with a recent structural study of the same sample. The measurement temperature ranged from 100 to 300 K, but focus was on the room temperature analysis. The very good agreement between the structural and dynamical studies suggested a model for the dynamics of water in triclinic crystals of lysozyme in the time range approximately 330 ps and at 300 K. Herein, the dynamics of all water molecules is affected by the presence of the protein, and the water molecules can be divided into two populations. The first mainly corresponds to the first hydration shell, in which water molecules reorient themselves fivefold to 10-fold slower than in bulk solvent, and diffuse by jumps from hydration site to hydration site. The long-range diffusion coefficient is five to sixfold less than for bulk solvent. The second group corresponds to water molecules further away from the surface of the protein, in a second incomplete hydration layer, confined between hydrated macromolecules. Within the time scale probed they undergo a translational diffusion with a self-diffusion coefficient reduced approximately 50-fold compared with bulk solvent. As protein crystals have a highly crowded arrangement close to the packing of macromolecules in cells, our conclusion can be discussed with respect to solvent behavior in intracellular media: as the mobility is highest next to the surface, it suggests that under some crowding conditions, a two-dimensional motion for the transport of metabolites can be dominant.  相似文献   

4.
Molecular dynamics simulations of liquid water were performed at 258K and a density of 1.0?g/cm3 under various applied external electric field, ranging 0~1010?V/m. The influence of external field on structural and dynamical properties of water was investigated. The simple point charge (SPC) model is used for water molecules. An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bonds structure. With increasing field strength, water system has a more perfect structure, which is similar to ice structure. However, the electrofreezing phenomenon of liquid water has not been detected since the self-diffusion coefficient was very large. The self-diffusion coefficient decreases remarkably with increasing strength of electric field and the self-diffusion coefficient is anisotropic.  相似文献   

5.
A variety of transport properties have been measured for solutions of the water soluble polymer poly(ethylene oxide)(PEO) with molecular weights ranging from 200 to 14,000, and volume fractions ranging from 0-80%. The transport properties are thermal conductivity, electrical conductivity at audio frequencies (in solutions containing dilute electrolyte), and water self-diffusion. These data, together with dielectric relaxation data previously reported, are amenable to analysis by the same mixture theory. The ionic conductivity and water self-diffusion coefficient, but not the thermal conductivity, are substantially smaller than predicted by the Maxwell and Hanai mixture relations, calculated using the known transport properties of pure liquid water. A 25% (by volume) solution of PEO exhibits an average dielectric relaxation frequency of the suspending water of one half that of pure water, with clear evidence of a distribution of relaxation times present. The limits of the cumulative distribution of dielectric relaxation times that are consistent with the data are obtained using a linear programming technique. The application of simple mixture theory, under appropriate limiting conditions, yields hydration values for the more dilute polymer solutions that are somewhat larger than values obtained from thermodynamic measurements.  相似文献   

6.
The self-diffusion coefficients for water in a series of copolymers of 2-hydroxyethyl methacrylate, HEMA, and tetrahydrofurfuryl methacrylate, THFMA, swollen with water to their equilibrium states have been studied at 310 K using PFG-NMR. The self-diffusion coefficients calculated from the Stejskal-Tanner equation, D(obs), for all of the hydrated polymers were found to be dependent on the NMR storage time, as a result of spin exchange between the proton reservoirs of the water and the polymers, reaching an equilibrium plateau value at long storage times. The true values of the diffusion coefficients were calculated from the values of D(obs) in the plateau regions by applying a correction for the fraction of water protons present, obtained from the equilibrium water contents of the gels. The true self-diffusion coefficient for water in polyHEMA obtained at 310 K by this method was 5.5 x 10(-10) m(2)s-1. For the copolymers containing 20% HEMA or more a single value of the self-diffusion coefficient was found, which was somewhat larger than the corresponding values obtained for the macroscopic diffusion coefficient from sorption measurements. For polyTHFMA and copolymers containing less than 20% HEMA, the PFG-NMR stimulated echo attenuation decay curves and the log-attenuation plots were characteristic of the presence of two diffusing water species. The self-diffusion coefficients of water in the equilibrium-hydrated copolymers were found to be dependent on the copolymer composition, decreasing with increasing THFMA content.  相似文献   

7.
Self-diffusion coefficient measurements of water in untreated ovarian eggs of Rana pipiens using nuclear magnetic resonance indicate that cytoplasmic water has reduced translational mobility compared with pure water. Using a simple two-state model, we find that ~67% is “relatively immobile.” Consideration of the nuclear magnetic resonance spin-lattice and spin-spin relaxation times indicates that the decreased mobility can largely be ascribed to hydration. Our value for the self-diffusion coefficient (6.8 × 10?6 cm2/sec) is lower than those reported by other investigators using isotopic water exchange techniques on frog eggs chemically treated to remove the membrane. However, the results reported here are in agreement with unpublished data on untreated frog eggs implying that chemical treatment has modified the cytoplasm in some manner.  相似文献   

8.
Permeability of lysozyme tetragonal crystals to water   总被引:1,自引:0,他引:1  
Diffusion of water within cross-linked tetragonal crystals of hen egg-white lysozyme has been measured and simulated on a computer using the X-ray structure of water-filled channels within the crystal lattice. Relative to the self-diffusion coefficient of bulk water molecules, the experimental diffusion coefficient of water within the crystal was found to be 13 times reduced in the (001) crystallographic plane and 5 times reduced in the [001] direction. Comparison of the experimental and computer simulated diffusion coefficients shows that steric limitations for water diffusion are mostly responsible for this reduction of the water diffusion in the crystal, with the self-diffusion coefficient of intracrystalline water reduced by no more than 30–40% as compared to that of bulk water.  相似文献   

9.
Multicomponent self-diffusion data on dioleoyl(DOL)- and dipalmitoyllecithin (DPL) vesicle-water systems have been determined using a Fourier transform NMR technique. The self-diffusion of vesicles is characterized by diffusion coefficients two magnitudes lower than that of small molecules in solution. Consequently, the degree of binding of small molecules is strongly reflected in their time-averaged self-diffusion coefficient in vesicle-water systems. This provides a new basis for the determination of vesicle-water partition equilibria. The feasibility of the technique has been investigated in one anesthetic-lipid system and is found to be very good. The binding of the hydrochloride form of tetracaine to DOL vesicles at pH 3 and 7 (Kp = 30–50) is found to be very much lower than that of the neutral molecule at pH 9 (Kp = 800–900). No significant difference in the tetracaine binding characteristics was found between DOL, DOL-cholesterol and DPL systems.  相似文献   

10.
The dynamic properties of water in phosphatidylcholine lipid/water dispersions have been studied, applying a combination of 2H-NMR techniques (quadrupole splitting and spin-lattice relaxation time) and self-diffusion measurements using pulsed field gradient (PFG) 1H-NMR. The hydration properties of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) were compared with those of DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) and EYL (egg yolk phosphatidylcholine (lecithin)). A model is presented that assumes an exponentially decaying influence of the bilayer surface on water dynamics as well as on water orientation with increasing hydration. This assumption is based on an exponentially decaying hydration potential which results from direct lipid-water and water-water interactions. The model describes successfully the experimental data for a large water concentration range, especially at low hydration, where other models failed. With the exception of a small fraction of water which is significantly influenced by the surface in slowing down the mobility, the interbilayer water has isotropic, free water characteristics in terms of correlation times and molecular order. Hydration properties of POPC are comparable with those of EYL but differ from DOPC. At very low water content the correlation times of headgroup segmental reorientation and water are similar, indicating a strong coupling of this water to the lipid lattice. The hydration properties of the three lipids studied are explained in terms of slightly different headgroup conformations due to different lateral packing of the molecules by their fatty-acid chain composition.  相似文献   

11.
It has been demonstrated by an example of apple parenchymal cells that NMR spectroscopy can be used to analyze the relaxation and diffusion of water molecules in plant cells. With small diffusion times, three relaxation components have been distinguished, which correspond to water in a vacuole, in the cytoplasm, and in intercellular liquid. The coefficient of self-diffusion corresponding to these components have been determined. With large diffusion times, it is possible to distinguish two components. For the slowly relaxing component (which corresponds to water in a vacuole), the regime of restricted diffusion was observed. For a quickly relaxing component, an anomalous increase in the coefficient of self-diffusion with the time of diffusion took place.  相似文献   

12.
The structure and dynamics of the lipid and water components of dioleoylphosphatidylcholine bilayers at various levels of hydration were studied using molecular dynamics (MD) simulations. Equilibration of these systems proceeded by use of a hybrid MD and configurational-bias Monte Carlo technique using one atmosphere of pressure normal to the membrane and a set point for the lateral area derived from experimental Bragg spacings, combined with experimentally derived specific volumes for each of the system components. Membrane surface tensions were observed to be of the order of tens of dyn/cm. The transbilayer molecular fragment peak positions at low hydration were found to agree with experimental neutron and x-ray scattering profiles and previously published simulations. For hydration levels of 5.4, 11.4, and 16 waters/lipid, molecular fragment distributions and order parameters for the headgroup, lipid chains, and water were quantified. Spin-lattice relaxation rates and lateral self-diffusion coefficients of water agreed well with results from experimental nuclear magnetic resonance studies. Relaxation rates of the choline segments and chemical shift anisotropies for the phosphate and carbonyls were computed. Headgroup orientation, as measured by the P-N vector, showed enhanced alignment with the membrane surface at low hydration. The sign of the membrane dipole potential reversed at low hydration, with the membrane interior negative relative to the interlamellar region. Calculation of the number of water molecules in the headgroup hydration shell, as a function of hydration level, supports the hypothesis that the break point in the curve of Bragg spacing versus hydration level near 12 waters/lipid, observed experimentally by Hristova and White (1988. Biophys. J. 74:2419-2433), marks the completion of the first hydration shell.  相似文献   

13.
We analyzed the influence of water activity on the lateral self-diffusion of supported phospholipid monolayers. Lipid monolayer membranes were supported by polysaccharide cushions (chitosan and agarose), or glass. A simple diffusion model was derived, based on activated diffusion with an activation energy, E(a), which depends on the hydration state of the lipid headgroup. A crucial assumption of the derived model is that E(a) can be calculated assuming an exponential decay of the humidity-dependent disjoining pressure in the monolayer/substrate interface with respect to the equilibrium separation distance. A plot of ln(D) against ln(p(0)/p), where D is the measured diffusion coefficient and p(0) and p are the partial water pressures at saturation and at a particular relative humidity, respectively, was observed to be linear in all cases (i.e., for differing lipids, lateral monolayer pressures, temperatures, and substrates), in accordance with the above-mentioned diffusion model. No indications for humidity-induced first-order phase transitions in the supported phospholipid monolayers were found. Many biological processes such as vesicle fusion and recognition processes involve dehydration/hydration cycles, and it can be expected that the water activity significantly affects the kinetics of these processes in a manner similar to that examined in the present work.  相似文献   

14.
The diffusive properties of anaerobic methanogenic and sulfidogenic aggregates present in wastewater treatment bioreactors were studied using diffusion analysis by relaxation time-separated pulsed-field gradient nuclear magnetic resonance (NMR) spectroscopy and NMR imaging. NMR spectroscopy measurements were performed at 22°C with 10 ml of granular sludge at a magnetic field strength of 0.5 T (20 MHz resonance frequency for protons). Self-diffusion coefficients of H2O in the investigated series of mesophilic aggregates were found to be 51 to 78% lower than the self-diffusion coefficient of free water. Interestingly, self-diffusion coefficients of H2O were independent of the aggregate size for the size fractions investigated. Diffusional transport occurred faster in aggregates growing under nutrient-rich conditions (e.g., the bottom of a reactor) or at high (55°C) temperatures than in aggregates cultivated in nutrient-poor conditions or at low (10°C) temperatures. Exposure of aggregates to 2.5% glutaraldehyde or heat (70 or 90°C for 30 min) modified the diffusional transport up to 20%. In contrast, deactivation of aggregates by HgCl2 did not affect the H2O self-diffusion coefficient in aggregates. Analysis of NMR images of a single aggregate shows that methanogenic aggregates possess a spin-spin relaxation time and self-diffusion coefficient distribution, which are due to both physical (porosity) and chemical (metal sulfide precipitates) factors.  相似文献   

15.
M Hiebl  R Maksymiw 《Biopolymers》1991,31(2):161-167
The temperature dependence of the apparent expansibility of lysozyme and ovalbumin in solution has been measured as a function of pH. This temperature dependence is explained in terms of suppressed fluctuations in bound water due to the protein. It is shown that the thermal expansion coefficient of bound water is different from bulk water. The pH dependence can be explained by increased hydration of side chains at lower pH. The amount in volume of hydration water in a typical protein-water system varies from 0.16 to 0.7. How the intrinsic thermal expansion coefficient of proteins can be derived from the apparent quantity is discussed. Intrinsic values of the thermal expansion coefficient for lysozyme at room temperature are between 1.7 and 4.4 x 10(-4) K-1 for a 10% solution.  相似文献   

16.
Molecular dynamics simulations of the [d(ATGCAGTCAG]2 fragment of DNA, in water and in the presence of three different counter-ions (Li+, Na+ and Cs+) are reported. Three-dimensional hydration structure and ion distribution have been calculated using spatial distribution functions for a detailed picture of local concentrations of ions and water molecules around DNA. According to the simulations, Cs+ ions bind directly to the bases in the minor groove, Na+ ions bind prevailing to the bases in the minor groove through one water molecule, whereas Li+ ions bind directly to the phosphate oxygens. The different behavior of the counter-ions is explained by specific hydration structures around the DNA and the ions. It is proposed how the observed differences in the ion binding to DNA may explain different conformational behavior of DNA. Calculated self-diffusion coefficients for the ions agree well with the available NMR data.  相似文献   

17.
18.
Dynamics of uncrystallized water and protein was studied in hydrated pellets of the fibrous protein elastin in a wide hydration range (0 to 23 wt.%), by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption–desorption measurements (ESI) were performed at room temperature. The glass transition of the system was studied by DSC and its complex dependence on hydration water was verified. A critical water fraction of about 18 wt.% was found, associated with a reorganization of water in the material. Three dielectric relaxations, associated to dynamics related to distinct uncrystallized water populations, were recorded by TSDC and DRS. The low temperature secondary relaxation of hydrophilic polar groups on the protein surface triggered by hydration water for almost dry samples contains contributions from water molecules themselves at higher water fractions (ν relaxation). This particular relaxation is attributed to water molecules in the primary and secondary hydration shells of the protein fibers. At higher temperatures and for water fraction values equal to or higher than 10 wt.%, a local relaxation of water molecules condensed within small openings in the interior of the protein fibers was recorded. The evolution of this relaxation (w relaxation) with hydration level results in enhanced cooperativity at high water fraction values, implying the existence of “internal” water confined within the protein structure. At higher temperatures a relaxation associated with water dynamics within clusters between fibers (p relaxation) was also recorded, in the same hydration range.  相似文献   

19.
Permeability of the Ehrlich Ascites Tumor Cell to Water   总被引:2,自引:1,他引:1       下载免费PDF全文
The osmotic permeability coefficient for water has been measured for the Ehrlich mouse ascites tumor cell. Measurements were made of the rate of cell shrinkage in hyperosmotic solutions of NaCI, a functionally impermeable solute. During the first 9 months of weekly serial transplantation the mean was 6.4 µ33/atm. ± 0.8 (S.E.). By the end of the 2nd year the permeability coefficient was much lower and averaged 1.6 ± 0.09. There were no significant differences in the volume of the tumor cells which could explain the discrepancy on the basis of a change in the volume to surface area ratio. Studies of the effect of temperature were done and Eyring's theory of absolute reaction rates was applied to the data. The apparent energy of activation was 9.6 kcal./mol and ΔS‡ was 39.1 entropy units. The thermodynamic data are twice as high as data reported by Wang for self-diffusion and viscous properties of water. Two alternate explanations have been advanced based on the pore hypothesis of membrane permeability. One explains the thermodynamic data from a change in the A'/Δx available for water movement; the other assumes A'/Δx constant and bases the results on the interaction of water dipoles with each other and the membrane.  相似文献   

20.
The sorption and desorption of water in rape seeds was measured. From the sorption isotherm it follows that for water content greater than about 6% the water molecules tend to form clusters. The mutual diffusion coefficient of water into and out of the seeds was determined from the time dependence of sorption and desorption. There is a pronounced hysteresis in the sorption-desorption process, desorption proceeds faster than sorption. The self-diffusion of water (at maximum humidity of the seeds) and oil within the seeds was investigated by the pulsed field gradient NMR. The measurement of oil self-diffusion shows restricted diffusion of the oil within droplets and allows the determination of the droplet radii and their distribution width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号